

Section 7: Dijkstra's

Slides adapted from Alex Mariakakis
with material Kellen Donohue, David Mailhot, and Dan Grossman

THINGS TO DISCUSS

* Late days
+3 assignments left
+ Can use 2 late days max per assignment
+ Let us know how many you are using by filling out the online late day request

Must do this by 48 hours after the initial deadline of the homework assignment!

HOMEWORK 7

* Modify your graph to use generics
+ Will have to update HW \#5 and HW \#6 tests
* Implement Dijkstra's algorithm

Search algorithm that accounts for edge weights

+ Note: This should not change your implementation of Graph. Dijkstra's is performed on a Graph, not within a Graph.

HOMEWORK 7

* The more well-connected two characters are, the lower the weight and the more likely that a path is taken through them

The weight of an edge is equal to the inverse of how many comic books the two characters share Ex: If Amazing Amoeba and Zany Zebra appeared in 5 comic books together, the weight of their edge would be $1 / 5$

REVIEW: SHORTEST PATHS WITH BFS

From Node B | Destination | | |
| :---: | :---: | :---: |
| A | Path | Cost |
| B | <B $A>$ | 1 |
| C | <B,A,$C>$ | 0 |
| D | <B,D $>$ | 1 |
| E | $<B, D, E>$ | 2 |

BFS VS, RIJKSTRA'S

\times BFS doesn't work because path with minimal cost \neq path with fewest edges
\times Dijkstra's works if the weights are non-negative
\times What happens if there is a negative edge? + Minimize cost by repeating the cycle forever

DIJKSTRA'S ALGORITHM

For each node v , set v .cost $=\infty$ and
v.known $=$ false

Set source.cost $=0$
While there are unknown nodes in the graph
Select the unknown node v with lowest cost
Mark v as known
For each edge (v, u) with weight w ,
$\mathrm{c} 1=\mathrm{v} \cdot$ cost $+\mathrm{w} / /$ cost of best path through v to u
$\mathrm{c}^{2}=\mathrm{u} \cdot \mathrm{cost} \quad \mathrm{w} \quad / /$ cost of best path to u previously known
if $(c 1<c 2) \quad / /$ if the new path through v is better, update
$u \cdot \operatorname{cost}=c 1$
u.path $=v$

Nodes not in the set will have a "best distance so far" A priority queue will turn out to be useful for efficiency
Order Added to Known Set:

EXAMPLE \#1

EXAMPLE \#2

Order Added to Known Set:

vertex	known?	cost	path
A	Y	0	
B		∞	
C		∞	
D		∞	
E		∞	
F		∞	
G		∞	

A, D, C, E, B, F, G

Order Added to Known Set:

vertex	known?	cost	path
A	Y	0	
B	Y	3	E
C	Y	2	A
D	Y	1	A
E	Y	2	D
F	Y	4	C
G	Y	6	D

PSEUDOCODE ATTEMPT \#1

dijkstra (Graph G, Node start) \{
for each node: x.cost=infinity, $x . k n o w n=f a l s e$
start.cost $=0$
while(not all nodes are known) \{
$\mathrm{b}=$ dequeue
b. known = true
for each edge (b, a) in G \{
if(!a.known)
if(b.cost + weight ((b, a)) < a.cost) \{
a.cost $=$ b.cost + weight ($(\mathrm{b}, \mathrm{a}))$
a. path $=b$
\}
\}

CAN WE RO BETTER?

* Increase efficiency by considering lowest cost unknown vertex with sorting instead of looking at all vertices
\times PriorityQueue is like a queue, but returns elements by lowest value instead of FIFO

PRIORITY QUEUE

* Increase efficiency by considering lowest cost unknown vertex with sorting instead of looking at all vertices
x PriorityQueue is like a queue, but returns elements by lowest value instead of FIFO
* Two ways to implement:

Comparable
class Node implements Comparable<Node> public int compareTo(other)

Comparator

class NodeComparator extends Comparator<Node> new PriorityQueue(new NodeComparator())

PSEUDOCODE ATTEMPT \#2

dijkstra (Graph G, Node start) \{
for each node: x.cost=infinity, x.known=false
start.cost = 0
build-heap with all nodes
while (heap is not empty) \{
b = deleteMin()
if (b.known) continue;
b.known = true
for each edge (b,a) in G \{
if(!a.known) f
add (b.cost + weight((b, a))) \}
\qquad

HW7 TEST SCRIPT COMMAND NOTES
 \times HW7 LoadGraph command is slightly different from
 HW6
 After graph is loaded, there should be at most one directed edge from one node to another, with the edge label being the multiplicative inverse of the number of books shared
 Example: If 8 books are shared between two nodes, the edge label will be $1 / 8$
 Since the edge relationship is symmetric, there would be another edge going the other direction with the same edge label

HW7 IMPORTANT NOTES!!!

\times DO NOT access data from hw6/src/data Copy over data files from hw6/src/data into hw7/ src/data, and access data in hw7 from there instead
Remember to do this! Or tests will fail when grading.

DO NOT modify ScriptFileTests.java

HW7 TEST SCRIPT COMMAND NOTES

```
Let's say AddEdge is called by the client after LoadGraph
    * Now, two things may happen
    + There is a directed edge from one node to another, but not in the
        other direction (no longer symmetric)
            Need not worry about this. It will be up to the client to run
            another AddEdge command if they want the symmetry
    There are two directed edges from one node to the other
            Make sure you choose the edge with the least cost in your
            pathfinding algorithm
            Do not overwrite an existing edge or combine edge values in any
            way
```

Now, two things may happen
there is a directed edge from one node to another, but not in the her direction (no longer symmetric) another AddEdge command if they want the symmetry

There are two directed edges from one node to the other
Make sure you choose the edge with the least cost in your pathfinding algorithm

Do not overwrite an existing edge or combine edge values in any way

GENERICS LECTURE (CON.)

* Slides 39 to 40
+ https://courses.cs.washington.edu/courses/ cse331/15sp/lec13-generics.pdf\#page=39

