
 CSE 331 Midterm Exam 11/9/15

 Page 1 of 11

Name __

There are 9 questions worth a total of 100 points. Please budget your time so you get to
all of the questions. Keep your answers brief and to the point.

The exam is closed book, closed notes, closed electronics, closed mouth, open mind.

Many of the questions have short solutions, even if the question is somewhat long. Don’t
be alarmed.

For all of the questions involving proofs, assertions, invariants, and so forth, you should
assume that all numeric quantities are unbounded integers (i.e., overflow can not happen)
and that integer division is truncating division as in Java, i.e., 5/3 evaluates to 1.

If you don’t remember the exact syntax of some command or the format of a command’s
output, make the best attempt you can. We will make allowances when grading.

Relax, you are here to learn.

Please wait to turn the page until everyone is told to begin.

Score _________________ / 100

1. ______ / 10

2. ______ / 12

3. ______ / 16

4. ______ / 12

5. ______ / 12

6. ______ / 12

7. ______ / 10

8. ______ / 12

9. ______ / 4

 CSE 331 Midterm Exam 11/9/15

 Page 2 of 11

Remember: For all of the questions involving proofs, assertions, invariants, and so forth,
you should assume that all numeric quantities are unbounded integers (i.e., overflow can
not happen) and that integer division is truncating division as in Java, i.e., 5/3 => 1.

Question 1. (10 points) (Forward reasoning) Using forward reasoning, write an assertion
in each blank space indicating what is known about the program state at that point, given
the precondition and the previously executed statements. Your final answers should be
simplified. Be as specific as possible, but be sure to retain all relevant information.

(a) { x < -3 && y = x }

 x = x - 4;

 { _____________________________________ }

 y = x + abs(x);

 { _____________________________________ }

 z = (y+5) * (x+2);

 { _____________________________________ }

(b) { |x| < 5 }

 if (x > 0)

 { _____________________________________ }

 y = x + 2;

 { _____________________________________ }

 else

 { _____________________________________ }

 y = x – 1;

 { _____________________________________ }

 { __ }

 CSE 331 Midterm Exam 11/9/15

 Page 3 of 11

Question 2. (12 points) (assertions) Using backwards reasoning, find the weakest
precondition for each sequence of statements and postcondition below. Insert appropriate
assertions in each blank line. You should simplify your final answers if possible.

(a) (5 points)

 { _____________________________________ }

 x = -7;

 { _____________________________________ }

 z = 2 * x + y;

 {z > 0}

(b) (7 points)

 { _____________________________________ }

 if (x > 0) {

 { _____________________________________ }

 x = x + 6;

 { _____________________________________ }

 } else {

 { _____________________________________ }

 x = x / 2;

 { _____________________________________ }

 }

 { |x| < 7 }

 CSE 331 Midterm Exam 11/9/15

 Page 4 of 11

Question 3. (16 points) Loops. The following method takes two integer arrays and is
supposed to store in each element a[i] the maximum of a[i] and b[i]. Your job is
to complete the code and provide a proof that the code works as specified. You need to
supply an appropriate loop invariant, write the rest of the code, and provide assertions as
needed to prove it is correct.

Notation: we suggest using a[k] for the current contents of an array element and A[k]
for the original value of that element, and similarly for b (although you can write
a[k]_old if you really want). To reduce writing, you do not need to write a!=null,
b!=null, and a.length==b.length anywhere. Assume that those are always true.

// set a[i] to max(a[i], b[i]) for all 0<=i<a.length.
// pre: a != null && b != null && a.length == b.length.
static void pairwisemax(int a[], int b[]) {
 // add initialization code and assertions as needed

 { inv:__ }

 while (_________________________) {

 } // end of while loop

 { post: for 0 <= k < a.length, a[k] = max(A[k], B[k]) }

}

 CSE 331 Midterm Exam 11/9/15

 Page 5 of 11

The holidays are almost here and that means that many packages will be shipped during
the next two months. The next several questions involve an ADT for describing
packages shipped by the USPS (US Postal Service). First some background.

The USPS has standards and rules about the dimensions of parcels that can be shipped.
Two particular rules that are relevant here are:

1. A parcel has to be at least 3 inches high, 6 inches long, and ¼ inch thick.
2. A parcel “cannot measure more than 108 inches in length and girth combined”.

Length is the measurement of the longest dimension and girth is the distance
around the thickest part of the parcel perpendicular to the length.

The following questions concern a Java class USPSParcel that represents one of these
packages. Each instance of this class holds information about the dimensions of the
parcel and also has a tracking history showing where and when the parcel was processed
from initial shipment to final delivery.

More specifically, the internal representation of a parcel must include the following:

• length: the longest dimension of the parcel
• thickness: the shortest dimension of the parcel
• height: the other dimension of the parcel that is neither the longest nor shortest.

These dimensions should be stored as doubles giving dimensions in inches.

The tracking history is simply an ordered list of non-null String values including date,
time, and location of specific events like “12/22/15 16:30 North pole, received by
carrier”, “12/24/15 17:00 Seattle, arrived at carrier facility”, “12/24/15 23:30 Seattle,
delivered, left in front of fireplace”. In the problems below we will not use the contents
of these strings, so their format is not specified further.

(You can remove this page for reference while working on the following questions.)

 CSE 331 Midterm Exam 11/9/15

 Page 6 of 11

Question 4. (12 points) Here is part of the Java code for the USPSParcel class
specification, giving declarations for the instance variables implied above.

/** abstract description of USPSParcel here (see part(a)) */
public class USPSParcel {
 private final double length; // rep: package dimensions
 private final double thickness;
 private final double height;
 private List<String> history; // rep: tracking history

(a) (3 points) Give a suitable abstract description of the class as would be written in the
JavaDoc comment above the USPSParcel class heading. A USPSParcel should
represent a parcel that meets the USPS requirements for shipping (has suitable sizes).

(b) (5 points) Give a suitable Representation Invariant (RI) for this class. Besides
constraints on the parcel dimensions, you also need to provide any necessary constraints
on the history variable storing the tracking history.

(c) (4 points) Give a suitable Abstraction Function (AF) for this class relating the RI to
the abstract value of a USPSParcel.

 CSE 331 Midterm Exam 11/9/15

 Page 7 of 11

Question 5. (12 points) Complete the following partial implementation of the
USPSParcel class constructor. The input parameter is an array of three doubles
containing the dimensions in no particular order (clerks are lazy and enter the dimensions
in the order they measure them). Hints: Arrays.sort(a) sorts array a in ascending
order, and Arrays.copyOf(a,n) yields a copy of array a with n elements.

 /** Initialize this USPSParcel
 * @param sizes package dimensions in no particular order
 * @requires sizes.length == 3
 * @modifies this
 * @effects this initialized with given package size and
 * empty tracking history
 * @throws IllegalArgumentException if parcel dimensions
 * do not meet USPS requirements for shipping
 */
 public USPSParcel(double[] sizes) {

 }

 CSE 331 Midterm Exam 11/9/15

 Page 8 of 11

Question 6. (testing) (12 points) Describe four separate “black box” tests for your
USPSParcel constructor (above). At least one test should verify that the constructor
properly initializes an object representing a parcel that can be legally shipped (has
appropriate dimensions). At least two tests should check that the constructor throws an
appropriate exception if an attempt is made to construct a package that does not meet the
requirements. For full credit, the tests should cover different input subdomains.

For each test give the input values and expected result(s). You do not need to write JUnit
tests or other Java code, although you can if you wish. If you need them, you should
assume that the class includes methods getLength(), getHeight(),
getThickness(), and getHistory() that return values in the instance variables.

(a)

(b)

(c)

(d)

 CSE 331 Midterm Exam 11/9/15

 Page 9 of 11

Question 7. (10 points) Specifications. We want to include a method to append a new
string to the tracking history in a USPSParcel. The method implementation is trivial
and is given below, but it still needs to be specified properly.

Complete the JavaDoc comments for the addEvent method below to provide the most
suitable specification. Leave any unneeded parts blank. There is space at the beginning
(before @param) to write the summary description of the method that should begin every
JavaDoc specification. You may have to use your best judgment based on the
implementation to decide how to specify some details. Hint: the answer probably won’t
need nearly this much space.

 /**
 *
 *
 *
 *
 *
 * @param event
 *
 *
 *
 * @requires
 *
 *
 *
 * @modifies
 *
 *
 *
 * @effects
 *
 *
 *
 * @throws
 *
 *
 *
 * @returns
 *
 *
 */
 public void addEvent(String event) {
 history.add(event);
 }

 CSE 331 Midterm Exam 11/9/15

 Page 10 of 11

Question 8. (12 points) Equals/Hashcode. There are several possible ways to decide if
two parcels are equal. Here are three of them (with funny line spacing to save space):

 // this.equals(other) if dimensions are same
 public boolean equals1(Object o) {
 if (!(o instanceof USPSParcel)) return false;
 USPSParcel other = (USPSParcel) o;
 return length == other.length && height == other.height &&
 thickness == other.thickness;
 }

 // this.equals(other) if length+girth are same
 public boolean equals2(Object o) {
 if (!(o instanceof USPSParcel)) return false;
 USPSParcel other = (USPSParcel) o;
 double thisg = 2 * (height + thickness);
 double otherg = 2 * (other.height + other.thickness);
 return (length + thisg) == (other.length + otherg);
 }

 // this.equals(other) if sum of dimensions are same
 public boolean equals3(Object o) {
 if (!(o instanceof USPSParcel)) return false;
 USPSParcel other = (USPSParcel) o;
 return length + height + thickness ==
 other.length + other.height + other.thickness;
 }

Here are some possible hashCode methods for this class.

 public int hashCode1() {
 return (int)length;
 }
 public int hashCode2() {
 return (int)(length + height + thickness);
 }
 public int hashCode3() {
 return (int)(31*(length + 31*height) + thickness);
 }
 public int hashCode4() {
 return (int)Math.max(length,
 Math.max(height, thickness));
 }
 public int hashCode5() {
 return 331;
 }

(answer the question on the next page – you can remove this page for reference.)

 CSE 331 Midterm Exam 11/9/15

 Page 11 of 11

Question 8. (cont.) (a) (9 points) complete the following table by writing “OK” in each
entry where the hashCode implementation given in the left column is a correct
implementation of hashCode for the equals method given in the top row. Leave the
entry blank if it is not correct for that particular combination of equals and
hashCode. (Do not be alarmed if most entries are blank or, for that matter, if most of
them are OK. Just pick the right answers. J)

 equals1 equals2 equals3

hashCode1

hashCode2

hashCode3

hashCode4

hashCode5

(b) (3 points) Ignoring issues about compatibility with the various equals methods, if
we only needed to pick a good hashCode method, which one of the five given
hashCode methods would likely be best and why? Be brief.

Question 9. (4 points) One of the programmers has pointed out that we haven’t yet
written the code for the method to return the tracking history to clients. The suggestion is
to include this implementation, and since Strings are immutable, nothing can go
wrong. Is that right? Why or why not? (briefly)

 public List<String> getHistory() {
 return history;
 }

