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Administrivia 

•  Next two assignments out now 
–  HW2: Written problems on loops, due Tue. night 
–  HW3: Java warmup & project logistics 

•  Due Thur. night 
•  Should go quickly, but please start early so we 

can fix setup problems before the last minute 
–  & read and follow instructions carefully! 

•  Lots of new readings related to next few lectures – 
dig in if you haven’t already 
–  Readings on calendar are sections in books 
–  Quizzes coming soon J 
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2 Goals of Software System Building 

•  Building the right system 
–  Does the program meet the user’s needs? 
–  Determining this is usually called validation 

•  Building the system right 
–  Does the program meet the specification? 
–  Determining this is usually called verification  

•  CSE 331: the second goal is the focus – creating a correctly 
functioning artifact 
–  Surprisingly hard to specify, design, implement, test, and 

debug even simple programs 
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Where we are 

•  We’ve started to see how to reason about code 
•  We’ll build on those skills in many places: 

–  Specification: What are we supposed to build? 

–  Design: How do we decompose the job into manageable 
pieces?  Which designs are “better”? 

–  Implementation: Building code that meets the specification 

–  Testing: Systematically finding problems 

–  Debugging: Systematically fixing problems 

–  Maintenance: How does the artifact adapt over time? 

–  Documentation: What do we need to know to do these 
things?  How/where do we write that down?   

4 CSE 331 Fall 2016 



The challenge of scaling software 

•  Small programs are simple and malleable 
–  Easy to write 
–  Easy to change 

•  Big programs are (often) complex and inflexible 
–  Hard to write 
–  Hard to change 

•  Why does this happen?   
–  Because interactions become unmanageable 

•  How do we keep things simple and malleable? 
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A discipline of modularity 

•  Two ways to view a program: 
–  The implementer's view (how to build it) 
–  The client's view (how to use it) 

•  It helps to apply these views to program parts: 
–  While implementing one part, consider yourself a client of 

any other parts it depends on 
–  Try not to look at those other parts through an implementer's 

eyes 
–  Helps dampen interactions between parts 

•  Formalized through the idea of a specification 
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 A specification is a contract 

•  A set of requirements agreed to by the user and the 
manufacturer of the product 
–  Describes their expectations of each other 

•  Facilitates simplicity via two-way isolation 
–  Isolate client from implementation details 
–  Isolate implementer from how the part is used 
–  Discourages implicit, unwritten expectations 
 

•  Facilitates change 
–  Reduces the “Medusa effect”: the specification, rather 

than the code, gets “turned to stone” by client 
dependencies 
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Isn’t the interface sufficient? 
The interface defines the boundary between implementers and users: 
 

  public class List<E> { 
     public E get(int x) { return null; } 
    public void set(int x, E y){} 
    public void add(E) {} 
    public void add(int, E){}  
    … 
    public static <T> boolean isSub(List<T>, List<T>){ 

        return false; 
     } 
 } 

  

 Interface provides the syntax and types 
 But nothing about the behavior and effects 

–  Provides too little information to clients 

Note: Code above is right concept but is not (completely) legal Java 
–  Parameters need names; no static interface methods before Java 8 
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Why not just read code? 
static <T> boolean sub(List<T> src, List<T> part) { 
     int part_index = 0; 
     for (T elt : src) { 
         if (elt.equals(part.get(part_index))) { 
             part_index++; 
             if (part_index == part.size()) { 
                 return true; 
             } 
         } else { 
             part_index = 0; 
         } 
     } 
     return false; 
 } 
 

Why are you better off with a specification? 
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Code is complicated 

•  Code gives more detail than needed by client 

•  Understanding or even reading every line of code is an 
excessive burden 
–  Suppose you had to read source code of Java libraries to 

use them 
–  Same applies to developers of different parts of the libraries 

•  Client cares only about what the code does, not how it does it 
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Code is ambiguous 

•  Code seems unambiguous and concrete 
–  But which details of code's behavior are essential, and which 

are incidental?  

•  Code invariably gets rewritten 
–  Client needs to know what they can rely on 

•  What properties will be maintained over time? 
•  What properties might be changed by future optimization, 

improved algorithms, or bug fixes? 
–  Implementer needs to know what features the client depends 

on, and which can be changed 
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Comments are essential 

Most comments convey only an informal, general idea of what that the 
code does: 

 // This method checks if "part" appears as a  
 // sub-sequence in "src" 
 static <T> boolean sub(List<T> src, List<T> part){ 
   ... 
 } 
 
Problem:  ambiguity remains 

–  What if src and part are both empty lists? 
–  When does the function return true?  
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From vague comments to specifications 

•  Roles of a specification: 
–  Client agrees to rely only on information in the description in 

their use of the part 
–  Implementer of the part promises to support everything in 

the description 
•  Otherwise is perfectly at liberty 

•  Sadly, much code lacks a specification 
–  Clients often work out what a method/class does in 

ambiguous cases by running it and depending on the results 
–  Leads to bugs and programs with unclear dependencies, 

reducing simplicity and flexibility 
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Recall the sublist example 

 static <T> boolean sub(List<T> src, List<T> part) { 
     int part_index = 0; 
     for (T elt : src) { 
         if (elt.equals(part.get(part_index))) { 
             part_index++; 
             if (part_index == part.size()) { 
                 return true; 
             } 
         } else { 
             part_index = 0; 
         } 
     } 
     return false; 
 } 
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A more careful description of sub 
    // Check whether “part” appears as a sub-sequence in “src” 
 

needs to be given some caveats (why?): 
    // * src and part cannot be null 
    // * If src is empty list, always returns false 
    // * Results may be unexpected if partial matches 
    //   can happen right before a real match; e.g., 
    //   list (1,2,1,3) will not be identified as a  
    //   sub sequence of (1,2,1,2,1,3). 
 

or replaced with a more detailed description: 
    // This method scans the “src” list from beginning 
    // to end, building up a match for “part”, and 
    // resetting that match every time that... 
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A better approach 

It’s better to simplify  than to describe complexity! 
 

Complicated description suggests poor design 
–  Rewrite sub to be more sensible, and easier to describe 
 

 // returns true iff possibly empty sequences A, B exist such that 
 //   src = A : part : B 
 // where “:” is sequence concatenation 
static <T> boolean sub(List<T> src, List<T> part) { 
 
•  Mathematical flavor not always necessary, but often helps avoid 

ambiguity 
•  “Declarative” style is important: avoids reciting or depending on 

operational/implementation details 
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Sneaky fringe benefit of specs #1 

•  The discipline of writing specifications changes the incentive 
structure of coding 
–  Rewards code that is easy to describe and understand 
–  Punishes code that is hard to describe and understand  

•  Even if it is shorter or easier to write 

•  If you find yourself writing complicated specifications, it is an 
incentive to redesign 
–  In sub, code that does exactly the right thing may be slightly 

slower than a hack that assumes no partial matches before 
true matches, but cost of forcing client to understand the 
details is too high 
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Writing specifications with Javadoc 

•  Javadoc 
–  Sometimes can be daunting; get used to using it 

•  Javadoc convention for writing specifications 
–  Method signature 
–  Text description of method 
–  @param:  description of what gets passed in 
–  @return:  description of what gets returned 
–  @throws:  exceptions that may occur 
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Example: Javadoc for String.contains 

public boolean contains(CharSequence s) 

Returns true if and only if this string contains 
the specified sequence of char values.  

Parameters: 

 s- the sequence to search for  

Returns: 

 true if this string contains s, false otherwise  

Throws: 

 NullPointerException – if s is null 

Since: 

 1.5  
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CSE 331 specifications 

•  The precondition: constraints that hold before the method is called 
(if not, all bets are off) 
–  @requires:  spells out any obligations on client 
 

•  The postcondition: constraints that hold after the method is called 
(if the precondition held) 
–  @modifies:  lists objects that may be affected by method; any 

object not listed is guaranteed to be untouched 
–  @throws:  lists possible exceptions and conditions under 

which they are thrown (Javadoc uses this too) 
–  @effects:  gives guarantees on final state of modified objects 
–  @return:  describes return value (Javadoc uses this too) 
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Example 1 

static <T> int change(List<T> lst, T oldelt, T newelt) 
requires  lst, oldelt, and newelt are non-null. 
   oldelt occurs in lst. 

 

modifies  lst 
 

effects  change the first occurrence of oldelt in lst to newelt 
   & makes no other changes to lst 

 

returns  the position of the element in lst that was oldelt and 
  is now newelt 

 

 
static <T> int change(List<T> lst,  
                      T oldelt, T newelt) { 
 int i = 0; 

   for (T curr : lst) { 
     if (curr == oldelt) { 
         lst.set(newelt, i); 
         return i; 
     } 

i = i + 1; 
   } 
   return -1; 
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Example 2 

static List<Integer> zipSum(List<Integer> lst1, List<Integer> lst2)  
    requires  lst1 and lst2 are non-null. 

  lst1 and lst2 are the same size.  
  modifies  none 
  effects  none 
  returns  a list of same size where the ith element is  

   the sum of the ith elements of lst1 and lst2 
 

 static List<Integer> zipSum(List<Integer> lst1 
                             List<Integer> lst2) { 
  List<Integer> res = new ArrayList<Integer>(); 
  for(int i = 0; i < lst1.size(); i++) { 
  res.add(lst1.get(i) + lst2.get(i)); 
  } 
  return res; 

 } 
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Example 3 

static void listAdd(List<Integer> lst1, List<Integer> lst2)    
       requires  lst1 and lst2 are non-null. 

  lst1 and lst2 are the same size.  
  modifies  lst1 
  effects  ith element of lst2 is added to the ith element of lst1  
  returns  none 

 
static void listAdd(List<Integer> lst1,   

     List<Integer> lst2) { 
 for(int i = 0; i < lst1.size(); i++) { 
  lst1.set(i, lst1.get(i) + lst2.get(i)); 
 } 

} 
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Example 4 (Watch out for bugs!) 

static void uniquify(List<Integer> lst)    
       requires  ??? 

  ??? 
  modifies  ??? 
  effects  ??? 
  returns  ??? 

 
static void uniquify(List<Integer> lst) { 
   for (int i=0; i < lst.size()-1; i++)  
       if (lst.get(i) == lst.get(i+1)) 
           lst.remove(i); 
} 
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Should requires clause be checked? 

•  If the client calls a method without meeting the precondition, the 
code is free to do anything 
–  Including pass corrupted data back 
–  It is polite, nevertheless, to fail fast: to provide an immediate 

error, rather than permitting mysterious bad behavior 

•  Preconditions are common in “helper” methods/classes 
–  In public libraries, it’s friendlier to deal with all possible input 
–  But: binary search would normally impose a pre-condition 

rather than simply failing if list is not sorted.  Why? 

•  Rule of thumb: Check if cheap to do so 
–  Example: list has to be non-null à check 
–  Example: list has to be sorted à skip 
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Satisfaction of a specification 

Let M be an implementation and S a specification 
 
M satisfies S if and only if 

–  Every behavior of M is permitted by S 
–  “The behavior of M is a subset of S” 

 
The statement “M is correct” is meaningless! 

–  Though often made! 
 
If M does not satisfy S, either (or both!) could be “wrong” 

–  “One person’s feature is another person’s bug.” 
–  Usually better to change the program than the spec 
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Sneaky fringe benefit of specs #2 

•  Specification means that client doesn't need to look at 
implementation 
–  So the code may not even exist yet! 
 

•  Write specifications first, make sure system will fit together, and 
then assign separate implementers to different modules 
–  Allows teamwork and parallel development 
–  Also helps with testing (future topic) 
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Comparing specifications 

•  Occasionally, we need to compare different versions of a 
specification (Why?) 
–  For that, talk about weaker and stronger specifications 

•  A weaker specification gives greater freedom to the implementer 
–  If specification S1 is weaker than S2, then for any 

implementation M, 
•  M satisfies S2    =>   M satisfies S1 
•  but the opposite implication does not hold in general 

•  Given two specifications, they may be incomparable 
–  Neither is weaker/stronger than the other 
–  Some implementations might still satisfy them both 
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Why compare specifications? 

We wish to relate procedures to specifications 
–  Does the procedure satisfy the specification? 
–  Has the implementer succeeded? 

We wish to compare specifications to one another 
–  Which specification (if either) is stronger? 
–  A procedure satisfying a stronger specification can be used 

anywhere that a weaker specification is required 
•  Substitutability principle 
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Example 1 

    int find(int[] a, int value) { 
        for (int i=0; i<a.length; i++) { 
            if (a[i]==value)  
              return i; 
        } 
        return -1; 
    } 
 

•  Specification A 
–  requires: value occurs in a 
–  returns: i such that a[i] = value 

•  Specification B 
–  requires: value occurs in a 
–  returns: smallest  i such that a[i] = value 
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Example 2 
      int find(int[] a, int value) { 
        for (int i=0; i<a.length; i++) { 
            if (a[i]==value)  
              return i; 
        } 
        return -1; 
    } 

•  Specification A 
–  requires: value occurs in a 
–  returns: i such that a[i] = value 
 

•  Specification C 
–  returns: i such that a[i] = value, or -1 if value is not in a 
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Stronger and weaker specifications 

•  A stronger specification is 
–  Harder to satisfy (more constraints on the implementation) 
–  Easier to use (more guarantees, more predictable, client can 

make more assumptions) 
 

•  A weaker specification is 
–  Easier to satisfy (easier to implement, more implementations 

satisfy it) 
–  Harder to use (makes fewer guarantees) 
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Strengthening a specification 

•  Strengthen a specification by: 
–  Promising more – any or all of: 

•  Effects clause harder to satisfy 
•  Returns clause harder to satisfy 
•  Fewer objects in modifies clause 
•  More specific exceptions (subclasses) 

–  Asking less of client 
•  Requires clause easier to satisfy 

•  Weaken a specification by: 
–  (Opposite of everything above) 
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“Strange” case: @throws 

[Prior versions of course, including old exams, were clumsy/wrong 
about this] 
 
Compare: 
S1:  
   @throws FooException if x<0 
   @return x+3 
S2: 
   @return x+3 
 
•  These are incomparable because they promise different, 

incomparable things when x<0 
•  Both are stronger than @requires x>=0; @return x+3 
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Which is better? 

•  Stronger does not always mean better! 

•  Weaker does not always mean better! 

•  Strength of specification trades off: 
–  Usefulness to client 
–  Ease of simple, efficient, correct implementation 
–  Promotion of reuse and modularity 
–  Clarity of specification itself 

•  “It depends” 
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More formal stronger/weaker 

•  A specification is a logical formula 
–  S1 stronger than S2 if S1 implies S2 
–  From implication all things follows: 

•  Example: S1 stronger if requires is weaker 
•  Example: S1 stronger if returns is stronger 

•  As in all logic (cf. CSE311), two rigorous ways to check implication 
–  Convert entire specifications to logical formulas and use logic 

rules to check implication (e.g., P1 ∧ P2 ⇒ P2) 
–  Check every behavior described by stronger also described by 

the other 
•  CSE311: truth tables 
•  CSE331: transition relations 
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Transition relations 

•  There is a program state before a method call and after 
–  All memory, values of all parameters/result, whether 

exception happened, etc. 

•  A specification “means” a set of pairs of program states 
–  The legal pre/post-states 
–  This is the transition relation defined by the spec 

•  Could be infinite 
•  Could be multiple legal outputs for same input 

•  Stronger specification means the transition relation is a subset 

•  Note: Transition relations often are infinite in size 
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