
CSE 331
Software Design & Implementation

Hal Perkins
Fall 2016

Lecture 4 – Specifications

Administrivia

•  Next two assignments out now
–  HW2: Written problems on loops, due Tue. night
–  HW3: Java warmup & project logistics

•  Due Thur. night
•  Should go quickly, but please start early so we

can fix setup problems before the last minute
–  & read and follow instructions carefully!

•  Lots of new readings related to next few lectures –
dig in if you haven’t already
–  Readings on calendar are sections in books
–  Quizzes coming soon J

CSE 331 Fall 2016 2

2 Goals of Software System Building

•  Building the right system
–  Does the program meet the user’s needs?
–  Determining this is usually called validation

•  Building the system right
–  Does the program meet the specification?
–  Determining this is usually called verification

•  CSE 331: the second goal is the focus – creating a correctly
functioning artifact
–  Surprisingly hard to specify, design, implement, test, and

debug even simple programs

3 CSE 331 Fall 2016

Where we are

•  We’ve started to see how to reason about code
•  We’ll build on those skills in many places:

–  Specification: What are we supposed to build?

–  Design: How do we decompose the job into manageable
pieces? Which designs are “better”?

–  Implementation: Building code that meets the specification

–  Testing: Systematically finding problems

–  Debugging: Systematically fixing problems

–  Maintenance: How does the artifact adapt over time?

–  Documentation: What do we need to know to do these
things? How/where do we write that down?

4 CSE 331 Fall 2016

The challenge of scaling software

•  Small programs are simple and malleable
–  Easy to write
–  Easy to change

•  Big programs are (often) complex and inflexible
–  Hard to write
–  Hard to change

•  Why does this happen?
–  Because interactions become unmanageable

•  How do we keep things simple and malleable?

5 CSE 331 Fall 2016

A discipline of modularity

•  Two ways to view a program:
–  The implementer's view (how to build it)
–  The client's view (how to use it)

•  It helps to apply these views to program parts:
–  While implementing one part, consider yourself a client of

any other parts it depends on
–  Try not to look at those other parts through an implementer's

eyes
–  Helps dampen interactions between parts

•  Formalized through the idea of a specification

6 CSE 331 Fall 2016

 A specification is a contract

•  A set of requirements agreed to by the user and the
manufacturer of the product
–  Describes their expectations of each other

•  Facilitates simplicity via two-way isolation
–  Isolate client from implementation details
–  Isolate implementer from how the part is used
–  Discourages implicit, unwritten expectations

•  Facilitates change
–  Reduces the “Medusa effect”: the specification, rather

than the code, gets “turned to stone” by client
dependencies

CSE 331 Fall 2016 7

Isn’t the interface sufficient?
The interface defines the boundary between implementers and users:

 public class List<E> {
 public E get(int x) { return null; }
 public void set(int x, E y){}
 public void add(E) {}
 public void add(int, E){}
 …
 public static <T> boolean isSub(List<T>, List<T>){

 return false;
 }
 }

 Interface provides the syntax and types
 But nothing about the behavior and effects

–  Provides too little information to clients

Note: Code above is right concept but is not (completely) legal Java
–  Parameters need names; no static interface methods before Java 8

8 CSE 331 Fall 2016

Why not just read code?
static <T> boolean sub(List<T> src, List<T> part) {
 int part_index = 0;
 for (T elt : src) {
 if (elt.equals(part.get(part_index))) {
 part_index++;
 if (part_index == part.size()) {
 return true;
 }
 } else {
 part_index = 0;
 }
 }
 return false;
 }

Why are you better off with a specification?
9 CSE 331 Fall 2016

Code is complicated

•  Code gives more detail than needed by client

•  Understanding or even reading every line of code is an
excessive burden
–  Suppose you had to read source code of Java libraries to

use them
–  Same applies to developers of different parts of the libraries

•  Client cares only about what the code does, not how it does it

10 CSE 331 Fall 2016

Code is ambiguous

•  Code seems unambiguous and concrete
–  But which details of code's behavior are essential, and which

are incidental?

•  Code invariably gets rewritten
–  Client needs to know what they can rely on

•  What properties will be maintained over time?
•  What properties might be changed by future optimization,

improved algorithms, or bug fixes?
–  Implementer needs to know what features the client depends

on, and which can be changed

11 CSE 331 Fall 2016

Comments are essential

Most comments convey only an informal, general idea of what that the
code does:

 // This method checks if "part" appears as a
 // sub-sequence in "src"
 static <T> boolean sub(List<T> src, List<T> part){
 ...
 }

Problem: ambiguity remains

–  What if src and part are both empty lists?
–  When does the function return true?

12 CSE 331 Fall 2016

From vague comments to specifications

•  Roles of a specification:
–  Client agrees to rely only on information in the description in

their use of the part
–  Implementer of the part promises to support everything in

the description
•  Otherwise is perfectly at liberty

•  Sadly, much code lacks a specification
–  Clients often work out what a method/class does in

ambiguous cases by running it and depending on the results
–  Leads to bugs and programs with unclear dependencies,

reducing simplicity and flexibility

13 CSE 331 Fall 2016

Recall the sublist example

 static <T> boolean sub(List<T> src, List<T> part) {
 int part_index = 0;
 for (T elt : src) {
 if (elt.equals(part.get(part_index))) {
 part_index++;
 if (part_index == part.size()) {
 return true;
 }
 } else {
 part_index = 0;
 }
 }
 return false;
 }

14 CSE 331 Fall 2016

A more careful description of sub
 // Check whether “part” appears as a sub-sequence in “src”

needs to be given some caveats (why?):
 // * src and part cannot be null
 // * If src is empty list, always returns false
 // * Results may be unexpected if partial matches
 // can happen right before a real match; e.g.,
 // list (1,2,1,3) will not be identified as a
 // sub sequence of (1,2,1,2,1,3).

or replaced with a more detailed description:
 // This method scans the “src” list from beginning
 // to end, building up a match for “part”, and
 // resetting that match every time that...

15 CSE 331 Fall 2016

A better approach

It’s better to simplify than to describe complexity!

Complicated description suggests poor design
–  Rewrite sub to be more sensible, and easier to describe

 // returns true iff possibly empty sequences A, B exist such that
 // src = A : part : B
 // where “:” is sequence concatenation
static <T> boolean sub(List<T> src, List<T> part) {

•  Mathematical flavor not always necessary, but often helps avoid

ambiguity
•  “Declarative” style is important: avoids reciting or depending on

operational/implementation details

16 CSE 331 Fall 2016

Sneaky fringe benefit of specs #1

•  The discipline of writing specifications changes the incentive
structure of coding
–  Rewards code that is easy to describe and understand
–  Punishes code that is hard to describe and understand

•  Even if it is shorter or easier to write

•  If you find yourself writing complicated specifications, it is an
incentive to redesign
–  In sub, code that does exactly the right thing may be slightly

slower than a hack that assumes no partial matches before
true matches, but cost of forcing client to understand the
details is too high

17 CSE 331 Fall 2016

Writing specifications with Javadoc

•  Javadoc
–  Sometimes can be daunting; get used to using it

•  Javadoc convention for writing specifications
–  Method signature
–  Text description of method
–  @param: description of what gets passed in
–  @return: description of what gets returned
–  @throws: exceptions that may occur

18 CSE 331 Fall 2016

Example: Javadoc for String.contains

public boolean contains(CharSequence s)

Returns true if and only if this string contains
the specified sequence of char values.

Parameters:

 s- the sequence to search for

Returns:

 true if this string contains s, false otherwise

Throws:

 NullPointerException – if s is null

Since:

 1.5

19 CSE 331 Fall 2016

CSE 331 specifications

•  The precondition: constraints that hold before the method is called
(if not, all bets are off)
–  @requires: spells out any obligations on client

•  The postcondition: constraints that hold after the method is called
(if the precondition held)
–  @modifies: lists objects that may be affected by method; any

object not listed is guaranteed to be untouched
–  @throws: lists possible exceptions and conditions under

which they are thrown (Javadoc uses this too)
–  @effects: gives guarantees on final state of modified objects
–  @return: describes return value (Javadoc uses this too)

20 CSE 331 Fall 2016

Example 1

static <T> int change(List<T> lst, T oldelt, T newelt)
requires lst, oldelt, and newelt are non-null.
 oldelt occurs in lst.

modifies lst

effects change the first occurrence of oldelt in lst to newelt
 & makes no other changes to lst

returns the position of the element in lst that was oldelt and
 is now newelt

static <T> int change(List<T> lst,
 T oldelt, T newelt) {
 int i = 0;

 for (T curr : lst) {
 if (curr == oldelt) {
 lst.set(newelt, i);
 return i;
 }

i = i + 1;
 }
 return -1;
} 21 CSE 331 Fall 2016

Example 2

static List<Integer> zipSum(List<Integer> lst1, List<Integer> lst2)
 requires lst1 and lst2 are non-null.

 lst1 and lst2 are the same size.
 modifies none
 effects none
 returns a list of same size where the ith element is

 the sum of the ith elements of lst1 and lst2

 static List<Integer> zipSum(List<Integer> lst1
 List<Integer> lst2) {
 List<Integer> res = new ArrayList<Integer>();
 for(int i = 0; i < lst1.size(); i++) {
 res.add(lst1.get(i) + lst2.get(i));
 }
 return res;

 }
22 CSE 331 Fall 2016

Example 3

static void listAdd(List<Integer> lst1, List<Integer> lst2)
 requires lst1 and lst2 are non-null.

 lst1 and lst2 are the same size.
 modifies lst1
 effects ith element of lst2 is added to the ith element of lst1
 returns none

static void listAdd(List<Integer> lst1,

 List<Integer> lst2) {
 for(int i = 0; i < lst1.size(); i++) {
 lst1.set(i, lst1.get(i) + lst2.get(i));
 }

}

23 CSE 331 Fall 2016

Example 4 (Watch out for bugs!)

static void uniquify(List<Integer> lst)
 requires ???

 ???
 modifies ???
 effects ???
 returns ???

static void uniquify(List<Integer> lst) {
 for (int i=0; i < lst.size()-1; i++)
 if (lst.get(i) == lst.get(i+1))
 lst.remove(i);
}

24 CSE 331 Fall 2016

Should requires clause be checked?

•  If the client calls a method without meeting the precondition, the
code is free to do anything
–  Including pass corrupted data back
–  It is polite, nevertheless, to fail fast: to provide an immediate

error, rather than permitting mysterious bad behavior

•  Preconditions are common in “helper” methods/classes
–  In public libraries, it’s friendlier to deal with all possible input
–  But: binary search would normally impose a pre-condition

rather than simply failing if list is not sorted. Why?

•  Rule of thumb: Check if cheap to do so
–  Example: list has to be non-null à check
–  Example: list has to be sorted à skip

25 CSE 331 Fall 2016

Satisfaction of a specification

Let M be an implementation and S a specification

M satisfies S if and only if

–  Every behavior of M is permitted by S
–  “The behavior of M is a subset of S”

The statement “M is correct” is meaningless!

–  Though often made!

If M does not satisfy S, either (or both!) could be “wrong”

–  “One person’s feature is another person’s bug.”
–  Usually better to change the program than the spec

26 CSE 331 Fall 2016

Sneaky fringe benefit of specs #2

•  Specification means that client doesn't need to look at
implementation
–  So the code may not even exist yet!

•  Write specifications first, make sure system will fit together, and
then assign separate implementers to different modules
–  Allows teamwork and parallel development
–  Also helps with testing (future topic)

27 CSE 331 Fall 2016

Comparing specifications

•  Occasionally, we need to compare different versions of a
specification (Why?)
–  For that, talk about weaker and stronger specifications

•  A weaker specification gives greater freedom to the implementer
–  If specification S1 is weaker than S2, then for any

implementation M,
•  M satisfies S2 => M satisfies S1
•  but the opposite implication does not hold in general

•  Given two specifications, they may be incomparable
–  Neither is weaker/stronger than the other
–  Some implementations might still satisfy them both

28 CSE 331 Fall 2016

Why compare specifications?

We wish to relate procedures to specifications
–  Does the procedure satisfy the specification?
–  Has the implementer succeeded?

We wish to compare specifications to one another
–  Which specification (if either) is stronger?
–  A procedure satisfying a stronger specification can be used

anywhere that a weaker specification is required
•  Substitutability principle

CSE 331 Fall 2016 29

Example 1

 int find(int[] a, int value) {
 for (int i=0; i<a.length; i++) {
 if (a[i]==value)
 return i;
 }
 return -1;
 }

•  Specification A
–  requires: value occurs in a
–  returns: i such that a[i] = value

•  Specification B
–  requires: value occurs in a
–  returns: smallest i such that a[i] = value

30 CSE 331 Fall 2016

Example 2
 int find(int[] a, int value) {
 for (int i=0; i<a.length; i++) {
 if (a[i]==value)
 return i;
 }
 return -1;
 }

•  Specification A
–  requires: value occurs in a
–  returns: i such that a[i] = value

•  Specification C
–  returns: i such that a[i] = value, or -1 if value is not in a

31 CSE 331 Fall 2016

Stronger and weaker specifications

•  A stronger specification is
–  Harder to satisfy (more constraints on the implementation)
–  Easier to use (more guarantees, more predictable, client can

make more assumptions)

•  A weaker specification is
–  Easier to satisfy (easier to implement, more implementations

satisfy it)
–  Harder to use (makes fewer guarantees)

32 CSE 331 Fall 2016

Strengthening a specification

•  Strengthen a specification by:
–  Promising more – any or all of:

•  Effects clause harder to satisfy
•  Returns clause harder to satisfy
•  Fewer objects in modifies clause
•  More specific exceptions (subclasses)

–  Asking less of client
•  Requires clause easier to satisfy

•  Weaken a specification by:
–  (Opposite of everything above)

33 CSE 331 Fall 2016

“Strange” case: @throws

[Prior versions of course, including old exams, were clumsy/wrong
about this]

Compare:
S1:
 @throws FooException if x<0
 @return x+3
S2:
 @return x+3

•  These are incomparable because they promise different,

incomparable things when x<0
•  Both are stronger than @requires x>=0; @return x+3

CSE 331 Fall 2016 34

Which is better?

•  Stronger does not always mean better!

•  Weaker does not always mean better!

•  Strength of specification trades off:
–  Usefulness to client
–  Ease of simple, efficient, correct implementation
–  Promotion of reuse and modularity
–  Clarity of specification itself

•  “It depends”

CSE 331 Fall 2016 35

More formal stronger/weaker

•  A specification is a logical formula
–  S1 stronger than S2 if S1 implies S2
–  From implication all things follows:

•  Example: S1 stronger if requires is weaker
•  Example: S1 stronger if returns is stronger

•  As in all logic (cf. CSE311), two rigorous ways to check implication
–  Convert entire specifications to logical formulas and use logic

rules to check implication (e.g., P1 ∧ P2 ⇒ P2)
–  Check every behavior described by stronger also described by

the other
•  CSE311: truth tables
•  CSE331: transition relations

CSE 331 Fall 2016 36

Transition relations

•  There is a program state before a method call and after
–  All memory, values of all parameters/result, whether

exception happened, etc.

•  A specification “means” a set of pairs of program states
–  The legal pre/post-states
–  This is the transition relation defined by the spec

•  Could be infinite
•  Could be multiple legal outputs for same input

•  Stronger specification means the transition relation is a subset

•  Note: Transition relations often are infinite in size
CSE 331 Fall 2016 37

