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Reasoning about code

Idea: determine what facts are true at each line of the program

 We would like to know:
— at the end, maxIndexis index of the maximum element
— at the end, negatives before zeros before positives in arr

» Getthere by understanding what is true at each line until end

— then check that those facts that are true at the end include
all the things we require
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Why do this?

« Essential for building high quality programs
— allows us to inspect code to check correctness
— need all three: tools, inspection, & testing
— inspection is even the most effective of the three

» Essential for building high complexity programs
— allows us to build modular programs
« each module has assumptions about how it will be used
— misunderstandings btw module writers will cause bugs
— assumptions must be clearly stated (and inspected)
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Approaches

* We will discuss two approaches
— forward reasoning: start at the top and work down
— backward reasoning: start at the end and work up

 Plan:

1. intuitive version (by example)
2. formal definitions & rules
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Example of Forward Reasoning

Suppose we initially know (or assume)w >= 1

X =2 * w;
y =x + 2;
z =y / 2;

What can we say at the end about z?
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Example of Forward Reasoning

Suppose we initially know (or assume)w >= 1

X =2 * w;

/] x>= 2 * 1 = 2
y =x + 2;
z =y / 2;

What can we say at the end about z?
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Example of Forward Reasoning

Suppose we initially know (or assume)w >= 1

X =2 * w;
[/ x> 2 * 1 = 2
y =x + 2;
// y>= 2 + 2 =4
z=y/ 2;

What can we say at the end about z?
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Example of Forward Reasoning

Suppose we initially know (or assume)w >= 1

X =2 * w;

// x>= 2 * 1 =2
y =x + 2;

[/ y>= 2 + 2 =4
z =y / 2;

// z> 4 [/ 2 = 2

What can we say at the end about z? z >= 2
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Forward Reasoning

* Forward reasoning:
— informally, simulates the code (for all inputs at once)
— formally, determine what follows from initial assumptions

* This is the way most programmers inspect their code
« Advantages and disadvantages:

— intuitive
— introduces (many) irrelevant facts
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Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

X =2 * w;
y = x + 2;
z =y / 2;

// z >=1
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Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

y = x + 2;

// y / 2 >= 1 orequivalently y >= 2
z=y/ 2;

/] z >=1
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Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

x =2 * w;

// x + 2 >= 2 orequivalently x >= 0
y = x + 2;

// y / 2 >= 1 orequivalently y >= 2
z=y/ 2;

// z >= 1
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Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

// 2 * w >= 0 orequivalently w >= 0
X =2 * w;

// x + 2 >= 2 orequivalently x >= 0
y = x + 2;

// v / 2 > 1 orequivalently y >= 2
z =y / 2;

// z >=1
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Backward Reasoning

« Backward reasoning:
— determines sufficient conditions for a end result
* e.g., assumptions needed for correctness

« Advantages and disadvantages:
— less intuitive
— determines exactly what is necessary to achieve the goal
— gives you another (powerful) way to reason about code
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Our approach

We will take a methodical approach to reasoning about code
— spell everything out in detail to avoid any misunderstanding
— (you can move more quickly as you get practice)

Hoare Logic
— named after its inventor, Tony Hoare (inventor of quicksort)
— considers just assignments, if-statements, and while-loops
 everything else can be built out of these
— we will consider just integer-valued variables
 for Java, we will need floats, strings, objects, etc.

This lecture: assignments & if-statements; Next lecture: loops
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Terminology

 The program state is the values of all the (relevant) variables

* An assertionis a logical formula referring to the program state
(e.g., contents of variables) at a given point

* An assertion holds for a program state if the formula is true
when those values are substituted for the variables

* An assertion before the code is a precondition

— these represent assumptions about when that code is used
« An assertion after the code is a postcondition

— these represent what we want the code to accomplish
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Notation

» |nstead of writing assertions as comments, Hoare logic uses {..}

— since Java code also has {..}, | will use {{...}}
—eg,{{w>1}lx=2*w;, {{x> 2 }}

« Assertions are math not Java
— you can use the usual math notation
* (e.g., =instead of == for equals)
— purpose is communication with other humans (not computers)
— we will need and, or, not as well

 can also write use /A (and) V (or) etc.

 The Java language also has assertions (assert statements)

— throws an exception if the condition does not evaluate true
— we will discuss these more later in the course
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Hoare Logic

A Hoare triple is two assertions and one piece of code:
{r}} s {{o}}
— P the precondition
— S the code
— Q the postcondition

A Hoare triple {{ P}} s {{Q}} is called valid if:

— in any state where P holds, executing S produces a state
where Q holds

— i.e., if Pis true before S, then Q must be true after it
— otherwise the triple is called invalid
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Do programmers really do this?

“Warren [Buffet] often talks about these discounted
cash flows, but I've never seen him do one.”
-- Charlie Munger

« Programmers rarely spell it out in this much detail
— like Buffet, they usually just do it in their heads

« But there are some key exceptions
— extremely tricky code
— loops (next lecture)
— preconditions for methods
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Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{x =0}y =x*x; {{y>0}}

CSE 331 Spring 2016

20



Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{x =0}y =x*x; {{y>0}}

Valid
« y could only be zero if x were zero (which it isn't)
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Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{z'=1}}y=2z*z; {{y '=z}}
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Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{z'=1}}y=2z*z; {{y '=z}}

Invalid
e counterexample:z = 0
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Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{x> 0}y =2*; {{y >x}}
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Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{x> 0}y =2*; {{y >x}}

Invalid
e counterexample:x = 0
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Examples

Is the following Hoare triple valid or invalid?

{}

if (x> 7) {
y = 4;

} else {

y = 3;

}

{{y <5}
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Examples

Is the following Hoare triple valid or invalid?

{}

if (x> 7) {
y = 4;

} else {

y = 3;

}

{{y <5}

Valid
« vy is either 3 or 4; in either case, itis less than 5
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Examples

Is the following Hoare triple valid or invalid?
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Examples

Is the following Hoare triple valid or invalid?
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Examples

Is the following Hoare triple valid or invalid?

{{x =7 and y = 5}}
// swap x and y

tmp = x;
X = tmp;
Y = X/
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Examples

Is the following Hoare triple valid or invalid?

{{x =7 and y = 5}}
// swap x and y

5 and y = 7}}

{{x

Invalid
 firsttwo lines leave x unchanged, so we get x

CSE 331 Spring 2016
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The general rules

« Some of these require some thought

— it would be preferable to do this without (much) thought
— fortunately, there is a “turn the crank” way of doing these

« For each kind of construct, there is a general rule
— assignment statements
— two statements in sequence
— conditionals
— loops (next lecture)
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Assignment Rule

{{rP}} x=e; {{Q}}

 LetQ[x=e] be like Q except replace every x with e
— after“x = e;”,Qand Q[x=e] are equivalent
— but Q[x=e] does not involve x so it holds after “x = e;” if
and only if it holds before

— SO0 we can consider P and Q [x=e] w/out the assignment

» This triple is valid iff: whenever P holds, Q[x=e] also holds
— in logic, we'd say it is valid if P implies Q [x=e]
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Assignment Rule Example

{z>34}}y=2z+1; {y>1}}

e Q[y=z+l]is z + 1> 1
— this is equivalenttoz > 0
— whenever z > 34, we alsohavez > 0

— this is valid
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Sequence Rule

{{rp}} s1;s2 {{o}}

Triple is valid iff: there is an assertion R such that
— {{P}}s1{{R}} isvalid and
— {{rR}}s2{{Q}} isvald

For now, we will need to guess R
— we will see shortly that we can find an R without guessing
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Sequence Rule Example

{z> 1}y =z+1; w=y*y; {{w>y}}

« ChooseRtobey > 1

« Show{{z >= 1}} y=2z+1; {{y > 1}}
— use assignmentrule: z >= 1 implies z+1 > 17
— equivalently, z >= 1 implies z > 0?7 Valid.

« Show{{y > 1}} w=y*y; {{w > y}}
— use assignmentrule:y > 1 implies y*y > y
— requires some thought, but valid

« Both of these are triples valid, so the triple at the top is valid
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Conditional Rule

{{P}} if (b) {S1} else {S2} {{Q}}

When S1 executes, we know P and b
When S2 executes, we know P and not b

Triple is valid iff: there are assertions Q1 and Q2 such that
— {{P and b}} sl {{Q1l}} isvalid and
— {{P and not b}}s2{{Q2}} is valid and
- Q1 or Q2 impliesQ
« we only know that one holds (which depends on b)
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Conditional Rule

{} if (x > 7) {y=x;} else {y=20;} {{y > 5}}

« LetQl bey > 7 (otherchoices work too)

« useassignmentruletoshow{{x > 7} y=x; {{y > 7}}
- LetQ2bey = 20 (otherchoices work too)

— use assignmentrule toshow {{x <= 7}}y=20; {{y = 20}}
« Checkthaty > 7 or y = 20 impliesy > 5
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Weaker vs Stronger

If “whenever P1 holds, P2 also holds”, then:
— P1 is called stronger than P2
— P2 is called weaker than P1 P2

« |tis more (or at least as) “difficult” to satisfy P1

— the program states where P1 holds are a subset of the
states where P2 holds

* P1 puts more constraints on program states
« P1is a stronger set of requirements

 We do not always have P1 stronger than P2 or vice versal
— most assertions are incomparable
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Examples

x = 17 is strongerthanx > 0

x is prime is neither stronger nor weaker than x is odd
— these two statements are incomparable

x is prime and x > 2is strongerthan
X is odd and x > 2

Other examples?
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Applications to Method Design

* When writing a method, you decide the preconditions
— e.g., a parameter may be assumed positive
— e.g., an array may be assumed to be non-empty

 There are advantages and disadvantages to weaker vs stronger
— stronger preconditions make the code easier to change
 there are more allowed implementations
— weaker preconditions allow more uses
 there are more allowed calls
— stronger preconditions may make the code easier to write
— weaker preconditions are necessary for libraries

« We will discuss this more later on...
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Applications to Hoare Logic

* Suppose:

— {{P}} s {{Q}}isvalid and
— P is weaker than some P1 and
— Qs stronger than some Q1

« Then these are all valid too:

- {rP1}}s{{o}}

* a state where P1 holds is one where P also holds

- {{p}s{{Qi}}

» a state where Q holds is one where Q1 also holds

- {P1}}s{{o1}}
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Example Applications to Hoare Logic

{x>0}}y=x+1;{y >0}
 We know this is valid by the assignment rule

e LetPlbex > 0

— strongersince x >= 0 impliesx > 0
e LetQlbey >= 0

— weaker sincey >= O0impliesy > 0

* Thus, the following is also valid:

{x>0}}y=x+1;{{y > 0}}
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Weakest preconditions

 Suppose we know Q and S
« There are potentially many P such that {{P}} s {{Q}} is valid

« Would be ideal if there were a unique weakest precondition P
— most general assumptions under which S makes Q hold
— get a valid triple for P1 if and only if P1 implies P

« Amazingly, without loops, for any S and Q, this exists!
— we denote this by wp(s,Q)

— can be found by general rules

« Allows you to reason backward without any guessing
— just as you do with forward reasoning

CSE 331 Spring 2016
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Rules for weakest preconditions

* Wp(x = e, Q)is Q[x=e]
— Example: wp(x = y*y,x > 4)=y*y > 4,ie, |y|] > 2

« wp(S1l;S2,Q)iswp(S1l,wp(S2,Q))
— i.e., let R be wp(S2,Q) and overall wp is wp(S1,R)

— Example:wp(y = x+1; z = y+1,z > 2)=
wp(y = x+1, y+1 > 2) =
(x+1)+1 > 2 orequivalently x > 0

« Wp(if b S1 else S2,Q)is this logic formula:
(b and wp(S1,Q)) or ('b and wp(S2,Q))

— you need wp(s1,Q)if S1 is executed and wp(S2,Q)if S2 is
— you can often simplify the result considerably
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More Examples

« IfSisx = y*yandQis x > 4,
thenwp(s,Q)isy*y > 4,i.e, |y| > 2

e IfSisy=x+1; z =y - 3;andQisz = 10,
then wp(s,Q) ...
=wply =x +1;, z =y - 3,z = 10)
=wp(y = x + 1, wp(z =y - 3,z = 10))
=wp(y = x + 1, y-3 = 10)
=wp(y = x + 1, y = 13)
= x+1 13
=x = 12
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Bigger Example

Sis if (x < 5) { x = x*x; } else { x = x+1; }

wp(s,x >= 9)
=(x < 5 and wp(x = x*x,x >= 9))
or (x >= 5 and wp(x = x+1,x >= 9))
=(x < 5 and x*x >= 9)
or (x >= 5 and x+1 >= 9)
=(x <= -3)or(x > 3 and x < 5)
or (x >= 8)
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If-statements review

Forward reasoning

{p}
if B
{{P and B}}
S1
{{Q1}}
else
{{P and not B}}
S2
{{Q2}}
{Q1l or Q2 }}

Backward reasoning

{ (B andwp(S1,Q)) or
(not B andwp(S2,9Q))}}
if B
{{wp(s1,Q)}}
S1

{oh

else

{{wp(s2,9Q) }}
S2

{aoh
{o}}
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One caveat

« With forward reasoning, there is a problem with assignment:
— changing a variable can affect other assumptions

{}

W=X+YVv;

{{w=x+y;}}

x = 4;

{{w = x + y and x = 4}}

y = 3;

{{w = x + y and x =4 and y = 3}}

« But clearly we do notknow w = 7!
« Theassertionw = x + y meansthe original values of x and y
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One Fix

Use different names for the values at different points
— common to use subscripts to distinguish these
— on every assignment, rename references to the old values

{{}

W=X+YVv;

{w=x+y:;}}

x = 4;

{{w = x;, + y and x = 4}}

y = 3;

{{w = x;, + y; and x = 4 and y = 3}}
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Useful example: swap

« Consider code for a swapping x and y

{}

tmp = x;

{{tmp = x }}

X =Yy;

{{tmp = x; and x
y = tmp;

{{tmp = x;, and x = y; and y = tmp }}

Y }}

* Post condition implies x = y,andy = x;
* |.e., their final values are equal to the original values swapped
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Announcements

Link to notes from last quarter are also on the web

HW1 will be out very shortly (within the hour)

— practice applying these ideas

— builds up to verifying correctness of short, non-loop code
— due on Friday (no penalty for Saturday)
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