CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2016
Lecture 2 — Reasoning About Code With Logic

(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)




Reasoning about code

Idea: determine what facts are true at each line of the program

 We would like to know:
— at the end, maxIndexis index of the maximum element
— at the end, negatives before zeros before positives in arr

» Getthere by understanding what is true at each line until end

— then check that those facts that are true at the end include
all the things we require

CSE 331 Spring 2016



Why do this?

« Essential for building high quality programs
— allows us to inspect code to check correctness
— need all three: tools, inspection, & testing
— inspection is even the most effective of the three

» Essential for building high complexity programs
— allows us to build modular programs
« each module has assumptions about how it will be used
— misunderstandings btw module writers will cause bugs
— assumptions must be clearly stated (and inspected)

CSE 331 Spring 2016



Approaches

* We will discuss two approaches
— forward reasoning: start at the top and work down
— backward reasoning: start at the end and work up

 Plan:

1. intuitive version (by example)
2. formal definitions & rules

CSE 331 Spring 2016



Example of Forward Reasoning

Suppose we initially know (or assume)w >= 1

X =2 * w;
y =x + 2;
z =y / 2;

What can we say at the end about z?

CSE 331 Spring 2016



Example of Forward Reasoning

Suppose we initially know (or assume)w >= 1

X =2 * w;

/] x>= 2 * 1 = 2
y =x + 2;
z =y / 2;

What can we say at the end about z?

CSE 331 Spring 2016



Example of Forward Reasoning

Suppose we initially know (or assume)w >= 1

X =2 * w;
[/ x> 2 * 1 = 2
y =x + 2;
// y>= 2 + 2 =4
z=y/ 2;

What can we say at the end about z?

CSE 331 Spring 2016



Example of Forward Reasoning

Suppose we initially know (or assume)w >= 1

X =2 * w;

// x>= 2 * 1 =2
y =x + 2;

[/ y>= 2 + 2 =4
z =y / 2;

// z> 4 [/ 2 = 2

What can we say at the end about z? z >= 2

CSE 331 Spring 2016



Forward Reasoning

* Forward reasoning:
— informally, simulates the code (for all inputs at once)
— formally, determine what follows from initial assumptions

* This is the way most programmers inspect their code
« Advantages and disadvantages:

— intuitive
— introduces (many) irrelevant facts

CSE 331 Spring 2016



Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

X =2 * w;
y = x + 2;
z =y / 2;

// z >=1

CSE 331 Spring 2016 10



Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

y = x + 2;

// y / 2 >= 1 orequivalently y >= 2
z=y/ 2;

/] z >=1

CSE 331 Spring 2016 11



Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

x =2 * w;

// x + 2 >= 2 orequivalently x >= 0
y = x + 2;

// y / 2 >= 1 orequivalently y >= 2
z=y/ 2;

// z >= 1

CSE 331 Spring 2016

12



Example of Backward Reasoning

Suppose we want to show that z >= 1 (at the end)
What needs to be true about w?

// 2 * w >= 0 orequivalently w >= 0
X =2 * w;

// x + 2 >= 2 orequivalently x >= 0
y = x + 2;

// v / 2 > 1 orequivalently y >= 2
z =y / 2;

// z >=1

CSE 331 Spring 2016

13



Backward Reasoning

« Backward reasoning:
— determines sufficient conditions for a end result
* e.g., assumptions needed for correctness

« Advantages and disadvantages:
— less intuitive
— determines exactly what is necessary to achieve the goal
— gives you another (powerful) way to reason about code

CSE 331 Spring 2016

14



Our approach

We will take a methodical approach to reasoning about code
— spell everything out in detail to avoid any misunderstanding
— (you can move more quickly as you get practice)

Hoare Logic
— named after its inventor, Tony Hoare (inventor of quicksort)
— considers just assignments, if-statements, and while-loops
 everything else can be built out of these
— we will consider just integer-valued variables
 for Java, we will need floats, strings, objects, etc.

This lecture: assignments & if-statements; Next lecture: loops

CSE 331 Spring 2016

15



Terminology

 The program state is the values of all the (relevant) variables

* An assertionis a logical formula referring to the program state
(e.g., contents of variables) at a given point

* An assertion holds for a program state if the formula is true
when those values are substituted for the variables

* An assertion before the code is a precondition

— these represent assumptions about when that code is used
« An assertion after the code is a postcondition

— these represent what we want the code to accomplish

CSE 331 Spring 2016 16



Notation

» |nstead of writing assertions as comments, Hoare logic uses {..}

— since Java code also has {..}, | will use {{...}}
—eg,{{w>1}lx=2*w;, {{x> 2 }}

« Assertions are math not Java
— you can use the usual math notation
* (e.g., =instead of == for equals)
— purpose is communication with other humans (not computers)
— we will need and, or, not as well

 can also write use /A (and) V (or) etc.

 The Java language also has assertions (assert statements)

— throws an exception if the condition does not evaluate true
— we will discuss these more later in the course

CSE 331 Spring 2016 17



Hoare Logic

A Hoare triple is two assertions and one piece of code:
{r}} s {{o}}
— P the precondition
— S the code
— Q the postcondition

A Hoare triple {{ P}} s {{Q}} is called valid if:

— in any state where P holds, executing S produces a state
where Q holds

— i.e., if Pis true before S, then Q must be true after it
— otherwise the triple is called invalid

CSE 331 Spring 2016

18



Do programmers really do this?

“Warren [Buffet] often talks about these discounted
cash flows, but I've never seen him do one.”
-- Charlie Munger

« Programmers rarely spell it out in this much detail
— like Buffet, they usually just do it in their heads

« But there are some key exceptions
— extremely tricky code
— loops (next lecture)
— preconditions for methods
CSE 331 Spring 2016 19



Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{x =0}y =x*x; {{y>0}}

CSE 331 Spring 2016

20



Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{x =0}y =x*x; {{y>0}}

Valid
« y could only be zero if x were zero (which it isn't)

CSE 331 Spring 2016

21



Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{z'=1}}y=2z*z; {{y '=z}}

CSE 331 Spring 2016

22



Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{z'=1}}y=2z*z; {{y '=z}}

Invalid
e counterexample:z = 0

CSE 331 Spring 2016

23



Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{x> 0}y =2*; {{y >x}}

CSE 331 Spring 2016

24



Examples

Is the following Hoare triple valid or invalid?
— assume all variables are integers and there is no overflow

{x> 0}y =2*; {{y >x}}

Invalid
e counterexample:x = 0

CSE 331 Spring 2016

25



Examples

Is the following Hoare triple valid or invalid?

{}

if (x> 7) {
y = 4;

} else {

y = 3;

}

{{y <5}

CSE 331 Spring 2016

26



Examples

Is the following Hoare triple valid or invalid?

{}

if (x> 7) {
y = 4;

} else {

y = 3;

}

{{y <5}

Valid
« vy is either 3 or 4; in either case, itis less than 5

CSE 331 Spring 2016

27



Examples

Is the following Hoare triple valid or invalid?

CSE 331 Spring 2016

28



Examples

Is the following Hoare triple valid or invalid?

CSE 331 Spring 2016

29



Examples

Is the following Hoare triple valid or invalid?

{{x =7 and y = 5}}
// swap x and y

tmp = x;
X = tmp;
Y = X/

CSE 331 Spring 2016



Examples

Is the following Hoare triple valid or invalid?

{{x =7 and y = 5}}
// swap x and y

5 and y = 7}}

{{x

Invalid
 firsttwo lines leave x unchanged, so we get x

CSE 331 Spring 2016

y

v

31



The general rules

« Some of these require some thought

— it would be preferable to do this without (much) thought
— fortunately, there is a “turn the crank” way of doing these

« For each kind of construct, there is a general rule
— assignment statements
— two statements in sequence
— conditionals
— loops (next lecture)

CSE 331 Spring 2016

32



Assignment Rule

{{rP}} x=e; {{Q}}

 LetQ[x=e] be like Q except replace every x with e
— after“x = e;”,Qand Q[x=e] are equivalent
— but Q[x=e] does not involve x so it holds after “x = e;” if
and only if it holds before

— SO0 we can consider P and Q [x=e] w/out the assignment

» This triple is valid iff: whenever P holds, Q[x=e] also holds
— in logic, we'd say it is valid if P implies Q [x=e]

CSE 331 Spring 2016

33



Assignment Rule Example

{z>34}}y=2z+1; {y>1}}

e Q[y=z+l]is z + 1> 1
— this is equivalenttoz > 0
— whenever z > 34, we alsohavez > 0

— this is valid

CSE 331 Spring 2016

34



Sequence Rule

{{rp}} s1;s2 {{o}}

Triple is valid iff: there is an assertion R such that
— {{P}}s1{{R}} isvalid and
— {{rR}}s2{{Q}} isvald

For now, we will need to guess R
— we will see shortly that we can find an R without guessing

CSE 331 Spring 2016

35



Sequence Rule Example

{z> 1}y =z+1; w=y*y; {{w>y}}

« ChooseRtobey > 1

« Show{{z >= 1}} y=2z+1; {{y > 1}}
— use assignmentrule: z >= 1 implies z+1 > 17
— equivalently, z >= 1 implies z > 0?7 Valid.

« Show{{y > 1}} w=y*y; {{w > y}}
— use assignmentrule:y > 1 implies y*y > y
— requires some thought, but valid

« Both of these are triples valid, so the triple at the top is valid

CSE 331 Spring 2016 36



Conditional Rule

{{P}} if (b) {S1} else {S2} {{Q}}

When S1 executes, we know P and b
When S2 executes, we know P and not b

Triple is valid iff: there are assertions Q1 and Q2 such that
— {{P and b}} sl {{Q1l}} isvalid and
— {{P and not b}}s2{{Q2}} is valid and
- Q1 or Q2 impliesQ
« we only know that one holds (which depends on b)

CSE 331 Spring 2016

37



Conditional Rule

{} if (x > 7) {y=x;} else {y=20;} {{y > 5}}

« LetQl bey > 7 (otherchoices work too)

« useassignmentruletoshow{{x > 7} y=x; {{y > 7}}
- LetQ2bey = 20 (otherchoices work too)

— use assignmentrule toshow {{x <= 7}}y=20; {{y = 20}}
« Checkthaty > 7 or y = 20 impliesy > 5

CSE 331 Spring 2016 38



Weaker vs Stronger

If “whenever P1 holds, P2 also holds”, then:
— P1 is called stronger than P2
— P2 is called weaker than P1 P2

« |tis more (or at least as) “difficult” to satisfy P1

— the program states where P1 holds are a subset of the
states where P2 holds

* P1 puts more constraints on program states
« P1is a stronger set of requirements

 We do not always have P1 stronger than P2 or vice versal
— most assertions are incomparable

CSE 331 Spring 2016

39



Examples

x = 17 is strongerthanx > 0

x is prime is neither stronger nor weaker than x is odd
— these two statements are incomparable

x is prime and x > 2is strongerthan
X is odd and x > 2

Other examples?

CSE 331 Spring 2016

40



Applications to Method Design

* When writing a method, you decide the preconditions
— e.g., a parameter may be assumed positive
— e.g., an array may be assumed to be non-empty

 There are advantages and disadvantages to weaker vs stronger
— stronger preconditions make the code easier to change
 there are more allowed implementations
— weaker preconditions allow more uses
 there are more allowed calls
— stronger preconditions may make the code easier to write
— weaker preconditions are necessary for libraries

« We will discuss this more later on...
CSE 331 Spring 2016 41



Applications to Hoare Logic

* Suppose:

— {{P}} s {{Q}}isvalid and
— P is weaker than some P1 and
— Qs stronger than some Q1

« Then these are all valid too:

- {rP1}}s{{o}}

* a state where P1 holds is one where P also holds

- {{p}s{{Qi}}

» a state where Q holds is one where Q1 also holds

- {P1}}s{{o1}}

CSE 331 Spring 2016

42



Example Applications to Hoare Logic

{x>0}}y=x+1;{y >0}
 We know this is valid by the assignment rule

e LetPlbex > 0

— strongersince x >= 0 impliesx > 0
e LetQlbey >= 0

— weaker sincey >= O0impliesy > 0

* Thus, the following is also valid:

{x>0}}y=x+1;{{y > 0}}

CSE 331 Spring 2016 43



Weakest preconditions

 Suppose we know Q and S
« There are potentially many P such that {{P}} s {{Q}} is valid

« Would be ideal if there were a unique weakest precondition P
— most general assumptions under which S makes Q hold
— get a valid triple for P1 if and only if P1 implies P

« Amazingly, without loops, for any S and Q, this exists!
— we denote this by wp(s,Q)

— can be found by general rules

« Allows you to reason backward without any guessing
— just as you do with forward reasoning

CSE 331 Spring 2016

44



Rules for weakest preconditions

* Wp(x = e, Q)is Q[x=e]
— Example: wp(x = y*y,x > 4)=y*y > 4,ie, |y|] > 2

« wp(S1l;S2,Q)iswp(S1l,wp(S2,Q))
— i.e., let R be wp(S2,Q) and overall wp is wp(S1,R)

— Example:wp(y = x+1; z = y+1,z > 2)=
wp(y = x+1, y+1 > 2) =
(x+1)+1 > 2 orequivalently x > 0

« Wp(if b S1 else S2,Q)is this logic formula:
(b and wp(S1,Q)) or ('b and wp(S2,Q))

— you need wp(s1,Q)if S1 is executed and wp(S2,Q)if S2 is
— you can often simplify the result considerably

CSE 331 Spring 2016

45



More Examples

« IfSisx = y*yandQis x > 4,
thenwp(s,Q)isy*y > 4,i.e, |y| > 2

e IfSisy=x+1; z =y - 3;andQisz = 10,
then wp(s,Q) ...
=wply =x +1;, z =y - 3,z = 10)
=wp(y = x + 1, wp(z =y - 3,z = 10))
=wp(y = x + 1, y-3 = 10)
=wp(y = x + 1, y = 13)
= x+1 13
=x = 12

CSE 331 Spring 2016



Bigger Example

Sis if (x < 5) { x = x*x; } else { x = x+1; }

wp(s,x >= 9)
=(x < 5 and wp(x = x*x,x >= 9))
or (x >= 5 and wp(x = x+1,x >= 9))
=(x < 5 and x*x >= 9)
or (x >= 5 and x+1 >= 9)
=(x <= -3)or(x > 3 and x < 5)
or (x >= 8)

CSE 331 Spring 2016 47



If-statements review

Forward reasoning

{p}
if B
{{P and B}}
S1
{{Q1}}
else
{{P and not B}}
S2
{{Q2}}
{Q1l or Q2 }}

Backward reasoning

{ (B andwp(S1,Q)) or
(not B andwp(S2,9Q))}}
if B
{{wp(s1,Q)}}
S1

{oh

else

{{wp(s2,9Q) }}
S2

{aoh
{o}}

CSE 331 Spring 2016 48



One caveat

« With forward reasoning, there is a problem with assignment:
— changing a variable can affect other assumptions

{}

W=X+YVv;

{{w=x+y;}}

x = 4;

{{w = x + y and x = 4}}

y = 3;

{{w = x + y and x =4 and y = 3}}

« But clearly we do notknow w = 7!
« Theassertionw = x + y meansthe original values of x and y

CSE 331 Spring 2016 49



One Fix

Use different names for the values at different points
— common to use subscripts to distinguish these
— on every assignment, rename references to the old values

{{}

W=X+YVv;

{w=x+y:;}}

x = 4;

{{w = x;, + y and x = 4}}

y = 3;

{{w = x;, + y; and x = 4 and y = 3}}

CSE 331 Spring 2016 50



Useful example: swap

« Consider code for a swapping x and y

{}

tmp = x;

{{tmp = x }}

X =Yy;

{{tmp = x; and x
y = tmp;

{{tmp = x;, and x = y; and y = tmp }}

Y }}

* Post condition implies x = y,andy = x;
* |.e., their final values are equal to the original values swapped

CSE 331 Spring 2016

51



Announcements

Link to notes from last quarter are also on the web

HW1 will be out very shortly (within the hour)

— practice applying these ideas

— builds up to verifying correctness of short, non-loop code
— due on Friday (no penalty for Saturday)

CSE 331 Spring 2016

52



