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ADTs and specifications

• So far, we have only specified ADTs
– specification makes no reference to the implementation

• Of course, we need to implement our ADTs

• We need ways to ensure our implementations satisfy our 
specifications

• Two intellectual tools are really helpful…
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Connecting implementations to specs
For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean
– defines the set of valid concrete values
– must hold at all times (outside of mutators)
– no object should ever violate the rep invariant 

• such an object has no useful meaning

Abstraction Function: maps Object → abstract value
– says what the data structure means in vocabulary of the ADT
– only defined on objects meeting the rep invariant
– connects the concrete representation back to the specification

• can check that the abstract value after each method meets 
the postcondition described in the specification
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Implementing a Data Abstraction (ADT)

To implement an ADT:
– select the representation of instances, “the rep”

• in Java, typically instances of some class you define
– implement operations in terms of that representation

Choose a representation so that:
– it is possible to implement required operations
– the most frequently used operations are efficient / simple / …

• abstraction allows the rep to change later
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Example: CharSet ADT

// Overview: A CharSet is a finite mutable set of Characters

// @effects: creates a fresh, empty CharSet
public CharSet() {…}

// @modifies: this
// @effects: thispost = thispre + {c}
public void insert(Character c) {…}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(Character c) {…}

// @return: (c in this)
public boolean member(Character c) {…}

// @return: cardinality of this
public int size() {…}
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An implementation: Is it right?
class CharSet {
private List<Character> elts = 

new ArrayList<Character>();
public void insert(Character c) {

elts.add(c);
}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}
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An implementation: Is it right?
class CharSet {
private List<Character> elts = 

new ArrayList<Character>();
public void insert(Character c) {

elts.add(c);
}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CharSet s = new CharSet();
Character a = new Character('a');
s.insert(a);
s.insert(a);
s.delete(a);
if (s.member(a))

System.out.print("wrong");
else

System.out.print("right");
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An implementation: Is it right?
class CharSet {
private List<Character> elts = 

new ArrayList<Character>();
public void insert(Character c) {

elts.add(c);
}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CharSet s = new CharSet();
Character a = new Character('a');
s.insert(a);
s.insert(a);
s.delete(a);
if (s.member(a))

System.out.print("wrong");
else

System.out.print("right");

Where is the error?
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Where Is the Error?

• Answer this and you know what to fix

• Perhaps delete is wrong
– should remove all occurrences?

• Perhaps insert is wrong
– should not insert a character that is already there?

• The representation invariant tells us which is correct
– this is how we document our choice for “the right answer”

9CSE331 Spring 2016



The representation invariant

• Defines data structure well-formedness
• Must hold before and after every CharSet operation
• Operations (methods) may depend on it
• Write it like this:

class CharSet {
// Rep invariant: 
//   elts has no nulls and no duplicates 
private List<Character> elts = …

…
Or, more formally (if you prefer):

for all indices i of elts, we have elts.elementAt(i) ≠ null
for all indices i, j of elts with i != j,

we have ! elts.elementAt(i).equals(elts.elementAt(j))
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Now we can locate the error

// Rep invariant:
//   elts has no nulls and no duplicates 

public void insert(Character c) {
elts.add(c);

}

public void delete(Character c) {
elts.remove(c);

}
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Another example

class Account {
private int balance;
// history of all transactions
private List<Transaction> transactions;
…

}

Real-world constraints:
• Balance ≥ 0
• Balance = Σi transactions.get(i).amount

Implementation-related constraints:
• Transactions ≠ null
• No nulls in transactions
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Checking rep invariants

Should you write code to check that the rep invariant holds?

– Yes, if it’s inexpensive [depends on the invariant]

– Yes, for debugging [even when it’s expensive]

– Often hard to justify turning the checking off
• better argument is removing clutter (improve understandability)

– Some private methods need not check  (Why?)

A great debugging technique:
Design your code to catch bugs by implementing and using a 
function to check the rep-invariant
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Checking the rep invariant
Rule of thumb:  check on entry and on exit (why?)

public void delete(Character c) {
checkRep();
elts.remove(c);

// Is this guaranteed to get called?
// (could guarantee it with a finally block)
checkRep();

}
…
/** Verify that elts contains no duplicates. */
private void checkRep() {
for (int i = 0; i < elts.size(); i++) {

assert elts.indexOf(elts.elementAt(i)) == i;
}

}
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Practice defensive programming

• You will make mistakes
– if you haven’t made many yet, you haven’t written enough code
– “No physician is really good before he’s killed a few patients” – Hindu Proverb

• Question is not: will you make mistakes? You will.
• Question is: will you catch those mistakes before customers do?

• Write and incorporate code designed to catch the errors you make
– check rep invariant on entry and exit (of mutators)
– check preconditions (don’t trust other programmers)
– check postconditions (don’t trust yourself either)

• Checking the rep invariant helps discover errors while testing
• Reasoning about the rep invariant helps discover errors while coding
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Practice defensive programming

• Checking pre- and post-conditions and rep invariants is one tip
• More of these in Effective Java

– Reading Quiz #2 focuses on these

• In particular, focus on defensive programming against subtle bugs
– obvious bugs (e.g. crashing every time) will be caught in testing
– subtle bugs that only occasionally cause problems can sneak out
– be especially defensive against these
– tips in Reading Quiz #2 mainly combat these
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Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this 
public List<Character> getElts();

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
public List<Character> getElts() { return elts; }

Does the implementation of  getElts preserve the rep invariant?
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Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this 
public List<Character> getElts();

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
public List<Character> getElts() { return elts; }

Does the implementation of  getElts preserve the rep invariant?
Can’t say!
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Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet();
Character a = new Character(’a’);
s.insert(a);
s.getElts().add(a);
s.delete(a);
if (s.member(a)) …

• Representation exposure is external access to the rep

• Representation exposure is almost always EVIL

– can cause bugs that will be very hard to detect

• Rule #1: Don’t do it!
• Rule #2: If you do it, document it clearly and then feel guilty about it! 
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Avoiding representation exposure

• Understand what representation exposure is

• Design ADT implementations to make sure it doesn’t happen

• Treat rep exposure as a bug: fix your bugs
– absolutely must avoid in libraries with many clients
– can allow (but feel guilty) for code with few clients

• Test for it with adversarial clients:
– pass values to methods and then mutate them
– mutate values returned from methods
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private is not enough
• Making fields private does not suffice to prevent rep exposure

– see our example
– issue is aliasing of mutable data outside the abstraction

• So private is a hint to you: no aliases outside abstraction to 
references to mutable data reachable from private fields

• Two general ways to avoid representation exposure…
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Avoiding rep exposure (way #1)

• One way to avoid rep exposure is to make copies of all data that 
cross the abstraction barrier
– Copy in [parameters that become part of the implementation]
– Copy out [results that are part of the implementation]

• Examples of copying (assume Point is a mutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = new Point(s.x,s.y);
this.e = new Point(e.x,e.y);

}
public Point getStart() {

return new Point(this.s.x,this.s.y);
}
…
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Need deep copying

• “Shallow” copying is not enough
– prevent any aliasing to mutable data inside/outside abstraction

• What’s the bug (assuming Point is a mutable ADT)?
class PointSet {

private List<Point> points = …
public List<Point> getElts() {

return new ArrayList<Point>(points);
}

}

• Not in example: Also need deep copying on “copy in”
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Avoiding rep exposure (way #2)

• One way to avoid rep exposure is to exploit the immutability of 
(other) ADTs the implementation uses
– aliasing is no problem if nobody can change data

• have to mutate the rep to break the rep invariant

• Examples (assuming Point is an immutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = s;
this.e = e;

}
public Point getStart() {

return this.s;
}
…
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Why [not] immutability?

• Several advantages of immutability
– aliasing does not matter
– no need to make copies with identical contents
– rep invariants cannot be broken
– see CSE341 for more!

• Does require different designs (e.g., if Point immutable)
void raiseLine(double deltaY) {

this.s = new Point(s.x, s.y+deltaY);
this.e = new Point(e.x, e.y+deltaY);

}

• Immutable classes in Java libraries include String, 
Character, Integer, …
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Deepness, redux

• An immutable ADT must be immutable “all the way down”
– No references reachable to data that may be mutated

• So combining our two ways to avoid rep exposure:
– Must copy-in, copy-out “all the way down” to immutable parts
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Back to getElts

Recall our initial rep-exposure example:

class CharSet {
// Rep invariant: elts has no nulls and no dups
private List<Character> elts = …;

// returns: elts currently in the set
public List<Character> getElts() { 
return new ArrayList<Character>(elts); //copy out!

}
…

}
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An alternative

// returns: elts currently in the set
public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts);//copy out!

}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

From the JavaDoc for Collections.unmodifiableList: 
Returns an unmodifiable view of the specified list. This method allows 
modules to provide users with "read-only" access to internal lists. Query 
operations on the returned list "read through" to the specified list, and 
attempts to modify the returned list… result in an 
UnsupportedOperationException.
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The good news
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public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

– Clients cannot modify (mutate) the rep
• cannot break the rep invariant

– (For long lists,) more efficient than copy out
– Uses standard libraries



The bad news

public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts);//copy out!
}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);
}

The two implementations do not do the same thing!
– both avoid allowing clients to break the rep invariant
– both return a list containing the elements

But consider:     xs = s.getElts(); 
s.insert('a'); 
xs.contains('a');

Version 2 is observing an exposed rep, leading to different behavior
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Different specifications
Ambiguity of “returns a list containing the current set elements”

“returns a fresh mutable list containing the elements in the set           
at the time of the call”

versus
“returns read-only access to a list that the ADT                        

continues to update to hold the current elements in the set”

A third spec weaker than both [but less simple and useful!]
“returns a list containing the current set elements. Behavior is 

unspecified (!) if client attempts to mutate the list or 
to access the list after the set’s elements are changed”

Also note: Version 2’s spec also makes changing the rep later harder
– only “simple” to implement with rep as a List
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Suggestions
Best options for implementing getElts()

• if O(n) time is acceptable for relevant use cases, copy the list
– safest option
– best option for changeability

• if O(1) time is required, then return an unmodifiable list
– prevents breaking rep invariant
– clearly document that behavior is unspecified after mutation
– ideally, write a your own unmodifiable view of the list

that throws an exception on all operations after mutation

• if O(1) time is required and there is no unmodifiable version and 
you don’t have time to write one, expose rep and feel guilty
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