
CSE 331
Software Design & Implementation

Kevin Zatloukal
Summer 2016

Representation Invariants
(Based on slides by Mike Ernst, Dan Grossman, David Notkin, Hal Perkins, Zach Tatlock)

ADTs and specifications

• So far, we have only specified ADTs
– specification makes no reference to the implementation

• Of course, we need to implement our ADTs

• We need ways to ensure our implementations satisfy our
specifications

• Two intellectual tools are really helpful…

CSE331 Spring 2016 2

Connecting implementations to specs
For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean
– defines the set of valid concrete values
– must hold at all times (outside of mutators)
– no object should ever violate the rep invariant

• such an object has no useful meaning

Abstraction Function: maps Object → abstract value
– says what the data structure means in vocabulary of the ADT
– only defined on objects meeting the rep invariant
– connects the concrete representation back to the specification

• can check that the abstract value after each method meets
the postcondition described in the specification

3CSE331 Spring 2016

Implementing a Data Abstraction (ADT)

To implement an ADT:
– select the representation of instances, “the rep”

• in Java, typically instances of some class you define
– implement operations in terms of that representation

Choose a representation so that:
– it is possible to implement required operations
– the most frequently used operations are efficient / simple / …

• abstraction allows the rep to change later

4CSE331 Spring 2016

Example: CharSet ADT

// Overview: A CharSet is a finite mutable set of Characters

// @effects: creates a fresh, empty CharSet
public CharSet() {…}

// @modifies: this
// @effects: thispost = thispre + {c}
public void insert(Character c) {…}

// @modifies: this
// @effects: thispost = thispre - {c}
public void delete(Character c) {…}

// @return: (c in this)
public boolean member(Character c) {…}

// @return: cardinality of this
public int size() {…}

5CSE331 Spring 2016

An implementation: Is it right?
class CharSet {
private List<Character> elts =

new ArrayList<Character>();
public void insert(Character c) {

elts.add(c);
}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CSE331 Spring 2016 6

An implementation: Is it right?
class CharSet {
private List<Character> elts =

new ArrayList<Character>();
public void insert(Character c) {

elts.add(c);
}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CharSet s = new CharSet();
Character a = new Character('a');
s.insert(a);
s.insert(a);
s.delete(a);
if (s.member(a))

System.out.print("wrong");
else

System.out.print("right");

CSE331 Spring 2016 7

An implementation: Is it right?
class CharSet {
private List<Character> elts =

new ArrayList<Character>();
public void insert(Character c) {

elts.add(c);
}
public void delete(Character c) {

elts.remove(c);
}
public boolean member(Character c) {

return elts.contains(c);
}
public int size() {

return elts.size();
}

}

CharSet s = new CharSet();
Character a = new Character('a');
s.insert(a);
s.insert(a);
s.delete(a);
if (s.member(a))

System.out.print("wrong");
else

System.out.print("right");

Where is the error?

CSE331 Spring 2016 8

Where Is the Error?

• Answer this and you know what to fix

• Perhaps delete is wrong
– should remove all occurrences?

• Perhaps insert is wrong
– should not insert a character that is already there?

• The representation invariant tells us which is correct
– this is how we document our choice for “the right answer”

9CSE331 Spring 2016

The representation invariant

• Defines data structure well-formedness
• Must hold before and after every CharSet operation
• Operations (methods) may depend on it
• Write it like this:

class CharSet {
// Rep invariant:
// elts has no nulls and no duplicates
private List<Character> elts = …

…
Or, more formally (if you prefer):

for all indices i of elts, we have elts.elementAt(i) ≠ null
for all indices i, j of elts with i != j,

we have ! elts.elementAt(i).equals(elts.elementAt(j))
10CSE331 Spring 2016

Now we can locate the error

// Rep invariant:
// elts has no nulls and no duplicates

public void insert(Character c) {
elts.add(c);

}

public void delete(Character c) {
elts.remove(c);

}

11CSE331 Spring 2016

Another example

class Account {
private int balance;
// history of all transactions
private List<Transaction> transactions;
…

}

Real-world constraints:
• Balance ≥ 0
• Balance = Σi transactions.get(i).amount

Implementation-related constraints:
• Transactions ≠ null
• No nulls in transactions

CSE331 Spring 2016 12

Checking rep invariants

Should you write code to check that the rep invariant holds?

– Yes, if it’s inexpensive [depends on the invariant]

– Yes, for debugging [even when it’s expensive]

– Often hard to justify turning the checking off
• better argument is removing clutter (improve understandability)

– Some private methods need not check (Why?)

A great debugging technique:
Design your code to catch bugs by implementing and using a
function to check the rep-invariant

13CSE331 Spring 2016

Checking the rep invariant
Rule of thumb: check on entry and on exit (why?)

public void delete(Character c) {
checkRep();
elts.remove(c);

// Is this guaranteed to get called?
// (could guarantee it with a finally block)
checkRep();

}
…
/** Verify that elts contains no duplicates. */
private void checkRep() {
for (int i = 0; i < elts.size(); i++) {

assert elts.indexOf(elts.elementAt(i)) == i;
}

}
14CSE331 Spring 2016

Practice defensive programming

• You will make mistakes
– if you haven’t made many yet, you haven’t written enough code
– “No physician is really good before he’s killed a few patients” – Hindu Proverb

• Question is not: will you make mistakes? You will.
• Question is: will you catch those mistakes before customers do?

• Write and incorporate code designed to catch the errors you make
– check rep invariant on entry and exit (of mutators)
– check preconditions (don’t trust other programmers)
– check postconditions (don’t trust yourself either)

• Checking the rep invariant helps discover errors while testing
• Reasoning about the rep invariant helps discover errors while coding

15CSE331 Spring 2016

Practice defensive programming

• Checking pre- and post-conditions and rep invariants is one tip
• More of these in Effective Java

– Reading Quiz #2 focuses on these

• In particular, focus on defensive programming against subtle bugs
– obvious bugs (e.g. crashing every time) will be caught in testing
– subtle bugs that only occasionally cause problems can sneak out
– be especially defensive against these
– tips in Reading Quiz #2 mainly combat these

16CSE331 Spring 2016

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts();

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the rep invariant?

17CSE331 Summer 2016

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts();

Consider this implementation:

// Rep invariant: elts has no nulls and no dups
public List<Character> getElts() { return elts; }

Does the implementation of getElts preserve the rep invariant?
Can’t say!

18CSE331 Summer 2016

Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet();
Character a = new Character(’a’);
s.insert(a);
s.getElts().add(a);
s.delete(a);
if (s.member(a)) …

• Representation exposure is external access to the rep

• Representation exposure is almost always EVIL

– can cause bugs that will be very hard to detect

• Rule #1: Don’t do it!
• Rule #2: If you do it, document it clearly and then feel guilty about it!

19CSE331 Summer 2016

Avoiding representation exposure

• Understand what representation exposure is

• Design ADT implementations to make sure it doesn’t happen

• Treat rep exposure as a bug: fix your bugs
– absolutely must avoid in libraries with many clients
– can allow (but feel guilty) for code with few clients

• Test for it with adversarial clients:
– pass values to methods and then mutate them
– mutate values returned from methods

CSE331 Summer 2016 20

private is not enough
• Making fields private does not suffice to prevent rep exposure

– see our example
– issue is aliasing of mutable data outside the abstraction

• So private is a hint to you: no aliases outside abstraction to
references to mutable data reachable from private fields

• Two general ways to avoid representation exposure…

CSE331 Summer 2016 21

Avoiding rep exposure (way #1)

• One way to avoid rep exposure is to make copies of all data that
cross the abstraction barrier
– Copy in [parameters that become part of the implementation]
– Copy out [results that are part of the implementation]

• Examples of copying (assume Point is a mutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = new Point(s.x,s.y);
this.e = new Point(e.x,e.y);

}
public Point getStart() {

return new Point(this.s.x,this.s.y);
}
…

CSE331 Summer 2016 22

Need deep copying

• “Shallow” copying is not enough
– prevent any aliasing to mutable data inside/outside abstraction

• What’s the bug (assuming Point is a mutable ADT)?
class PointSet {

private List<Point> points = …
public List<Point> getElts() {

return new ArrayList<Point>(points);
}

}

• Not in example: Also need deep copying on “copy in”

CSE331 Summer 2016 23

Avoiding rep exposure (way #2)

• One way to avoid rep exposure is to exploit the immutability of
(other) ADTs the implementation uses
– aliasing is no problem if nobody can change data

• have to mutate the rep to break the rep invariant

• Examples (assuming Point is an immutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = s;
this.e = e;

}
public Point getStart() {

return this.s;
}
…

CSE331 Summer 2016 24

Why [not] immutability?

• Several advantages of immutability
– aliasing does not matter
– no need to make copies with identical contents
– rep invariants cannot be broken
– see CSE341 for more!

• Does require different designs (e.g., if Point immutable)
void raiseLine(double deltaY) {

this.s = new Point(s.x, s.y+deltaY);
this.e = new Point(e.x, e.y+deltaY);

}

• Immutable classes in Java libraries include String,
Character, Integer, …

CSE331 Summer 2016 25

Deepness, redux

• An immutable ADT must be immutable “all the way down”
– No references reachable to data that may be mutated

• So combining our two ways to avoid rep exposure:
– Must copy-in, copy-out “all the way down” to immutable parts

CSE331 Summer 2016 26

Back to getElts

Recall our initial rep-exposure example:

class CharSet {
// Rep invariant: elts has no nulls and no dups
private List<Character> elts = …;

// returns: elts currently in the set
public List<Character> getElts() {
return new ArrayList<Character>(elts); //copy out!

}
…

}

CSE331 Summer 2016 27

An alternative

// returns: elts currently in the set
public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts);//copy out!

}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

From the JavaDoc for Collections.unmodifiableList:
Returns an unmodifiable view of the specified list. This method allows
modules to provide users with "read-only" access to internal lists. Query
operations on the returned list "read through" to the specified list, and
attempts to modify the returned list… result in an
UnsupportedOperationException.

CSE331 Summer 2016 28

The good news

CSE331 Summer 2016 29

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

– Clients cannot modify (mutate) the rep
• cannot break the rep invariant

– (For long lists,) more efficient than copy out
– Uses standard libraries

The bad news

public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts);//copy out!
}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);
}

The two implementations do not do the same thing!
– both avoid allowing clients to break the rep invariant
– both return a list containing the elements

But consider: xs = s.getElts();
s.insert('a');
xs.contains('a');

Version 2 is observing an exposed rep, leading to different behavior
CSE331 Summer 2016 30

Different specifications
Ambiguity of “returns a list containing the current set elements”

“returns a fresh mutable list containing the elements in the set
at the time of the call”

versus
“returns read-only access to a list that the ADT

continues to update to hold the current elements in the set”

A third spec weaker than both [but less simple and useful!]
“returns a list containing the current set elements. Behavior is

unspecified (!) if client attempts to mutate the list or
to access the list after the set’s elements are changed”

Also note: Version 2’s spec also makes changing the rep later harder
– only “simple” to implement with rep as a List

CSE331 Summer 2016 31

Suggestions
Best options for implementing getElts()

• if O(n) time is acceptable for relevant use cases, copy the list
– safest option
– best option for changeability

• if O(1) time is required, then return an unmodifiable list
– prevents breaking rep invariant
– clearly document that behavior is unspecified after mutation
– ideally, write a your own unmodifiable view of the list

that throws an exception on all operations after mutation

• if O(1) time is required and there is no unmodifiable version and
you don’t have time to write one, expose rep and feel guilty

CSE331 Summer 2016 32

