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CSE 331
Software Design and Implementation

Lecture 1
Introduction

The Big Picture

Welcome!
10 week study of the craft of programming

How do we build good programs?

“Controlling	complexity	is	the	
essence	of	computer	programming.”

-- Brian	Kernighan
(UNIX,	AWK,	C,	…)

Controlling Complexity



Controlling Complexity Learning to Control Complexity

First, we need to refine our goals:
• What quality makes a program good?
• How can we tell if a program is good?
• How do we build good programs?

To answer, we’ll learn principles and use tools:
• Modularity, documentation, testing, verification
• Tools: Java, IDEs, debuggers, JUnit, JavaDoc, git

Tools change, principles are forever.

Administrivia

Course Staff
Instructor:

Zach Tatlock
ztatlock@cs
CSE 546

Researcher in formal verification, compilers, 
systems.  Runner, knitter, pizza enthusiast.



Course Staff
TAs:

Justin Bare
Christopher Chen
Deric Pang
Marcella Cindy Prasetio
Vinod Rathnam

Office hours posted ASAP

Several 331 veterans = expert guides!

Credits

Great course material based on work by:
• Michael Ernst
• Hal Perkins
• Dan Grossman
• David Notkin
• Dozens of amazing TAs
• Hundreds of incredible students (you!)

Staying In Touch
We’ll use Piazza:
http://piazza.com/washington/winter2016/cse331/home

• You must get announcements sent there
• Discuss HW, lecture, readings
• Be nice, be professional (staff will monitor)
• Can post privately to instructors
• Can post anonymously (to classmates)
• Ask good questions, give helpful answers

http://www.catb.org/esr/faqs/smart-questions.html

Lecture and Section
Both required

• Arrive punctually, ask questions, take notes
• Your participation is crucial for everyone’s success

Materials will be posted, but just visual aids

Section often more focused on HW and tools
• This week: more detail on Lecture 2 concepts
• Next week: preparing for projects



Homework
Common 331 misconception:

“Homework seemed disconnected from lecture.”

If it feels that way, you’re making them harder!
• Reconsider and seek out connections to lecture
• Do think carefully before typing
• Do not keep cutting with a dull blade

Early assignments are “on paper”, followed by 
increasingly substantial software development.

4 late days, max 2 per assignment, use wisely!

Text Resources
The Pragmatic Programmer

• Hunt and Thomas (1999)
• Collection of best practices

Effective Java
• Bloch, 2nd edition (2000)
• OOP design, expert tips

Java API Docs:
http://docs.oracle.com/javase/8/docs/api/

Readings and Quizzes
These are real programming books

• Hard-won advice from top-notch hackers
• Stuff all serious programmers should know
• Approachable but sometimes challenging
• Only partial overlap with lecture

Quizzes to ensure you keep up with reading
• Reading and contemplating design is essential
• Time investment that pays dividends in the long run
• Material may be on exams

Other Reading

Not directly used in 331, but worthwhile reads.

The Design of
Everyday Things

Zen and the Art of
Motorcycle Maintenance



Reading Books in 21st Century
Google, Stack Overflow, Reddit, etc. good for:

• Quick reference and debugging
• Links to more in-depth treatment of a topic

Search often less good for:
• Why did this bug arise?  How could it be avoided?
• Why is the system designed this way? Alternatives?

Beware copy-paste coding
• Security vulns have propagated through forums
• See The Full StackOverflow Developer

Exams
Midterm:         TBD, roughly week 5

in class

Final:              Monday, March 14
8:30 – 10:20 (sorry!)

Can cover any concepts from the course
• Different format than homework
• Will post past exams from various instructors 

Academic Integrity
Carefully read course policy

• Clearly explains how you can / cannot get help on 
homework and projects

Always explain any unconventional action

Honest work is the foundation of UW / academia
• Your fellow students and I trust you deeply
• Zero tolerance for violations, can end career



Organization
331 is a big, complex machine.
I’m a 331 newbie too, so I’ll need your help figuring 
out what works for all of us.

Patience and good faith much appreciated!

TODO
1. Log into the 331 Piazza
2. Check out the course website

http://cs.washington.edu/331
3. Read syllabus and academic integrity policy
4. If still trying to enroll, fill out online form

• Code word provided at end of class
• Go to any section on Thursday if not registered

5. Do Homework 0 by Friday 10AM!
• Can submit to Dropbox even if not registered

Questions?

Anything I forgot before we 
discuss, you know, software?

331



Goals
One focus will be writing correct programs

What does it mean for a program to be correct?
• It must match its specification

How can we determine if a program is correct?
• Testing, Model Checking, Verification (proof)

What are ways to build correct programs?
• Principled design and development
• Abstraction, modularity, documentation

Controlling Complexity
Abstraction and specification

• Procedural, data, and control flow abstractions
• Why they are useful and how to use them

Writing, understanding, and reasoning about code
• Use Java, but the principles apply broadly
• Some focus on object-oriented programming

Program design and documentation
• What makes a design good or bad (example: modularity)
• Design processes and tools

Pragmatic considerations
• Testing, debugging, and defensive programming
• [more in CSE403: Managing software projects]

The Goal of System Building
To construct a correctly functioning artifact

All other considerations are secondary
• Though many required to produce a correct system

Learning how to build correct systems is essential
and very difficult, but also fun and rewarding.

Related skill: communication
• Can you convince yourself and others something is 

correct via precise, coherent explanations?

Why is Good Software Hard?
Software is different from other artifacts

• We build general, reusable mechanisms
• Not much repetition, symmetry, or redundancy
• Large systems have millions of complex parts

We understand walls in terms of bricks, bricks in terms of crystals, crystals in 
terms of molecules etc. As a result the number of levels that can be distinguished 
meaningfully in a hierarchical system is kind of proportional to the logarithm of 
the ratio between the largest and the smallest grain, and therefore, unless this 
ratio is very large, we cannot expect many levels. In computer programming our 
basic building block has an associated time grain of less than a microsecond, but 
our program may take hours of computation time. I do not know of any other 
technology covering a ratio of 1010 or more: the computer, by virtue of its 
fantastic speed, seems to be the first to provide us with an environment where 
highly hierarchical artefacts are both possible and necessary.

-- Dijkstra



Why is Good Software Hard?
Software is expected to be malleable

• You can’t download a new chip into your phone
• But you can update web pages, apps, and the OS
• Aggressive competition for more features, platforms
• Requirements, laws, and companies change

We are pioneers and explorers!
• Often writing a new kind of system
• No relevant experience or specific theory exists

Software engineering is about:
• Managing complexity, managing change
• Coping with potential defects: users, devs, environment

Programming is Hard
Despite decades of research, still surprisingly 
difficult to specify, design, implement, test, and 
maintain even small, simple programs.

Our assignments will be reasonable if you apply the 
techniques taught in class…

... but likely very difficult to do brute-force
... and almost certainly impossible unless

you start very early.

If you’re frustrated, think before you type!

Prerequisites
Knowing Java is essential

• We assume you’ve mastered 142, 143

Examples:
• Sharing:

• Distinction between == and equals()
• Aliasing: multiple references to the same object

• Object-oriented dispatch:
• Inheritance and overriding
• Objects/values have a run-time type

• Subtyping
• Expressions have a compile-time type
• Subtyping via extends (classes) and implements (interfaces)

You have homework!
Homework 0, due online by 10 AM Friday

• Rearrange array elements by sign
• O(n) time, preferably in a single pass
• Only write (don’t run!) your algorithm 
• Clearly and concisely prove your solution correct!

Purpose:
• Great practice and warm-up
• Surprisingly difficult
• Working up to reasoning about large designs



CSE 331 is a Challenge
We are going to learn a lot and have a good time

Be prepared to work hard and think hard

The staff is here to help you learn
• We will be working hard too!

So, let’s get to it!
• Before we create masterpieces, we first need to 

hone our ability to reason about code…

A Problem
“Complete this method so that it returns the 
index of the max of the first n elements of the 
array arr.”

int index_of_max(int[] arr, int n) {
…

}

A Problem
“Complete this method so that it returns the 
index of the max of the first n elements of the 
array arr.”

int index_of_max(int[] arr, int n) {
…

}

What should we ask about the specification?

Given (better) specification, how many 
possible implementations are there?

Moral
You can all write this code

More interesting for us in 331:
• What if n is 0?
• What if n is less than 0?
• What if n is greater than the array length?
• What if there are “ties”?
• How should we indicate error:

• exception, return value, fail-stop, …
• Weaker vs. stronger specs?
• Challenge writing English specs (n vs. n-1)



Something to Chew On

What is the relationship of 
“goodness” to “correctness” 

for programs?

TODO
1. Log into the 331 Piazza
2. Check out the course website

http://cs.washington.edu/331
3. Read syllabus and academic integrity policy
4. If still trying to enroll, fill out online form

• Code word provided next
• Go to any section on Thursday if not registered

5. Do Homework 0 by Friday 10AM!
• Can submit to Dropbox even if not registered


