
 CSE 331 Final Exam Sample Solution 3/12/12

 Page 1 of 14

Question 1. (12 points) Proofs. Give a proof involving appropriate assertions,

preconditions, and postconditions that shows that the following code fragment stores the

absolute value of variable x in variable a.

 a = x;

 if (a < 0) {

 a = -x;

 }

Write your proof below, copying the code and adding appropriate assertions as needed.

You should assume that all variables contain integer values and you may assume that

overflow will not occur, i.e., you assume that it is always possible to compute and store

the value -x in an integer variable. You may not alter the given code except that you can

add an empty “else” part to the if statement if that is useful in structuring your answer.

 {pre: none}
 a = x;

 if (a < 0) {

 { a == x & a < 0 } { x < 0 }

 a = -x;

 { a == -x && x < 0} { a == abs(x) }

 } else {

 {a == x & x >= 0 } { a == abs(x) }

 }

 { post: a == abs(x) }

OR

 {pre: none}
 a = x;

 if (a < 0) {

 { a == x & a < 0 } { x < 0 }

 a = -x;

 { a == -x && x < 0}

 } else {

 {a == x & x >= 0 }

 }

{ post: (a == -x && x < 0) || (a == x & x >= 0) }

{ a == abs(x) }

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 2 of 14

Question 2. (12 points) Specification. Consider the following four specifications for

double sqrt(double x), a method that returns the square root of its argument.

A @requires x >= 0

 @return y such that |y*y – x| <= 0.0001

B @requires x >= 0

 @return y such that |y*y – x| <= 0.01

C @return y such that |y*y – x| <= 0.0001

 @throws IllegalArgumentException if x < 0

D @requires x > 0 // i.e., requires x > 0, not x >= 0

 @return y such that |y*y – x| <= 0.0001

For each of the following pairs of specifications, circle the stronger specification, or

circle “neither” if the two specifications are either equivalent or incomparable.

(a) A B neither

(b) A C neither

(c) A D neither

(d) B C neither

(e) B D neither

(f) C D neither

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 3 of 14

Question 3. (15 points) Equality. The three parts of this question on the following

pages use the following class that represents a two-dimensional point. Constructors and

other methods are omitted.

public class Point {

 private double x;

 private double y;

 public boolean equals(Object o) {

 if (o instanceof Point) {

 Point other = (Point) o;

 return x == other.x && y == other.y;

 } else {

 return false;

 }

 }

}

Answer the parts of this question on the following pages. You may remove this page for

reference if you wish.

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 4 of 14

Question 3. (cont.) (a) (5 points) Consider the following subclass of class Point.

public class LabelPoint extends Point {

 private String label;

 public boolean equals(Object o) {

 if (o instanceof LabelPoint) {

 LabelPoint other = (LabelPoint) o;

 return super.equals(o) && label.equals(other.label);

 } else {

 return false;

 }

 }

}

Indicate whether each of the following properties holds for the equals method. If the

property does not hold (answer is false) give a counterexample showing why the property

fails.

(a) T / F Reflexivity

(b) T / F Symmetry

Assume LabelPoint lp and Point p, each with coordinates (1,1)

lp.equals(p) returns false

p.equals(lp) returns true

(c) T / F Transitivity

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 5 of 14

Question 3. (cont.) (b) (5 points) Consider the following subclass of class Point.

public class Point3D extends Point {

 private double z;

 public boolean equals(Object o) {

 if (o instanceof Point3D) {

 Point3D other = (Point3D) o;

 return super.equals(o) && z == other.z;

 } else if (o instanceof Point) {

 return super.equals(o);

 } else {

 return false;

 }

 }

}

Indicate whether each of the following properties holds for the equals method. If the

property does not hold (answer is false) give a counterexample showing why the property

fails.

(a) T / F Reflexivity

(b) T / F Symmetry

(c) T / F Transitivity

Point3D p1 = (1,2,3)

Point p2 = (1,2)

Point3D p3 = (1,2,4)

Then p1 equals p2, p2 equals p3, but p1 does not equal p3.

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 6 of 14

Question 3. (cont.) (c) (5 points) Consider the following subclass of class Point.

public class ColorPoint extends Point {

 private Color color;

 public boolean equals(Object o) {

 if (o instanceof Point) {

 return o.equals(this);

 } else if (o instanceof ColorPoint) {

 ColorPoint other = (ColorPoint) o;

 return super.equals(o) && color.equals(other.color);

 } else {

 return false;

 }

 }

}

Indicate whether each of the following properties holds for the equals method. If the

property does not hold (answer is false) give a counterexample showing why the property

fails.

(a) T / F Reflexivity

For any ColorPoint c, execution of c.equals(c) causes an infinite loop/stack

overflow.

(b) T / F Symmetry

equals is symmetric except for the possibility of an infinite recursion. In any case,

a.equals(b) has the same behavior as b.equals(a).

(c) T / F Transitivity

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 7 of 14

Question 4. (10 points) Hashcodes. Consider the following class that represents entries

in a mailing list.

public class AddressCard {

 private String first, last; // first and last names

 private String address; // street address, city, state

 private int zip; // zip code

 @Override

 public boolean equals(Object o) {

 if (o instanceof AddressCard) {

 AddressCard other = (AddressCard) o;

 return first.equals(other.first)&&last.equals(other.last);

 } else {

 return false;

 }

 }

 @Override

 public int hashCode() {

 return ______________________;

 }

}

(a) Here is a list of possible expressions that could appear in the return statement in the

above hashCode method. Circle ok for each choice if it would result in a legal, correct

hashCode implementation for this class. Circle bug if it would result in an incorrect

hashCode implementation. You do not need to justify your answer. Your answer

should not consider whether a particular answer is a good hashCode function, only

whether it is correct or not.

(i) ok / bug return last.hashCode();

(ii) ok / bug return first.hashCode()*31 + last.hashCode();

(iii) ok / bug return zip;

(iv) ok / bug return 42;

(b) Of the legal hashCode implementations in the list above, which one is likely to be

the best quality hash code and why? If none of the above implementations are legal

simply write none. (be brief)

(ii) is the best choice since it uses more available information to compute the hash

code, increasing the chances that different objects have different hash codes. (iv) is

by far the worst since it maps all AddressCard objects to the same hash code.

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 8 of 14

Question 5. (8 points) Rep exposure. Consider the following code fragment from a

class definition:

public class ObnoxiousFinalExamQuestion {

 private List<String> names;

 private final List<String> fixedNames;

 private final List<JButton> buttons;

 ...

 public List<String> getNames() { return names; }

 public List<String> getFixedNames() { return fixedNames; }

 public String getFirstName() { return names.get(0); }

 public JButton getFirstButton() { return buttons.get(0); }

}

Assume that all of the lists are defined after an instance of the class is constructed and

that each list contains at least one item.

Which of the methods in this class could potentially cause a representation exposure?

Below, circle yes if the method could cause a representation exposure. Circle no if it

does not. For each method that does create a potential representation exposure, give a 1-

sentence explanation of why it does.

(a) yes / no getNames()

Client code can add or remove items from names.

(b) yes / no getFixedNames()

Same problem as (a). Although the variable fixedNames itself cannot be altered,

the list can be mutated using the reference returned by getFixedNames.

(c) yes / no getFirstName()

(The result is a String, which is immutable.)

(d) yes / no getFirstButton()

This is an exposure because JButton methods could be called to, e.g., alter the

button text, change listeners that are monitoring button events, or make other

changes to the button.

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 9 of 14

Question 6. (4 points) Types and design. Suppose you are writing an application that

uses “incrementable” objects. An object is “incrementable” if it has increment() and

decrement() methods that modify its state to be slightly greater than or less than its

previous state, respectively. You enforce this by requiring the client to supply objects of

type Incrementable. Should Incrementable be a Java class, an abstract class, an

interface, some combination of these, or none of them? Give a brief justification for your

answer.

It should be an interface. All that is required for an object to be “incrementable” is

that it implement the two named methods. An interface allows any class or other

interface to provide the behavior, regardless of other subclass or implementation

relationships in the code.

Question 7. (6 points) Version control. List three (3) distinct benefits of using version

control software like Subversion. Include at least one benefit that applies even when

working alone, and one that only applies when working in groups. Be brief.

There are many possible answers. Here are a few:

Benefits related to working alone as well as in groups:

 Remote backups of files

 Logging – ability to see when changes were made

 Versioning – ability to see and restore past versions of files

Benefits that apply when working in teams:

 Safety – prevent collaborators from accidentally overwriting each others’

changes

 Attribution – see who changed what (“svn blame” or credit)

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 10 of 14

Question 8. (10 points) Model, View, Controller. We’d like to make some

improvements in the route-finder application from homework 6. For each of the changes

below, indicate which module or modules of the program code would reasonably require

modifications to implement the change by circling M, V, and/or C for Model, Viewer,

and/or Controller. If none of those parts of the MVC architecture would require changes

leave the answers blank.

You should answer the question based on how the Model/View/Controller architecture is

organized, even if parts of the architecture overlapped in the actual classes in your code

for homework 6. (i.e., base your answers on the standard MVC structure, not on specific

quirks of your implementation.)

You do not need to justify your answers, but you may add brief justifications if you

believe it will help us evaluate your answer more fairly.

(a) M / V / C Change the buttons so they have a purple background and gold text.

(b) M / V / C Store the path and building data in a database instead of a text file.

(c) M / V / C Add an option to display only handicapped-accessible routes.

There was some partial credit for answers that described how adding this option

might only require changing part of the application, but in general this would

require changes to all parts of the application to store information about

handicapped-accessible routes and make it possible to select and display them.

(d) M / V / C Add the new Molecular Engineering Center to the list of buildings and

 remove path segments around the hub to reflect construction.

We allowed credit for answers that circled M since the data lives in the model. But

the model code does not actually need to be changed. All of the modifications are in

the data file read by the model, not the model code itself.

(e) M / V / C Fix the application so that pressing ‘enter’ on the keyboard has the

 same effect as clicking the “find route” button.

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 11 of 14

Question 9. (12 points) Design patterns. We discussed several patterns from the list of

well-known ones. As a reminder, the list included the following, not all of which we

discussed:

 Creational: Factory, Singleton, Builder, Prototype, Interning, Flyweight

 Structural: Adapter, Composite, Decorator, Flyweight, Proxy

 Behavioral: Interpreter, Observer, Iterator, Strategy, Model-View-Controller,

Visitor

For each of the following design problems, state the most appropriate design pattern to

use to construct a solution and give a brief one-sentence explanation for your choice.

(a) Your program can send content to a printer. You want to ensure that different parts of

the program don’t command the printer to print output belonging to multiple documents

simultaneously, mixed together.

Singleton: ensure that all threads use the same print manager/queue.

We allowed Proxy as an answer if a good explanation was supplied, although most

answers were arguing for using a Proxy to implement Singleton.

(b) You are writing a library that allows client code to read and write compressed data for

storing in files. You’ve written several classes that implement encode() and

decode() methods of a CompressedFile interface. These classes use different

algorithms with different characteristics. Rather than requiring the client to choose

among them, you want the client to be able simply to request a CompressedFile

object and be given an instance of the best available implementation for the particular

kind of file.

Factory. If the client were to call a constructor directly, he/she would need to know

what implementation of CompressedFile he/she wants to use. Instead, what we

want is a way for the client to ask for a CompressedFile without knowing what

concrete class to use. In other words, we want a static factory method like

getCompressedFile() that contains all the logic for deciding what class to

construct.

Some people answered Strategy, which we accepted even though it’s not quite

correct. Because we didn’t describe this pattern in much detail we didn’t expect

people to know the subtle distinctions between Sigleton and factory.

(continued next page)

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 12 of 14

Question 9. (cont.) State the most appropriate design pattern for each application.

(c) You have an application that reads and writes files on the local file system. Without

changing the existing application any more than absolutely necessary you would like to

modify it so it can read and write files stored at a different location on the network, even

though reading and writing data over the network requires using a different API and a

different set of methods than reading and writing data stored in local files.

Adapter – create a wrapper class whose API matches what the application already

expects for reading/writing locally. The methods in the adapter use the API to read

and write data over the network.

We gave partial credit for Proxy. That would be the correct answer if the local

object were simply acting as a stand-in for a remote service using the same protocol.

But here the object is translating from one API to another, so Adaptor is the actual

pattern being used.

Decorator was not a correct answer here. That pattern wraps a basic abstraction

with an augmented version, rather than translating from one abstraction to another.

(d) You are writing a program that maintains a grid of objects. Although there are

several million objects in the grid, there are only a few hundred distinct objects, but there

are many copies of each one. Unfortunately each of the objects require a fair amount of

storage and creating several million individual objects is using way too much storage.

Interning – create one each of the several hundred distinct objects. When the client

requests a new object, give them a reference to the existing object of the same value

(or for a lazy implementation, create the object the first time it is requested).

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 13 of 14

Question 10. (5 points) A rather generic (adj.) question about generics (noun). Your

colleague A. Hacker is trying to create a small class to hold an unordered collection of

items, possibly containing duplicates. Hacker wants to use very simple generics so that

different instances of the collection can hold different kinds of items. Here is the code:

/** a collection of elements of type E */

public class Bag<E> {

 E[] vals; // data is stored in vals[0..size-1]

 int size;

 /** construct a new empty Bag */

 public Bag() {

 vals = new E (E[])Object[10];

 size = 0;

 }

 /** add new item x to this Bag */

 public void add(E x) {

 // ensure vals is large enough for the new item

 if (vals.length == size) {

 E[] newvals = new E (E[])Object[vals.length*2];

 for (int k = 0; k < vals.length; k++) newvals[k]=vals[k];

 vals = newvals;

 }

 // add new item

 vals[size] = x;

 size++;

 }

}

Unfortunately, the code doesn’t compile, although an earlier non-generic version that

used Integer instead of E for the element type worked just fine.

(a) Briefly describe the problem.

Because type information is erased at runtime, it is not allowed to create new arrays

of type E objects. The new E[10] and new E[vals.length*2] expressions

will not compile.

(b) How could the problem be fixed? Either describe your changes below, or, maybe

better, circle the code above that needs to be fixed and show how to fix it.

It is possible to create new Object arrays and use casts to treat them as type E[].

The compiler will issue a warning, but the resulting code will work as desired. See

modifications in the code above

Some answers suggested replacing the array with an ArrayList. That would

require rewriting the code extensively and is not really an appropriate solution.

 CSE 331 Final Exam Sample Solution 3/12/12

 Page 14 of 14

Question 11. (4 points) Usability. Many applications have “confirm” dialogs that ask the

user to click yes or no before some permanent change is made to the user’s data. Another

way to guard against accidental changes is to allow the user to “undo” changes. A

confirm dialog is usually much easier to implement compared to an undo operation.

From the standpoint of good user interface design, is either of these methods preferable to

the other? Give a brief justification of your answer.

Undo is better because it allows users to recover from errors. A confirm dialog

cannot be reverse once the user clicks “ok”. Further, after frequent use, clicking

“ok” in response to a confirm dialog becomes mostly automatic, negating much of

its value.

Some answers discussed how undo simplified the interaction by reducing mouse

clicks. While that is true it is not the most important issue.

A number of answers said that the confirm dialog was preferable because undo is

harder to implement. That misses the point of the question, which is about usability

and interface design, not implementation convenience.

Question 12. (2 points) What is the “rubber duck” method of debugging? (circle the

letter of the best answer)

(a) Run many different inputs through your program, noting which ones “float” and

which “sink” to collect as much information as possible about the bug.

(b) Talk through your code by describing it to a rubber duck or other inanimate object.

(c) Prevent bugs in the first place by making your code as simple as possible – so simple

that even a rubber duck could understand the algorithms.

(d) If you can’t find the bug, step away from the computer and give your mind a break,

e.g. by taking a long bath with a rubber duck. Then come back and keep trying.

Quack!

Have a great spring break!

