
 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 1 of 11

Question 1. (20 points, 1 each) Warmup. For each statement, circle T if it is true and F if
it is false.

a) T / F A well-written test suite for a piece of software can guarantee that there
are no bugs in the software.

b) T / F Two examples of wrapper patterns are Adapter and Builder

c) T / F One way to ensure that only a single instance of a class ever gets
created is to use the singleton pattern.

d) T / F Two different sets of concrete variable values in an ADT can be mapped
to the same abstract value by the Abstraction Function (AF).

e) T / F A client can add DirectedEdge instances to a List<Edge>, provided
that Edge extends DirectedEdge.

f) T / F In unit testing, it is best to test all of a class’s or module’s functionality in
one test method

g) T / F If A and B are two different types, and A is a subtype of B, then
Queue<A> is a subtype of Queue.

h) T / F Declaring a variable to have type List<? extends Object> is the
same as declaring a variable to have type List<?>.

i) T / F In Java, it is possible to use try..catch to recover from exceptions and
continue program execution.

j) T / F If the client fails to satisfy a @requires clause, you can throw an
exception of your choice to let the client know.

k) T / F In a Swing GUI, the actionPerformed method that responds to a
button click must call paintComponent if the screen needs to be redrawn.

l) T / F If two objects are equal as defined by their equals methods, then it must
be that their hash codes returned by their hashCode methods are equal.

m) T / F A hashCode implementation that always returns a constant value is the
best choice in terms of simplicity and performance.

n) T / F B is a true subtype of A if B has a stronger specification than A.

o) T / F A loop invariant can be considered too weak, but there is no such thing
as a loop invariant that is “too strong”.

p) T / F A specification is a two-way contract between the implementer and the
client.

q) T / F An implementation must include code to check each @requires clause.

r) T / F The only way to avoid representation exposure is to make deep copies of
all data that crosses the abstraction barrier.

s) T / F The equals specification requires that for any non-null reference value x,
execution of x.equals(null) must throw a NullPointerException.

t) T / F Adding a precondition always weakens a specification.

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 2 of 11

Question 2. (10 points, 1 each) Complete each of the following sentences by filling in
the word or phrase from the following list that best completes the sentence. Note that
some of these words may be used more than once, and some won’t be used at all.

abstract state, abstraction function, black-box, checked, cohesion, concrete state,
coupling, creator, deep copy, deep equality, division of work, double checking,
doubling, @effects, layering, logical equivalence, mixing, @modifies, mutator,
observer, overview, producer, reading the specification, reference equality, reflexive
equality, representation invariant, @requires, @returns, @throws, unchecked,
validation, value equality, verification, white-box

a) Determining whether you have built the right system is called validation .

b) Determining whether you have built the system right is called verification .

c) In a JavaDoc specification, the @effects tag specifies or gives guarantees about

the final state of all modified objects.

d) In ADTs, a(n) producer method returns a new value of the same type.

e) In ADTs, a(n) mutator method modifies the value of the ADT.

f) A(n) representation invariant denotes which concrete values of an ADT

represent well-formed abstract values.

g) The equals method in class Object implements this kind of equality:

reference equality .

h) When considering the general design of software modules, we want to increase

 cohesion and decrease coupling .

i) A NullPointerException is classified as a unchecked exception.

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 3 of 11

Question 3. (20 points) Testing/debugging/proving. The following method is supposed
to swap pairs of elements in its integer array argument starting with arr[0] and arr[1]. If
there is an odd number of array elements, the last element is not changed.

 public void swapPairs(int[] arr) {
 int i = 0;
 while (i != arr.length) {
 int temp = arr[i];
 arr[i] = arr[i+1];
 arr[i+1] = temp;
 i = i + 2;
 }
 }

Unfortunately there is at least one bug in the code.

(a) (8 points) Write two different tests for this method. One test should reveal the bug.
The other test should check some other behavior and should succeed. You do not need to
give JUnit or other code for the tests, although that is one way to answer the question
clearly, but you should give a precise description of the test inputs, output expected, and
actual output observed when used to test the above code.

// Will reveal the bug - throws ArrayIndexOutOfBounds exception
@Test
public void testSwapOnOddSizeArray {
 int[] arr = [3, 5, 2, 9, 4];
 swapPairs(arr);
}

// Does not reveal the bug
@Test
public void testSwapOnEvenSizeArray {
 int[] arr = [3, 1, 9, -4];
 swapPairs(arr);
 assertEquals(1, arr[0]);
 assertEquals(3, arr[1]);
 assertEquals(-4, arr[2]);
 assertEquals(9, arr[3]);
}

(Problem continued on the next page.)

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 4 of 11

Question 3. (cont) Now that we’ve verified that there is at least one bug in this code
we’d like to fix it up and show that our fix is correct. Here is the original code again:

 public void swapPairs(int[] arr) {
 int i = 0;
 while (i != arr.length) {
 int temp = arr[i]; arr[i] = arr[i+1]; arr[i+1] = temp;
 i = i + 2;
 }
 }

(b) (12 points) Rewrite this method to fix the bug(s) and prove that your code is correct.
You will need to provide suitable preconditions, postconditions, assertions, and a loop
invariant to go with the proof. You may assume that the sequence temp=a; a=b;
b=temp; will swap the contents of variables a and b and you do not need to provide
intermediate assertions to prove that this swap operation itself is correct.

 { pre: arr != null }

 public void swapPairs(int[] arr) {

 int i = 0;

 { inv: pairs a[k] and a[k+1] have been swapped for
 k even and k < i && i even }

 while (i < arr.length-1) {

 { inv && i < array.length – 1 =>
 arr[i] and arr[i+1] exist and should be swapped }

 int temp = arr[i];

 arr[i] = arr[i+1];

 arr[i+1] = temp;

 { pairs a[k] and a[k+1] swapped for k even
 and k < i+2 }

 i = i + 2;

 { inv }

 }

 { inv && i >= arr.length – 1 =>
 pairs a[k] and a[k+1] swapped for k even &&
 k < arr.length - 1 }
 }

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 5 of 11

Question 4. (12 points) hashCodes. Consider the following class, which represents an
immutable point on the 2-D plane:

public class Point2D {
 // rectangular coordinates of the point
 private final double x;
 private final double y;

 // Construct point at (0,0)
 public Point2D() { this.x = 0.0; this.y = 0.0; }

 // construct point at (x,y)
 public Point2D(double x, double y) {
 this.x = x; this.y = y;
 }

 // observers
 public double getX() { return this.x; }
 public double getY() { return this.y; }

 // equality
 @Override
 public boolean equals(Object o) {
 if (!(o instanceof Point2D))
 return false;
 Point2D other = (Point2D) o;
 return this.x == other.x && this.y == other.y;
 }
}

(a) (10 points, 2 each) Here are five possible hashCode methods for this class. For
each one, circle OK if this is a legal hashCode method for class Point as given above,
or circle ERROR if it is not correct. All of the functions do compile without errors.

 OK ERROR int hashCode() {return (int)x;}

 OK ERROR int hashCode() {return (int)(x + y);}

 OK ERROR int hashCode() {return (int)(x*x + y*y);}

 OK ERROR int hashCode() {return (int)(13*x + y);}

 OK ERROR int hashCode() {return (int)Math.max(x,y);}

(b) (2 points) Of the legal hashCode methods above, which one would be the best
choice and why?

The 4th one (13*x+y). This uses both pieces of information but is not symmetric so it
is more likely to produce different hashCodes for different x, y pairs.

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 6 of 11

Question 5. (10 points, 2 each) We’d now like to create a new class PointBag that
holds a collection of Point2D objects with possible duplicates:

/** A PointBag is an unordered collection of non-null
 * Point2D objects p1, p2, ... pn */
public class PointBag { … }

One of the methods we want to include in this class is one that adds a new Point2D to
a PointBag. We are considering several possible ways to specify that method. All of
the specifications will include the following:

 * @param p the Point2D object to add
 * @modifies this
 * @effects p added to this

But there are differences in the remaining parts of each possible specification. Here are
the additional parts included in five possible specifications:

S1: @requires p != null
S2: @throws IllegalArgumentException if p == null
S3: @throws NullPointerException if p == null
S4: @throws RuntimeException if p == null
S5: no additional clauses in this specification

(Recall that NullPointerException and IllegalArgumentException are
both subclasses of RuntimeException.)

For each of these five specifications, list all other specifications that are stronger than or
equal to the named specification. Since each specification is equal to itself, you do not
need to include each specification in its own list.

S1: S2, S3, S4, S5

S2: none

S3: none

S4: S2, S3

S5: none

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 7 of 11

Question 6. (10 points) Specifications. We would like to add a method to our
PointBag class to compute and return a point that represents the centroid of the
Point2D objects currently in the PointBag. The centroid is simply another point
whose x and y coordinates are computed by averaging the coordinates of all of the points
in the collection. We’ve got an implementation of this method, but it has not been
properly documented yet.

Complete the JavaDoc comments for centroid below to provide the most suitable
specification. Leave any unneeded parts blank. We have provided the method summary
for you at the beginning. You may have to use your best judgment based on the
implementation to decide how to specify some details. Hint: the answer probably won’t
need nearly this much space.

 /**
 * Return a Point2D object that represents the centroid
 * of the points in this PointBag
 *
 * @param
 *
 * @requires number of items in PointBag > 0
 *
 * @modifies
 *
 * @effects
 *
 * @throws
 *
 * @returns new Point2D(x,y) where x is the average of
 * the x coordinates of all points in the PointBag
 * and y is the average of the y coordinates
 */
 public Point2D centroid() {
 double xsum = 0.0; double ysum = 0.0;
 for (Point2D p : points) {
 xsum += p.getX();
 ysum += p.getY();
 }
 return new Point2D(xsum/points.size(),
 ysum/points.size());
 }

Note: the @requires clause is needed given this particular implementation, which
will generate division by zero errors if the PointBag is empty.

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 8 of 11

Question 7. (18 points) Subclassing/subtypes. Suppose we define a new class Point3D
that extends our previous Point2D class to represent 3-dimensional points:

public class Point3D extends Point2D { ... }

Because of this declaration we know that Point3D is a (Java) subtype of Point2D.
Also recall that Point2D implicitly extends Java’s Object type.

Further, recall that ArrayList is a Java subtype of List since it implements List.

(a) (6 points, 1 each) For each of the following, circle T (true) or F (false)

T / F ArrayList<Point3D> is a Java subtype of ArrayList<Point2D>

T / F ArrayList<Point2D> is a Java subtype of ArrayList<Point3D>

T / F ArrayList<Point2D> is a Java subtype of List<Point2D>

T / F List<Point2D> is a Java subtype of ArrayList<Point2D>

T / F Point3D[] is a Java subtype of Point2D[] (arrays)

T / F Point2D[] is a Java subtype of Point3D[] (arrays)

(question continued on the next page)

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 9 of 11

Question 7. (cont) (b) (12 points, 1 each) Now suppose we declare the following objects
and lists using the Point2D and Point3D classes:

Object o;
Point2D two;
Point3D three;

List<Point2D> lst2d;
List<? extends Point2D> ext2d;
List<? super Point2D> sup2d;

For each of the following, circle OK if the statement has correct Java types and will
compile without type-checking errors; circle ERROR if there is some sort of type error.

OK ERROR lst2d.add(two);

OK ERROR ext2d.add(two);

OK ERROR ext2d.add(three);

OK ERROR sup2d.add(two);

OK ERROR sup2d.add(three);

OK ERROR sup2d.add(o);

OK ERROR ext2d.add(o);

OK ERROR two = lst2d.get(0);

OK ERROR two = ext2d.get(0);

OK ERROR two = sup2d.get(0);

OK ERROR three = ext2d.get(0);

OK ERROR three = sup2d.get(0);

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 10 of 11

Question 8. (10 points, 2 each) Design patterns. Here is are some of the design patterns
we discussed this quarter:

Adapter, Builder, Composite, Decorator, Factory method, Factory object, Flyweight,

Iterator, Intern, Interpreter, Model-View-Controller (MVC), Observer, Procedural,

Prototype, Proxy, Singleton, Visitor, Wrapper

For each of the following code fragments or descriptions, give the name of the design
pattern that is the best match to the description or to the result of the given code.

(a) CurrencyConverter cc1 = CurrencyConverter.getInstance();
 CurrencyConverter cc2 = CurrencyConverter.getInstance();
 assert cc1 == cc2; // always passes

 singleton

(b) CurrencyConverter cc1 = CurrencyConverter.incomingCurrency(“USD”)
 .outgoingCurrency(“CAD”) // Canadian $
 .build();
 cc1.convert(50.00);

 builder

(c) We have an existing class that counts coins and returns the total amount in CAD
(Canadian dollars). A developer is writing a new class that uses the existing one to do the
work but needs answers in US dollars.

 adapter

(d) A method in the ATM software at the airport does currency conversions by
forwarding the data to an identical method running on a computer at the bank’s data
center downtown where the calculations are done and results returned to the airport ATM
computer.

 proxy (we allowed half credit for MVC here, even though it isn’t the best match)

(e) A method in the Campus Maps graphical user interface is called whenever a button on
the screen is clicked because the method has previously been registered with the button to
be notified whenever a click occurs.

 observer

 CSE 331 Final Exam 12/14/15 Sample Solution

 Page 11 of 11

Question 9. (10 points) A couple of questions about testing.

(a) (3 points) Test Driven Development is a strategy where the tests for a module or
function are always written before the actual code. Give a main reason why this is a
useful strategy other than “it ensures that the tests will actually get written eventually.”

Writing the test helps the author understand better what the code is supposed to do.
The effort spent writing tests should ease the work needed to actually write correct
code for the implementation later.

(b) (4 points) We observed that 100% statement coverage wasn’t sufficient to guarantee
that a test suite caught all possible bugs. A more comprehensive metric is 100% path
coverage, where every possible execution path is executed at least once. But we also said
that 100% path coverage is not realistic in most systems. Give two distinct reasons why
this is true:

Here are three:

(i) Loops. (Most programs contain loops that will execute an unknown number of
times. It is impossible to execute all possible paths, which would mean all possible
numbers of iterations.)

(ii) Combinatorial explosion. (Even without loops, the number of paths through the
code is an exponential function of the number of branches in the code. In real code
it is usually not feasible to execute all possibilities in reasonable amounts of time.)

(iii) Rarely used or unusual paths through the code. Some code exists to handle
“should never happen” or “almost never could happen” situations and devising tests
that exercise all of these paths may not be feasible.

(c) (3 points) A guideline for testing and debugging is that once a test is found that
reproduces a bug, that test must be added to the test suite and retained forever. Why?
What value is that test after the bug is fixed?

A bug occurs because of a defect in the code due to some human error or
misunderstanding. If it happened once, it could happen again as the code evolves,
either because knowledge of the original problem fades with time or new people
work on the code. Keeping the test in the test suite ensures that if the error is re-
introduced it will be detected when the tests are run.

Best wishes for the holidays! See you after the break!
The CSE 331 staff

