
CSE 331

Software Design & Implementation

Spring 2021

Section 4 – Graphs, Testing

UW CSE 331 Spring 2021 1

Administrivia

• Done with HW4!

• HW5-1 and HW5-2 Spec out on the website

– Always plan for work taking 3x longer than expected, so start

early!

• Any questions?

UW CSE 331 Spring 2021 2

Agenda

• Graph concepts

• Testing in practice

– Script Testing

– JUnit Testing

• Testing exercise

UW CSE 331 Spring 2021 3

Graphs

UW CSE 331 Spring 2021 4

A graph represents relationships

A graph is a set of nodes and a set of edges between them.

Nodes may be labeled.

Edges may be labeled.

Edges may have a direction.

UW CSE 331 Spring 2021 5

Node 5

Node 1

Node 3
Node 4

Node 2
Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Example: road map

Nodes: intersections (cities) Edges: roads

Label: name/location Label: name/length

UW CSE 331 Spring 2021 6

Example: airline flights

Nodes: airports Edges: flights

Label: airport code Label: cost/time

UW CSE 331 Spring 2021 7

Nodes: Courses Edges: pointer to next class

Label: Course name Label: none

Example: CSE courses

UW CSE 331 Spring 2021 8

CSE

142
CSE

143

CSE

311

CSE

312

CSE

331

CSE

332

CSE

421

CSE

447

CSE

446

You’ve used graphs before!

UW CSE 331 Spring 2021 9

Singly linked Lists:

Nodes: Linked list node Edges: pointer to next node

Label: integer Label: none

3 -25 0

You’ve used graphs before!

UW CSE 331 Spring 2021 10

3 -25 0

Doubly linked Lists:

Nodes: Linked list node Edges: pointers to prev/next nodes

Label: integer Label: none

Binary trees:

Nodes: Tree node Edges: pointers to children

Label: Integer Label: none

You’ve used graphs before!

UW CSE 331 Spring 2021 11

8 43

42

-3 40 98

An edge points from source to dest.

Each edge “points” from a source to a destination.

• Outgoing from source

• Incoming to destination

N.B.: We’re only dealing with directed

graphs from here on out.

UW CSE 331 Spring 2021 12

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

An edge points from source to dest.

Each edge “points” from a source to a destination.

• Outgoing from source

• Incoming to destination

Edge A is Node 1 → Node 2.

• Outgoing from Node 1

• Incoming to Node 2

UW CSE 331 Spring 2021 13

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

An edge points from source to dest.

Each edge “points” from a source to a destination.

• Outgoing from source

• Incoming to destination

Edge C is Node 2 → Node 3.

• Outgoing from Node 2

• Incoming to Node 3

UW CSE 331 Spring 2021 14

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

A node has children

A node’s outgoing edges point to its children.

• Potentially empty set

UW CSE 331 Spring 2021 15

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

A node has children

A node’s outgoing edges point to its children.

• Potentially empty set

Node 3 has three children:

• Node 1

• Node 4

• Node 5

UW CSE 331 Spring 2021 16

Node 5

Node 1

Node 3
Node 4

Node 2
Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Edge I

A node has children

A node’s outgoing edges point to its children.

• Potentially empty set

Node 2 has two children:

• Node 2

• Node 3

UW CSE 331 Spring 2021 17

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

A node has parents

A node’s incoming edges point from its parents.

• Potentially empty set

UW CSE 331 Spring 2021 18

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

A node has parents

A node’s incoming edges point from its parents.

• Potentially empty set

Node 4 has two parents:

• Node 3

• Node 5

UW CSE 331 Spring 2021 19

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

A node has parents

A node’s incoming edges point from its parents.

• Potentially empty set

Node 5 has one parent:

• Node 3

UW CSE 331 Spring 2021 20

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

A node has neighbors

A node’s neighbors are its children plus its parents.

• Potentially empty set

UW CSE 331 Spring 2021 21

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

A node has neighbors

A node’s neighbors are its children plus its parents.

• Potentially empty set

Node 2 has four neighbors:

• Node 1 (parent)

• Node 2 (self-pointing)

• Node 3 (child)

• Node 4 (parent)

UW CSE 331 Spring 2021 22

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

A node has neighbors

A node’s neighbors are its children plus its parents.

• Potentially empty set

Node 3 has four neighbors:

• Node 1 (child)

• Node 2 (parent)

• Node 4 (parent and child)

• Node 5 (child)

UW CSE 331 Spring 2021 23

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

Paths between nodes

A path is a “chain” of edges from a source to a destination.

• Potentially empty sequence

• Might include a cycle

• Often want shortest

UW CSE 331 Spring 2021 24

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

Paths between nodes

A path is a “chain” of edges from a source to a destination.

• Potentially empty sequence

• Might include a cycle

• Often want shortest

Path from Node 1 to Node 5:

1. Edge A : Node 1 → Node 2

2. Edge C : Node 2 → Node 3

3. Edge G : Node 3 → Node 5

UW CSE 331 Spring 2021 25

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

Paths between nodes

A path is a “chain” of edges from a source to a destination.

• Potentially empty sequence

• Might include a cycle

• Often want shortest

Path from Node 1 to Node 5:

1. Edge A : Node 1 → Node 2

2. Edge C : Node 2 → Node 3

3. Edge E : Node 3 → Node 4

4. Edge F : Node 4 → Node 3

5. Edge G : Node 3 → Node 5

UW CSE 331 Spring 2021 26

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

Paths between nodes

A path is a “chain” of edges from a source to a destination.

• Potentially empty sequence

• Might include a cycle

• Often want shortest

Path from Node 1 to Node 1:

1. Edge A : Node 1 → Node 2

2. Edge C : Node 2 → Node 3

3. Edge B : Node 3 → Node 1

UW CSE 331 Spring 2021 27

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 1 Node 2

Edge I

A path is a “chain” of edges from a source to a destination.

• Potentially empty sequence

• Might include a cycle

• Often want shortest

Path from Node 2 to Node 2:

1. Edge I : Node 2 → Node 2

Paths between nodes

UW CSE 331 Spring 2021 28

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge C

Edge B

Edge F

Node 2

Edge I

Node 2

Possible graph operations

Creators

• Construct an empty graph

Observers

• Look up node(s) by label, children of, parents of, neighbors of, …

• Look up edge(s) by label, incoming to, outgoing from, …

• Iterate through all nodes

• Iterate through all edges

Mutators

• Insert/remove a node

• Insert/remove an edge

UW CSE 331 Spring 2021 29

More observers
• Find path(s) from one node to another

• Find all reachable nodes

• Count indegree, outdegree

You might or might not want to

include all of these operations in

your graph ADT design.

HW5: Design before implementation

• HW5: Building an ADT for labeled, directed graphs

– Labeled: Nodes and edges have label values (Strings)

– Directed: Edges have direction

– Edges with same source and destination will have unique labels

UW CSE 331 Spring 2021 30

HW5: Design before implementation

• HW5: Building an ADT for labeled, directed graphs

– Labeled: Nodes and edges have label values (Strings)

– Directed: Edges have direction

– Edges with same source and destination will have unique labels

• The exact interface of your Graph class is up to you

– So, no given JUnit tests bundled with the starter code

– Advice: Look ahead at HW6 and consider its likely needs

• Will be posted before Saturday

– Reminder: Not a generic class.

UW CSE 331 Spring 2021 31

HW5: Design before implementation

• HW5: Building an ADT for labeled, directed graphs

– Labeled: Nodes and edges have label values (Strings)

– Directed: Edges have direction

– Edges with same source and destination will have unique labels

• The exact interface of your Graph class is up to you

– So, no given JUnit tests bundled with the starter code

– Advice: Look ahead at HW6 and consider its likely needs

• Will be posted before Saturday

– Reminder: Not a generic class.

• HW5 split into 2 parts

1. Design and specify a graph ADT

2. Implement that ADT specification

UW CSE 331 Spring 2021 32

HW5: Specifications in JavaDoc

• Write class/method specifications in proper JavaDoc comments

– See “Resources” → “Class and Method Specifications”

• You can generate nice HTML pages cleanly presenting all your

JavaDoc specifications

• Let’s look at the JavaDoc from HW4… (demo)

UW CSE 331 Spring 2021 33

HW5: Testing

• The design process includes crafting a good test suite

– Script tests and JUnit tests

• Script Tests (src/test/resources/testScripts/)

– Test script files name.test with corresponding name.expected

– Validate behavior intrinsic to high-level concept (abstract meaning)

– Tested properties should be expected of any solution to HW5

• JUnit Tests (src/test/java/graph/junitTests/)

– JUnit test classes

– Validate behavior that can't be tested with script tests.

• If you can validate a behavior using either test type, use a script

test!

UW CSE 331 Spring 2021 34

HW5: Why Script Tests?

• Everyone’s implementation could (will!) be different, so we

(staff) cannot write JUnit tests for everyone to use or to use for

checking everyone’s code.

• We still need a way to test that you specify and implement the

proper behavior, so we use script tests that work regardless of

the implementation.

• They test what the methods are doing, they don’t care how the

methods are doing it.

UW CSE 331 Spring 2021 35

HW5: Script Tests

Each script test is expressed as text-based script foo.test

– One command per line, of the form: Command arg1 arg2 …

– Script’s output compared against foo.expected

– Precise details specified in the homework

– Match format exactly, including whitespace!

UW CSE 331 Spring 2021 36

Command (in foo.test) Output (in foo.expected)

CreateGraph name created graph name

AddNode graph label added node label to graph

AddEdge graph parent child label added edge label from parent to child in graph

ListNodes graph graph contains: labelnode …

ListChildren graph parent the children of parent in graph are: child(labeledge)…

This is comment text … # This is comment text …

HW5: example.test

Create a graph

CreateGraph graph1

Add a pair of nodes

AddNode graph1 n1

AddNode graph1 n2

Add an edge

AddEdge graph1 n1 n2 e1

Print all nodes in the graph

ListNodes graph1

Print all child nodes of n1 with outgoing edge
ListChildren graph1 n1

UW CSE 331 Spring 2021 37

n1 n2
e1

HW5: example.expected

Create a graph

created graph graph1

Add a pair of nodes

added node n1 to graph1

added node n2 to graph1

Add an edge

added edge e1 from n1 to n2 in graph1

Print all nodes in the graph

graph1 contains: n1 n2

Print all child nodes of n1 with outgoing edge
the children of n1 in graph1 are: n2(e1)

UW CSE 331 Spring 2021 38

n1 n2
e1

HW5: Creating a script test

UW CSE 331 Spring 2021 39

1. Write test steps as script commands in a file foo.test

2. Write expected (“correct”) output in a file foo.expected

– …taking care to match the output format exactly

3. Place both files under src/test/resources/testScripts/

4. Run all such tests via the Gradle task scriptTests

– After class implemented and GraphTestDriver stubs filled

HW5: Creating JUnit tests

UW CSE 331 Spring 2021 40

1. Create JUnit test class in src/test/java/graph/junitTests/

2. Write a test method for each unit test

3. Run all such tests via the Gradle task junitTests

import org.junit.*;

import static org.junit.Assert.*;

/** Document class... */

public class FooTests {

/** Document method... */

@Test

public void testBar() { ... /* JUnit assertions */ }

}

HW5: Creating JUnit tests

UW CSE 331 Spring 2021 41

1. Note: Your JUnit tests will fail in hw5 part 1, because you have

not implemented the actual methods yet

– The same goes for your script tests

2. You will do that in part 2

JUnit for test authors

UW CSE 331 Spring 2021 42

The following slides are included for reference and add additional

material that you’ll need to write tests for HW 5.

Writing tests with JUnit

UW CSE 331 Spring 2021 43

Annotate a method with @Test to flag it as a JUnit test

import org.junit.*;

import static org.junit.Assert.*;

/** Unit tests for my Foo ADT implementation */

public class FooTests {

@Test

public void testBar() {

... /* use JUnit assertions in here */

}

}

Common JUnit assertions

UW CSE 331 Spring 2021 44

JUnit’s documentation has a full list, but these are the most

common assertions.

Assertion Failure condition

assertTrue(test) test == false

assertFalse(test) test == true

assertEquals(expected, actual) expected and actual are not equal

assertSame(expected, actual) expected != actual

assertNotSame(expected, actual) expected == actual

assertNull(value) value != null

assertNotNull(value) value == null

Any JUnit assertion can also take a string to show in case of failure, e.g.,
assertEquals(“helpful message”, expected, actual).

UW CSE 331 Spring 2021

Always* use >= 1 JUnit Assertion

• If you don’t use any JUnit assertions, you are only checking that

no exception/error occurs

• That’s a pretty weak notion of passing a test; rarely the best test

you could write

• Having more than one JUnit assertion in a test may make

sense, but one is the most common scenario

– “Each test should test one (new) thing” (most of the time)

* = Special-case coming in a couple slides 

45

UW CSE 331 Spring 2021

JUnit assertions vs Java’s assert

• Use JUnit assertions only in JUnit test code

– JUnit assertions have names like assertEquals,
assertNotNull, assertTrue

– Part of JUnit framework used to report test results

• Accessed via import org.junit….

– Don’t use in ordinary Java code (never import
org.junit…. in non-JUnit code)

• Use Java’s assert statement in ordinary Java code

– Use liberally to annotate/check “must be true” / “must not
happen” / etc. conditions

– Use in checkRep() to detect failure if problem(s) found

– Do not use in JUnit tests to check test result – does not
interact properly with JUnit framework to report results

46

Checking for a thrown exception

UW CSE 331 Spring 2021 47

• Need to test that your code throws exceptions as specified

• This kind of test method fails if its body does not throw an

exception of the named class

– May not need any JUnit assertions inside the test method

@Test(expected=IndexOutOfBoundsException.class)

public void testGetEmptyList() {

List<String> list = new ArrayList<String>();

list.get(0);

}

Test ordering, setup, clean-up

UW CSE 331 Spring 2021 48

JUnit does not promise to run tests in any particular order.

However, JUnit can run helper methods for common setup/cleanup

• Run before/after each test method in the class:

• Run before/after all test methods in the class:

@BeforeClass

public static void m() { ... }

@AfterClass

public static void m() { ... }

@Before

public void m() { ... }

@After

public void m() { ... }

Tips for effective testing

UW CSE 331 Spring 2021 49

• Use constants instead of hard-coded values

– Makes change easier later on

• Take advantage of assertion messages

• Give a descriptive name to each unit test (method)

– Verbose but clear is better than short and inscrutable

– Don’t go overboard, though :-)

• Write tests with a simple structure

– Isolate bugs one at a time with successive assertions

– Helps avoid bugs in your tests too!

• Aim for thorough test coverage

– Big/small inputs, common/edge cases, exceptions, ...

Test Design Worksheet

• Work in pairs

• Give logic of the tests, not actual code

• Only test operations provided on the worksheet

• More details in lecture if additional information/review needed

UW CSE 331 Spring 2021 50

