
CSE 331
Software Design & Implementation

James Wilcox & Kevin Zatloukal
Fall 2022

Lecture 4½ – Reasoning Wrap-up

Administrivia

• HW2 to be released tonight
– includes coding part
– (also has a written problem, independent of the rest)

• Section tomorrow will get you started on coding part

• Bring your laptop (if that is where you plan to work)
– go through the pre-section setup beforehand

CSE 331 Fall 2022 2

A Harder Example

Example: Dutch National Flag

Given an array of red, white, and blue pebbles, sort the array so the
red pebbles are at the front, the white pebbles are in the middle,
and the blue pebbles are at the end

CSE 331 Fall 2022 4

Edsgar Dijkstra

Pre- and post-conditions

Precondition: Any mix of red, white, and blue

Postcondition:
– red then white then blue
– number of each color is unchanged

CSE 331 Fall 2022 5

Mixed colors: red, white, blue

Red White Blue

Pre- and post-conditions

Precondition: Any mix of red, white, and blue

Postcondition:
– red then white then blue
– number of each color is unchanged

Want an invariant with
– postcondition as a special case
– precondition as a special case (or easy to change to one)

CSE 331 Fall 2022 6

Mixed colors: red, white, blue

Red White Blue

Example: Dutch National Flag

The first idea that comes to mind:

CSE 331 Fall 2022 7

like postcondition like initial condition

Example: Dutch National Flag

The first idea that comes to mind works.

Initial:

Iter 5:

Iter 10:

Iter 15:

Post:

CSE 331 Fall 2022 8

Other potential invariants

Any of these choices work, making the array more-and-more
partitioned as you go:

CSE 331 Fall 2022 9

Red White Blue Mixed

Red White BlueMixed

Red White BlueMixed

Red White BlueMixed

Precise Invariant

Need indices to refer to the split points between colors
– call these i, j, k

0 i j k n
Loop Invariant:
• 0 <= i <= j <= k <= n <= A.length
• A[0], …, A[i-1] are red
• A[i], …, A[j-1] are white
• A[k], …, A[n-1] are blue

No constraints on A[j], ..., A[k-1]

CSE 331 Fall 2022 10

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Initialization?

CSE 331 Fall 2022 11

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Initialization:
• i = j = 0 and k = n

CSE 331 Fall 2022 12

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Initialization:
• i = j = 0 and k = n

Termination condition?

CSE 331 Fall 2022 13

Red White BlueMixed

Dutch National Flag Code

Invariant:

0 i j k n

Initialization:
• i = j = 0 and k = n

Termination condition:
• j = k

CSE 331 Fall 2022 14

Red White BlueMixed

Dutch National Flag Code
int i = 0, j = 0;

int k = n;

{{ Inv: 0 <= i <= j <= k <= n and A[0], …, A[i-1] are red and ... }}
while (j != k) {

??

}

CSE 331 Fall 2022 15

need to get j closer to k...
let’s try increasing j by 1

Dutch National Flag Code

Three cases depending on the value of A[j]:

0 i j k n

A[j] is either red, white, or blue

CSE 331 Fall 2022 16

Red White BlueMixed

Dutch National Flag Code

Three cases depending on the value of A[j]:

white

0 i j k n

red

0 i j k n

blue

0 i j k n
CSE 331 Fall 2022 17

Red White BlueMixed

Red White BlueMixed

Red White BlueMixed

Dutch National Flag Code
int i = 0, j = 0;

int k = n;

{{ Inv: 0 <= i <= j <= k <= n and A[0], …, A[i-1] are red and ... }}
while (j != k) {
if (A[j] is white) {

j = j+1;
} else if (A[j] is blue) {

swap A[j], A[k-1];
k = k - 1;

} else { // A[j] is red
swap A[i], A[j];
i = i + 1;
j = j + 1;

}
}

CSE 331 Fall 2022 18

Binary Search

CSE 331 Fall 2022 19

Example: Binary Search

Problem: Given a sorted array A and a number x, find index of x
(or where it would be inserted) in A.

Idea: Look at A[n/2] to figure out if x is in A[0], A[1], ..., A[n/2] or in
A[n/2+1], ..., A[n-1]. Narrow the search for x on each iteration.

(This is an algorithm where you probably still need to go line-by-line even as you get
faster at reasoning...)

CSE 331 Fall 2022 20

Example: Binary Search

Problem: Given a sorted array A and a number x, find index of x
(or where it would be inserted) in A.

Idea: Look at A[n/2] to figure out if x is in A[0], A[1], ..., A[n/2] or in
A[n/2+1], ..., A[n-1]. Narrow the search for x on each iteration.

i j n

Loop Invariant: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1]
• A[i], ..., A[j-1] is the part where we don’t know relation to x

CSE 331 Fall 2022 21

Binary Search Code

i j n

Initialization?

CSE 331 Fall 2022 22

Binary Search Code

i j n

Initialization:
• i = 0 and j = n
• white region is the whole array

CSE 331 Fall 2022 23

Binary Search Code

i j n

Initialization:
• i = 0 and j = n
• white region is the whole array

Termination condition:
• i = j
• white region is empty
• if x is in the array, it is A[i-1]

– if there are multiple copies of x, this returns the last

CSE 331 Fall 2022 24

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {

// need to bring i and j closer together...
// (e.g., increase i or decrease j)

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 25

Fall 2022

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

} else {

}
}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 26

Look at the element half way
between i and j

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

??
} else {

}
}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 27

What goes here?

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

i = m + 1;
} else {

}
}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 28

Since i-1 = m, we have A[i-1] = A[m] <= x
Why do we have A[0] <= … <= A[i-1]?

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

i = m + 1;
} else {

}
}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 29

invariant satisfied since A[i-1] = A[m] <= x
and A is sorted so A[0] <= … <= A[m]

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

i = m + 1;
} else {

??
}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 30

What goes here?

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

i = m + 1;
} else {

j = m;
}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 31

invariant satisfied since x < A[m] = A[j]
(and A is sorted so A[m] <= ... <= A[n-1])

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

i = m + 1;
} else {

j = m;
}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 32

Does this always terminate?

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

i = m + 1;
} else {

j = m;
}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 33

Must satisfy i <= m < j
(Why?)

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

i = m + 1;
} else {

j = m;
}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 34

Must satisfy i <= m < j
so i increases or j decreases
on every iteration

Binary Search Code

int i = 0;

int j = n;

{{ Inv: A[0], ..., A[i-1] <= x < A[j], ..., A[n-1] and A is sorted }}
while (i != j) {
int m = (i + j) / 2;
if (A[m] <= x) {

i = m + 1;
} else {

j = m;
}

}

{{ A[0], ..., A[i-1] <= x < A[i], ..., A[n-1] }}

CSE 331 Fall 2022 35

Is that all we need to do?

Reasoning Summary

Reasoning Summary

• Checking correctness can be a mechanical process
– using forward or backward reasoning

• This requires that loop invariants are provided
– those cannot be produced automatically

• Provided you document your loop invariants,
it should not be too hard for someone else to review your code

CSE 331 Fall 2022 37

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops:

{{ Inv: printed all the strings seen so far }}
for (String s : L)
System.out.println(s);

CSE 331 Fall 2022 38

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops:

// Print the strings in L, one per line.
for (String s : L)
System.out.println(s);

CSE 331 Fall 2022 39

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops.

• Invariants are more helpful when a variable incorporates
information from multiple iterations
– e.g., {{ s = A[0] + … + A[i-1] }}

• Use your best judgement!

CSE 331 Fall 2022 40

Reasoning Summary

• Correctness: tools, inspection, testing
– need all three to ensure high quality
– especially cannot leave out inspection

• Inspection (by reasoning) means
– reasoning through your own code
– do code reviews

• Practice!
– essential skill for professional programmers

CSE 331 Fall 2022 41

Reasoning Summary

• You will eventually do this in your head for most code

• Formalism remains useful
– especially tricky problems
– interview questions (often tricky)

• see last example…

CSE 331 Fall 2022 42

Next Topic…

A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}

44CSE 331 Fall 2022

One Solution

int maxLoc(int[] arr, int n) {
int maxIndex = 0;
int maxValue = arr[0];
// Inv: maxValue = max of arr[0] .. arr[i-1] and
// maxValue = arr[maxIndex]
for (int i = 1; i < n; i++) {
if (arr[i] > maxValue) {
maxIndex = i;
maxValue = arr[i];

}
}
return maxIndex;

}
45CSE 331 Fall 2022

What if n = 0?
What if n > arr.length?
What if there are two maximums?

Is this code correct?

A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}

Could we write a specification so that this is a correct solution?
– precondition that n > 0
– throw ArrayOutOfBoundsException if n > arr.length
– return smallest index achieving maximum

46CSE 331 Fall 2022

Morals
• You can all write the code correctly

• Writing the specification was harder than the code
– multiple choices for the “right” specification

• must carefully think through corner cases
– once the specification is chosen, code is straightforward
– (both of those will be recurrent themes)

• Some math (e.g. “if n <= 0”) often shows up in specifications
– English (“if n is less or equal to than 0”) is often worse

47CSE 331 Fall 2022

How to Check Correctness
• Step 1: need a specification for the function

– can’t argue correctness if we don’t know what it should do
– surprisingly difficult to write!

• Step 2: determine whether the code meets the specification
– apply reasoning
– usually easy with the tools we learned

48CSE 331 Fall 2022

Interview Question

Sorted Matrix Search

Problem Description

Given a matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

CSE 331 Fall 2022 50

Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)

CSE 331 Fall 2022 51

Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)

(One) Idea: Trace the contour between the numbers ≤ x and > x
in each row to see if x appears.

CSE 331 Fall 2022 52

< x >= x

Sorted Matrix Search Code

Partial Invariant: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1]
• for each i, holds for exactly one j
• holds when we are in the right spot in row i

“...“ notation automatically handles special cases:
• if j = 0, nothing to the left (“<“ constraint is vacuous)
• if j = n, nothing to the right (“≤“ contraint is vacuous)

CSE 331 Fall 2022 53

i

j

Sorted Matrix Search Code

Initialization:

Partial Invariant: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1]

How do we get the invariant to hold with i = 0?
• no easy way to initialize it so the invariant holds
• we need to search...

CSE 331 Fall 2022 54

i
j

Sorted Matrix Search Code

Initialization:

New goal: M[0,0], ..., M[0,j-1] < x ≤ M[0,j], ..., M[0,n-1]
• will need a loop to find j
• new loop invariant: x ≤ M[0,j], ..., M[0,n-1]

– weakening of the new goal
– decrease j until we get M[0,j-1] to also hold

CSE 331 Fall 2022 55

i
j

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = ?

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (??)
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Fall 2022 56

i
j

What is the easiest way to
make this hold initially?

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (??)
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Fall 2022 57

i
j

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (??)
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Fall 2022 58

i
j

When does the postcondition hold?
(Careful!)

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Fall 2022 59

i
j

Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {
??
j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
CSE 331 Fall 2022 60

i
j

What goes here?

Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {
??
j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
CSE 331 Fall 2022 61

i
j

{{ x ≤ M[i,j], ..., M[i,n-1] }}
{{ x ≤ M[i,j-1], ..., M[i,n-1] }}

{{ x ≤ M[i,j], ..., M[i,n-1] and x ≤ M[i,j-1] }}

Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {

j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
CSE 331 Fall 2022 62

i
j

What goes here?
Nothing!

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])
j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Fall 2022 63

i
j

Sorted Matrix Search Code

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

That finds the right column in row 0
• can now check M[0,j] = x (if j < n)
• if not, we can move onto the next row

– set i = i + 1
– same idea on each row thereafter...

CSE 331 Fall 2022 64

j

i

Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x ≤ M[i,j] ≤ M[i+1,j] since columns are sorted
– and M[i+1,j] ≤ M[i +1,j+1], .., M[i +1,n-1] since rows are sorted
– so we get x ≤ M[i +1,j], .., M[i +1,n-1]

CSE 331 Fall 2022 65

i

j

Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x <= M[i +1,j], .., M[i +1,n-1]
– may need to restore invariant for M[i,0], ..., M[i,j-1] < x
– decrease j until it holds again...

• when have we seen this before?
• initialization

CSE 331 Fall 2022 66

i

j

Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x <= M[i +1,j], .., M[i +1,n-1]
– may need to restore invariant for M[i,0], ..., M[i,j-1] < x
– could copy and paste the same loop

• or you can do it with one copy

CSE 331 Fall 2022 67

i

j

Don’t try this at home!

Sorted Matrix Search Code

int i = 0, j = n;
[move j left]

{{ Inv: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
while (i != n) {

i = i + 1;
[move j left]

}

CSE 331 Fall 2022 68

int i = 0, j = n;
while (i != n) {

[move j left]

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
i = i + 1;

}

instead of

we can write

Sorted Matrix Search Code

int i = 0;
int j = n;

while (i != n) {

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i][j-1])

j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
if (j < n && x == M[i][j])

return true;
i = i + 1;

}
return false;

CSE 331 Fall 2022 69

i

j

How do we know from Inv
that this is correct?

Sorted Matrix Search Code

int i = 0;
int j = n;

while (i != n) {

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i][j-1])

j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
if (j < n && x == M[i][j])

return true;
i = i + 1;

}
return false;

CSE 331 Fall 2022 70

i

j

How do we know from Inv
that this is correct?

We don’t! Something is missing…

Sorted Matrix Search Code

int i = 0;
int j = n;

{{ Inv: x not in M[k,l] for k < i and x ≤ M[i,j], ..., M[i,n-1] }}
while (i != n) {

{{ Inv: x not in M[k,l] for k < i and x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i][j-1])

j = j – 1;

{{ x not in M[k,l] for k < i and M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
if (j < n && x == M[i][j])

return true;
i = i + 1;

}
return false;

CSE 331 Fall 2022 71

i

j

x not in M[k,l] for k < i+1

