CSE 331 Software Design & Implementation

Autumn 2022 Section 1 – Code Reasoning

- HW1 due next Wednesday at **11PM**.
 - Last two questions have loops: covered tomorrow in lecture.
- Please read the syllabus and watch the video commentary!
- Any questions before we dive in?
 - Admin stuff or straight-line reasoning?

Some Section Reminders

- Each week, we will introduce the homework assignment for the following week
- We will often practice topics presented in lecture
- Section is not recorded, but materials are posted
- We do not take attendance, but you should attend as much as possible

- Introductions?
- Review logical reasoning about code with Floyd Logic
- Review logical strength of assertions (weaker *vs.* stronger)
- Practice logical reasoning and determining stronger/weaker
 assertions
- Talk about reasoning through conditionals, forward and backward

Why reason about code?

- Prove that code is correct
- Understand *why* code is correct
- Diagnose why/how code is *not* correct
- Specify code behavior

Logical reasoning about code

- Determine facts that hold of program state between statements
 - "Fact" ~ assertion (logical formula over program state, informally "value(s) of some/all program variables)
 - Driven by assumption (precondition) or goal (postconditon)
- Forward reasoning
 - What facts follow from initial assumptions?
 - Go from precondition to postcondition
- Backward reasoning
 - What facts need to be true to reach a goal?
 - Go from <u>post</u>condition to <u>pre</u>condition

Floyd Logic: Validity by Reasoning

- Checking validity of {{P}} s {{Q}}
 - Valid iff, starting from any state satisfying *P*, executing *S* results in a state satisfying *Q*
- Forward reasoning:
 - Reason from P to strongest postcondition {{P} S {{R}}
 - Check that *R* implies *Q* (i.e., *Q* is weaker)
- Backward reasoning:
 - Reason from Q to get weakest precondition {{R}} S {{Q}}
 - Check that *P* implies *R* (i.e., *P* is stronger)

Implication (=>)

- Logic formulas with and (&, &&, or ∧), or (|, ||, or ∨) and not
 (! or ¬) have the same meaning they do in programs
- Implication might be a bit new, but the basic idea is pretty simple. Implication p=>q is true as long as q is always true whenever p is

р	q	p => q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Assignment Statements

- Reasoning about $\mathbf{x} = \mathbf{y}$;
- Forward reasoning:
 - add "x = y" as a new fact
 - (also rewrite any existing references to "x" to use new value)
- Backward reasoning:
 - replace all instances of "x" in the postcondition with "y"

Weaker vs. stronger

Formal definition:

- If $P \Rightarrow Q$, then
 - Q is weaker than P
 - P is stronger than Q

Intuitive definition:

- "Weak" means unrestrictive; a weaker assertion has a larger set of possible program states (*e.g.*, x != 0)
- "Strong" means restrictive; a stronger assertion has a smaller set of possible program states (e.g., x = 1 or x > 0 are both stronger than x != 0).

Worksheet

- Let's do 1, 3, and 7 on the worksheet
 - If you have extra time, work on 5
- Find a partner or small group and work with them
- Let us know if you feel stuck
- We'll walk through some solutions afterwards

Worksheet – problem 3 (backwards)

- $\{\{x + 3 * b 4 > 0\}\}$
- a = x + b;
- $\{\{a + 2 * b 4 > 0 \}\}$
- c = 2 * b 4;
- $\{ \{ a + c > 0 \} \}$
- x = a + c;

 $\{\{ x > 0 \}\}$

 $\{ \{ y > 23 \} \}$ $\{ \{ y > 23 \} \}$ $\{ \{ y = 23 \} \}$ $\{ \{ y < 0.23 \} \}$ $\{ \{ y < 0.23 \} \}$ $\{ \{ y < 0.00023 \} \}$ $\{ \{ y = x / z \} \}$ $\{ \{ is_prime(y) \} \}$ $\{ \{ is_odd(y) \} \}$

{{ y > 23 }}	is stronger than	{{ y >= 23 }}
$\{\{ y = 23 \}\}$		{{ y >= 23 }}
{{ y < 0.23 }}		{{ y < 0.00023 }}
$\{ x = y * z \} \}$		$\{\{ y = x / z \}\}$
<pre>{{ is_prime(y) }}</pre>		{{ is_odd(y) }}

- $\{\{ y > 23 \}\}$ is stronger than $\{\{ y >= 23 \}\}$
- $\{\{ y = 23 \}\}$ is stronger than $\{\{ y \ge 23 \}\}$
- $\{\{ y < 0.23 \}\} \{\{ y < 0.00023 \}\}$
- $\{\{ x = y * z \}\} \{\{ y = x / z \}\}$
- {{ is_prime(y) }} {{ is_odd(y) }}

- $\{\{ y > 23 \}\}$ is stronger than $\{\{ y >= 23 \}\}$
- $\{\{ y = 23 \}\}$ is stronger than $\{\{ y \ge 23 \}\}$
- {{ y < 0.23 }} is equally strong as {{ y < 0.00023 }}</pre>
- $\{\{ x = y * z \}\} \{\{ y = x / z \}\}$
- {{ is_prime(y) }} {{ is_odd(y) }}

- $\{\{ y > 23 \}\}$ is stronger than $\{\{ y >= 23 \}\}$
- $\{\{ y = 23 \}\}$ is stronger than $\{\{ y \ge 23 \}\}$
- $\{ y < 0.23 \} \}$ is equally strong as $\{ y < 0.00023 \} \}$
- $\{\{ x = y * z \}\} is incomparable with \{\{ y = x / z \}\}$
- {{ is_prime(y) }} {{ is_odd(y) }}

- $\{\{ y > 23 \}\}$ is stronger than $\{\{ y >= 23 \}\}$
- $\{\{ y = 23 \}\}$ is stronger than $\{\{ y \ge 23 \}\}$
- $\{ y < 0.23 \} \}$ is equally strong as $\{ y < 0.00023 \} \}$
- $\{\{ x = y * z \}\} is incomparable with \{\{ y = x / z \}\}$
- {{ is_prime(y) }} is incomparable with {{ is_odd(y) }}

If Statements

Forward reasoning

{{ P }} if (cond) {{ P and cond }} S1 {{ P1 }} else {{ P and not cond }} S2 {{ P2 }} { { P1 or P2 }}

Worksheet – problem 2 (example)

```
{{ true }}
if (x>0) {
  \{\{ x > 0 \}\}
  y = 2 * x;
   \{\{ x > 0 \land y = 2x \}\}
} else {
  \{\{ x \le 0 \}\}
  y = -2x;
   \{\{ x \le 0 \land y = -2x \}\}
}
\{\{ (x > 0 \land y = 2x) \lor (x \le 0 \land y = -2x) \}\}
\Rightarrow \{\{ \mathbf{y} = 2 | \mathbf{x} | \}\}
```

If Statements

Backward reasoning

- {{ cond and Q1 or
- not cond and Q2 }}
 - if (cond)
 - {{ Q1 }}
 - S1
 - {{ Q }}

else

Worksheet – problem 4 (example)

```
{{ y > 15 \lor (y \le 5 \land y + z > 17) }}
if (y > 5) {
   \{\{ y > 15 \}\}
   \mathbf{x} = \mathbf{y} + \mathbf{2}
   \{\{ x > 17 \}\}
} else {
   \{\{ y + z > 17 \}\}
   \mathbf{x} = \mathbf{y} + \mathbf{z};
   \{\{ x > 17 \}\}
}
\{\{ x > 17 \}\}
```

Worksheet

- Now, let's try number 6 on the worksheet
 - You can do forward or backward

Worksheet – problem 6 (forward)

```
{{ true }}
if (x < y) {
   {{ true \land x < y }}
   m = x;
   \{\{ \mathbf{x} < \mathbf{y} \land \mathbf{m} = \mathbf{x} \}\}
} else {
   {{ true \land x \ge y }}
   m = y;
   \{\{ x \ge y \land m = y \}\}
}
{{ (x < y \land m = x) \lor (x \ge y \land m = y) }}
\Rightarrow \{\{ m = \min(x, y) \}\}
```

Worksheet – problem 6 (backward)

```
{{ true }} \Leftrightarrow
\{\{ (x \le y \land x \le y) \lor (y \le x \land x \ge y) \}\}
if (x < y) {
   \{\{ \mathbf{x} = \min(\mathbf{x}, \mathbf{y}) \}\} \Leftrightarrow \{\{ \mathbf{x} \leq \mathbf{y} \}\}
   m = x;
   \{\{ m = min(x, y) \}\}
} else {
   \{\{ y = \min(x, y) \}\} \Leftrightarrow \{\{ x \ge y \}\}
   m = y;
   \{\{ m = min(x, y) \}\}
}
\{\{ m = min(x, y) \}\}
```

Questions?

- What is the most surprising thing about this?
- What is the most confusing thing?
- What will need a bit more thinking to digest?