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Administrivia

• HW3 due Wednesday
– works with familiar data and algorithms
– surprisingly tricky to prove that these are correct

• (similar issues arise with most code that we write)

• Updating instructions with errata
• So far:

– missing precondition in part 2
– missing definitions of shorthand notation in part 3
– strengthened invariant in part 4 (third loop)
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How do we ensure correctness?

Best practice: use three techniques

1. Tools
– e.g., type checking, @Override, libraries, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%
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What can you learn from testing?

“Program testing can be used to show 
the presence of bugs, but never to 
show their absence!”

Edsgar Dijkstra
Notes on Structured Programming, 

1970

Testing is essential but it is insufficient by itself

Only reasoning can prove there are no bugs. Yet...
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How do we ensure correctness?

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

-Donald Knuth, 1977

Trying it is a surprisingly useful way to find mistakes!

No single activity or approach can guarantee correctness

We need tools and inspection and testing to ensure correctness
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Why you will care about testing

In all likelihood, you will be expected to test your own code

• Industry-wide trend toward developers doing more testing
– 20 years ago, we had large test teams
– now, test teams are small to nonexistent

• Reasons for this change:
1. easy to update products after shipping (users are testers)
2. often lowered quality expectations (startups, games)

• some larger companies want to be more like startups

This has positive and negative effects…
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It’s hard to test your own code

Your psychology is fighting against you:
• confirmation bias

– tendency to avoid evidence that you’re wrong
• operant conditioning

– programmers get cookies when the code works
– testers get cookies when the code breaks

You can avoid some effects of confirmation bias by

writing most of your tests before the code

Not much you can do about operant conditioning
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Kinds of testing

• Testing field has terminology for different kinds of tests
– we won’t discuss all the kinds and terms

• Here are three orthogonal dimensions [so 8 varieties total]:
– unit testing versus system / integration / end-to-end testing

• one module’s functionality versus pieces fitting together

– clear-box testing versus opaque-box / black-box testing
• did you look at the code before writing the test?

– specification testing versus implementation testing
• test only behavior guaranteed by specification or other 

behavior expected for the implementation
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Unit Testing

• A unit test focuses on one class / module (or even less)
– could write a unit test for a single method

• Tests a single unit in isolation from all others

• Integration tests verify that the modules fit together properly
– usually don’t want these until the units are well tested

• i.e., unit tests come first
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How is testing done?

Write the test
1) Choose input / configuration
2) Define the expected outcome 

Run the test
3) Run with input and record the actual outcome
4) Compare actual outcome to expected outcome
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What’s So Hard About Testing?

“Just try it and see if it works...”

// requires: 1 ≤ x,y,z ≤ 100,000
// returns:  computes some f(x,y,z)
int func1(int x, int y, int z){…}

Exhaustive testing would require 1 quadrillion cases!
– impractical even for this trivially small problem

Key problem: choosing test suite
– Large/diverse enough to provide a useful amount of validation
– (Small enough to write in reasonable amount of time.)

• need to think through the expected outcome
• very few software projects have too many tests
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Approach: Partition the Input Space

Ideal test suite: 
Identify sets with “same behavior”

(actual and expected)
Test at least one input from each set

(we call this set a subdomain)

Two problems:

1. Notion of same behavior is subtle
• Naive approach: execution equivalence
• Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge
• If we had it, we wouldn’t need to test
• Use heuristics to approximate cheaply
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Naive Approach: Execution Equivalence

// returns:  x < 0     => returns –x
//           otherwise => returns x
int abs(int x) {

if (x < 0) return -x;
else       return x;

}

All x < 0 are execution equivalent:
– Program takes same sequence of steps for any x < 0

All x ≥ 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite
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Execution Equivalence Can Be Wrong

// returns:  x < 0     => returns –x
//           otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else        return x;

}

{-3, 3} does not reveal the error!

Two possible executions: x < -2 and x >= -2

Three possible behaviors:
– x < -2 OK, x = -2 or x= -1 (BAD)
– x >= 0 OK
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Revealing Subdomains

• A subdomain is a subset of possible inputs

• A subdomain is revealing for error E if either:
– every input in that subdomain triggers error E, or
– no input in that subdomain triggers error E

• Need test at least one input from a revealing subdomain to find bug
– if you test one input from every revealing subdomain for E,

you are guaranteed to find the bug

• The trick is to guess revealing subdomains for the errors present
– even though your reasoning says your code is correct,

make educated guesses where the bugs might be
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Testing Heuristics

• Testing is essential but difficult
– want set of tests likely to reveal the bugs present
– but we don’t know where the bugs are

• Our approach:
– split the input space into enough subsets (subdomains)

such that inputs in each one are likely all correct or incorrect
– can then take just one example from each subdomain

• Some heuristics are useful for choosing 
subdomains...
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Heuristics for Designing Test Suites

A good heuristic gives:
– for all errors in some class of errors E:

high probability that some subdomain is revealing for E
– not an absurdly large number of subdomains

Different heuristics target different classes of errors
– in practice, combine multiple heuristics 

• (we will see several)
– a way to think about and communicate your test choices
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Specification Testing

Heuristic: Explore alternate cases in the specification
Procedure is opaque-box:  specification visible, internals hidden

Example
// returns:  a > b => returns a
//           a < b => returns b
//           a = b => returns a
int max(int a, int b) {…}

3 cases lead to 3 tests
(4, 3)  => 4   (i.e. any input in the subdomain a > b)
(3, 4)  => 4   (i.e. any input in the subdomain a < b)
(3, 3)  => 3   (i.e. any input in the subdomain a = b)
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Specification Testing: Advantages

Process is not influenced by component being tested
– avoids psychological biases we discussed earlier
– can only do this for your own code if you write tests first

Robust with respect to changes in implementation
– test data need not be changed when code is changed

Allows others to test the code (rare nowadays)
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Heuristic: Clear-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– performance optimizations
– alternate algorithms for different cases

Example: abs from before (different behavior < 0 and >= 0)

// @return |x|
int abs(int x) {

if (x < 0) return -x;
else       return x;

}
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Clear-box Example
There are some subdomains that opaque-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x > CACHE_SIZE) {

for (int i=2; i*i <= x; i++) {
if (x % i == 0) 
return false;

}
return true;

} else {
return primeTable[x];

}
}
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Clear Box Testing:  [Dis]Advantages

• Finds an important class of boundaries
– yields useful test cases
– wouldn’t know about primeTable otherwise

Disadvantage:
– buggy code tricks you into thinking it’s right once you look at it

• (confirmation bias)
– can end up with tests having same bugs as implementation
– so also write tests before looking at the code
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Clear-box Example
There are some subdomains that opaque-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x > CACHE_SIZE) {

for (int i=2; i*i <= x; i++) {
if (x % i == 0) 
return false;

}
return true;

} else {
return primeTable[x];

}
}
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Heuristic: Boundary Cases

Create tests at the boundaries between subdomains

Edges of the “main” subdomains have a
high probability of revealing errors

– e.g., off-by-one bugs

Include one example on each side of the boundary

Also want to test the side edges of the subdomains…
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Summary of Heuristics

Before you write the code (part of ”test-driven development”):
• split subdomains on boundaries appearing in the specification
• choose a test along both sides of each boundary

After you write the code:
• split further on boundaries appearing in the implementation

More next time…

On the other hand, don't confuse volume with quality of tests
• look for revealing subdomains
• want tests in every revealing subdomain not just lots of tests
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