
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022

Testing

Administrivia

• HW3 due Wednesday
– works with familiar data and algorithms
– surprisingly tricky to prove that these are correct

• (similar issues arise with most code that we write)

• Updating instructions with errata
• So far:

– missing precondition in part 2
– missing definitions of shorthand notation in part 3
– strengthened invariant in part 4 (third loop)

CSE 331 Spring 2022 2

How do we ensure correctness?

Best practice: use three techniques

1. Tools
– e.g., type checking, @Override, libraries, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

CSE 331 Spring 2022 3

What can you learn from testing?

“Program testing can be used to show
the presence of bugs, but never to
show their absence!”

Edsgar Dijkstra
Notes on Structured Programming,

1970

Testing is essential but it is insufficient by itself

Only reasoning can prove there are no bugs. Yet...
4CSE 331 Spring 2022

How do we ensure correctness?

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

-Donald Knuth, 1977

Trying it is a surprisingly useful way to find mistakes!

No single activity or approach can guarantee correctness

We need tools and inspection and testing to ensure correctness

5CSE 331 Spring 2022

Why you will care about testing

In all likelihood, you will be expected to test your own code

• Industry-wide trend toward developers doing more testing
– 20 years ago, we had large test teams
– now, test teams are small to nonexistent

• Reasons for this change:
1. easy to update products after shipping (users are testers)
2. often lowered quality expectations (startups, games)

• some larger companies want to be more like startups

This has positive and negative effects…

CSE 331 Spring 2022 6

It’s hard to test your own code

Your psychology is fighting against you:
• confirmation bias

– tendency to avoid evidence that you’re wrong
• operant conditioning

– programmers get cookies when the code works
– testers get cookies when the code breaks

You can avoid some effects of confirmation bias by

writing most of your tests before the code

Not much you can do about operant conditioning

7CSE 331 Spring 2022

Kinds of testing

• Testing field has terminology for different kinds of tests
– we won’t discuss all the kinds and terms

• Here are three orthogonal dimensions [so 8 varieties total]:
– unit testing versus system / integration / end-to-end testing

• one module’s functionality versus pieces fitting together

– clear-box testing versus opaque-box / black-box testing
• did you look at the code before writing the test?

– specification testing versus implementation testing
• test only behavior guaranteed by specification or other

behavior expected for the implementation

CSE 331 Spring 2022 8

Unit Testing

• A unit test focuses on one class / module (or even less)
– could write a unit test for a single method

• Tests a single unit in isolation from all others

• Integration tests verify that the modules fit together properly
– usually don’t want these until the units are well tested

• i.e., unit tests come first

9CSE 331 Spring 2022

How is testing done?

Write the test
1) Choose input / configuration
2) Define the expected outcome

Run the test
3) Run with input and record the actual outcome
4) Compare actual outcome to expected outcome

10CSE 331 Spring 2022

What’s So Hard About Testing?

“Just try it and see if it works...”

// requires: 1 ≤ x,y,z ≤ 100,000
// returns: computes some f(x,y,z)
int func1(int x, int y, int z){…}

Exhaustive testing would require 1 quadrillion cases!
– impractical even for this trivially small problem

Key problem: choosing test suite
– Large/diverse enough to provide a useful amount of validation
– (Small enough to write in reasonable amount of time.)

• need to think through the expected outcome
• very few software projects have too many tests

11CSE 331 Spring 2022

Approach: Partition the Input Space

Ideal test suite:
Identify sets with “same behavior”

(actual and expected)
Test at least one input from each set

(we call this set a subdomain)

Two problems:

1. Notion of same behavior is subtle
• Naive approach: execution equivalence
• Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge
• If we had it, we wouldn’t need to test
• Use heuristics to approximate cheaply

12CSE 331 Spring 2022

Naive Approach: Execution Equivalence

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

if (x < 0) return -x;
else return x;

}

All x < 0 are execution equivalent:
– Program takes same sequence of steps for any x < 0

All x ≥ 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

13CSE 331 Spring 2022

Execution Equivalence Can Be Wrong

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else return x;

}

{-3, 3} does not reveal the error!

Two possible executions: x < -2 and x >= -2

Three possible behaviors:
– x < -2 OK, x = -2 or x= -1 (BAD)
– x >= 0 OK

14CSE 331 Spring 2022

Revealing Subdomains

• A subdomain is a subset of possible inputs

• A subdomain is revealing for error E if either:
– every input in that subdomain triggers error E, or
– no input in that subdomain triggers error E

• Need test at least one input from a revealing subdomain to find bug
– if you test one input from every revealing subdomain for E,

you are guaranteed to find the bug

• The trick is to guess revealing subdomains for the errors present
– even though your reasoning says your code is correct,

make educated guesses where the bugs might be

15CSE 331 Spring 2022

Testing Heuristics

• Testing is essential but difficult
– want set of tests likely to reveal the bugs present
– but we don’t know where the bugs are

• Our approach:
– split the input space into enough subsets (subdomains)

such that inputs in each one are likely all correct or incorrect
– can then take just one example from each subdomain

• Some heuristics are useful for choosing
subdomains...

CSE 331 Spring 2022 16

Heuristics for Designing Test Suites

A good heuristic gives:
– for all errors in some class of errors E:

high probability that some subdomain is revealing for E
– not an absurdly large number of subdomains

Different heuristics target different classes of errors
– in practice, combine multiple heuristics

• (we will see several)
– a way to think about and communicate your test choices

17CSE 331 Spring 2022

Specification Testing

Heuristic: Explore alternate cases in the specification
Procedure is opaque-box: specification visible, internals hidden

Example
// returns: a > b => returns a
// a < b => returns b
// a = b => returns a
int max(int a, int b) {…}

3 cases lead to 3 tests
(4, 3) => 4 (i.e. any input in the subdomain a > b)
(3, 4) => 4 (i.e. any input in the subdomain a < b)
(3, 3) => 3 (i.e. any input in the subdomain a = b)

18CSE 331 Spring 2022

Specification Testing: Advantages

Process is not influenced by component being tested
– avoids psychological biases we discussed earlier
– can only do this for your own code if you write tests first

Robust with respect to changes in implementation
– test data need not be changed when code is changed

Allows others to test the code (rare nowadays)

19CSE 331 Spring 2022

Heuristic: Clear-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– performance optimizations
– alternate algorithms for different cases

Example: abs from before (different behavior < 0 and >= 0)

// @return |x|
int abs(int x) {

if (x < 0) return -x;
else return x;

}

20CSE 331 Spring 2022

Clear-box Example
There are some subdomains that opaque-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x > CACHE_SIZE) {

for (int i=2; i*i <= x; i++) {
if (x % i == 0)
return false;

}
return true;

} else {
return primeTable[x];

}
}

21CSE 331 Spring 2022

Clear Box Testing: [Dis]Advantages

• Finds an important class of boundaries
– yields useful test cases
– wouldn’t know about primeTable otherwise

Disadvantage:
– buggy code tricks you into thinking it’s right once you look at it

• (confirmation bias)
– can end up with tests having same bugs as implementation
– so also write tests before looking at the code

22CSE 331 Spring 2022

Clear-box Example
There are some subdomains that opaque-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x > CACHE_SIZE) {

for (int i=2; i*i <= x; i++) {
if (x % i == 0)
return false;

}
return true;

} else {
return primeTable[x];

}
}

23CSE 331 Spring 2022

Where is the bug?

Heuristic: Boundary Cases

Create tests at the boundaries between subdomains

Edges of the “main” subdomains have a
high probability of revealing errors

– e.g., off-by-one bugs

Include one example on each side of the boundary

Also want to test the side edges of the subdomains…

24CSE 331 Spring 2022

Summary of Heuristics

Before you write the code (part of ”test-driven development”):
• split subdomains on boundaries appearing in the specification
• choose a test along both sides of each boundary

After you write the code:
• split further on boundaries appearing in the implementation

More next time…

On the other hand, don't confuse volume with quality of tests
• look for revealing subdomains
• want tests in every revealing subdomain not just lots of tests

25CSE 331 Spring 2022

