
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2022

JavaScript & TypeScript

JavaScript & TypeScript

• Web apps running in the browser are usually not written in Java
– it is possible to do so, but not typical

• JavaScript (JS) is the native language of web browsers
– first-class functions
– no compile-time types

• TypeScript adds compile-time types to JavaScript
– important for correctness
– competitors like Google’s “Closure”

CSE 331 Spring 2022 2

JavaScript (formally EcmaScript)

• Created in 1995 by Brendan Eich as a “scripting
language” for Mozilla’s browser
– done in 10 days!

• No relation to Java other than trying to piggyback on
all the Java hype at that time

• Often tricky due to its simplicity
– example: no compile-time types
– more examples later…

CSE 331 Spring 2022 3

Playing with JavaScript

• Useful to play around on your own…
– can’t learn a language just from a talk

• Easy options:
1. Use the “console” in Chrome
2. Install and use “node” in the terminal

CSE 331 Spring 2022 4

JavaScript console

Every browser has developer tools including the console,
details about web pages and objects, etc.

A JS program can use console.log("message"); to
write a message to the console for debugging, recording, etc.

– “printf debugging” for JavaScript programs

In Chrome, right-click on a web page and select Inspect or
pick View > Developer > Developer Tools from the menu.
Click the console tab and you can see output that’s been
written there, plus you can enter JavaScript expressions and
evaluate them. Super useful for trying things out.

CSE 331 Spring 2022 5

Resources

• Lectures will (try to) point out key things
• For more: start with Mozilla (MDN) JavaScript tutorial:

– https://developer.mozilla.org/en-US/docs/Web/JavaScript
• CodeAcademy has a good, free JavaScript basics course

• Be real careful about web searches – the JavaScript/ webapp
ecosystem has way too many somewhat-to-totally incompatible
or current vs. obsolete ways of doing similar things. Code
snippets from the web may lead you way off.

CSE 331 Spring 2022 6

Syntax

• Syntax like Java, C, C++, etc.
– called the “C family” of languages
– (includes C’s predecessor B)

• /* comments */ or // comments

• Semicolons are optional at ends of lines and often
omitted, but also encouraged J
– “x = x + 1” allowed but “x = x + 1;” is better

CSE 331 Spring 2022 7

Control flow – just like Java

• Conditionals

if (condition) {
statements
} else if (condition){
statements
} else {

statements
}

• Loops
while (condition) {
statements
}

for (init; condition; update){
statements
}

– Also for-of and for-in loops
• Be careful with these. They have

“interesting” semantics and
differences that you need to get
right if you use them.

CSE 331 Spring 2022 8

Variables

• Variables have no type constraints:
let x = 3;
x = "ima string now!”;

• Introduced into program with let
– use const for constants
– older code uses var but let is preferred

CSE 331 Spring 2022 9

Types

• Values do have (runtime) types, but just 6 of them:
– number
– string
– boolean
– null & undefined
– Object (including arrays / lists)

• Has both null & undefined, which are similar
– undefined is probably used more, means “not defined”
– e.g., if no return statement, return value is undefined
– e.g., if map doesn’t have key “a”, then map.get(a) should

return undefined
CSE 331 Spring 2022 10

Number Type

• All numbers are floating point! Even here:

for (let i = 0; i < 10; i++) { … }

• Usual numeric operations:
– + - * /
– ++ --
– +=

– ...

• Math methods (e.g., sqrt) much the same as in Java

CSE 331 Spring 2022 11

String type

• Mostly the same as Java
– immutable
– most of the same methods as in Java
– string concatenation with +

• But also string comparison with <

• Better string literals: `Hi, ${name}!`
– ${name} replaced by value of variable name

CSE 331 Spring 2022 12

Boolean type

• Usual operators: &&, ||, !

• But any value can be used in an “if”
– “falsey” values: false, 0, NaN, “”, null, undefined
– “truthy” values: everything else (including true!)

• Works… but a common source of bugs
– more debugging…

CSE 331 Spring 2022 13

Arrays

let empty = []
let names = ["bart", "lisa"]
let stuff = ["wookie", 17, false]

• No type constraints, so types can be mixed

• Access elements with subscripts as usual
– e.g., stuff[0] // returns “wookie”

• Methods like push, pop, shift, unshift, …
• Field length

CSE 331 Spring 2022 14

Arrays

let stuff = ["wookie", 17, false]
stuff[4] = 331
console.log(stuff)
// [“wookie”, 17, false, undefined, 331]

• No checking for array index out of bounds
– automatically expand the array to have enough space
– more debugging…

CSE 331 Spring 2022 15

Objects

• Everything other than number, string, boolean, null,
and undefined are Objects
– mutable, expandable by default

• Simple syntax for creating them:
character = { name: "Lisa Simpson",

age: 30 }

• Can retrieve fields in the usual way:
character.age = 7

CSE 331 Spring 2022 16

Objects

• Really just a collection of name/value pairs
– basically a HashMap (well, almost)

• Can also reference properties like this:

character[“age”] = 7

– like character.get(“age”) in Java

CSE 331 Spring 2022 17

Objects

• Really just a collection of name/value pairs
– basically a HashMap (well, almost)

• Can add & remove properties (“expandos”):
character.instrument = “horn”
delete character.age

• Not an error to retrieve a missing value
– just returns undefined
– more debugging…

CSE 331 Spring 2022 18

Objects

• Quotes are optional in object literals:

let obj = {a: 1, “b”: 2};

• But be careful:

let x = “foo”;
console.log({x: x}); // {“x”: “foo”}

let obj = {};
obj[x] = x;
console.log(obj); // {“foo”: “foo”};

CSE 331 Spring 2022 19

Equality

• Equality is complicated in any language

• JS has two versions: === (strict); == (loose)
– ===, !== check both types and values
– == and != can surprise you with conversions

•7 == "7" is true!

• Object equality is reference equality
– must compare contents yourself

CSE 331 Spring 2022 20

Functions

• Named functions:

function average(x, y) {
return (x + y) / 2;

}

• Anonymous, first-class (lambda) functions:

let f = function (x) { return x+1; }
let g = (x) => { return x+1; }
let h = (x, y) => (x + y) / 2;

CSE 331 Spring 2022 21

more
later…

Functions are values

• Functions are first-class values in JS
– can be stored as values of variables, passed as

parameters, and so on
– lots of powerful techniques (see CSE 341)

• we won’t cover for the most part

let f = average;
let result = f(6, 7); // 6.5
f = Math.max;
result = f(6,7); // 7

CSE 331 Spring 2022 22

Higher-level Functions

• Functions can be passed as parameters
function compute(f) {
return f(2,3);

}

compute((a,b) => a+b); // 5
compute((a,b) => a*b); // 6

• See CSE 341 for more fun

CSE 331 Spring 2022 23

Remember: no type constraints

function average(x, y) {
return (x + y) / 2;

}

• No surprise
let result = average(6,7); // 6.5

• But then…
let answer = average("6","7"); // 33.5!
answer = average(1,undefined); // NaN

CSE 331 Spring 2022 24

Fake Classes

• JavaScript started as an OO language w/out classes

• Can do some of what we need already:

let obj = {f: (x) => x + 1};
console.log(obj.f(2)); // 3

• Problem: how would a method update the state
(other fields) of the object?

CSE 331 Spring 2022 25

this

• In the expression obj.method(…):
– obj is secretly passed to method
– can be accessed using keyword this

• This works properly:

let obj = {
a: 3,
f: function (x) { return x + this.a }

};
console.log(obj.f(2)); // 5

CSE 331 Spring 2022 26

• Easy to write code that does not work:

let obj = {
a: 3,
f: function (x) { return x + this.a }

};
console.log(obj1.f(2));

let g = obj1.f;
console.log(g(2));

CSE 331 Spring 2022 27

// 5

Hazards of this

// NaN

• Easy to write code that does not work:

let obj = {
a: 3,
f: function (x) { return x + this.a }

};

function compute(f) {
return f(2);

}
console.log(compute(obj.f));

CSE 331 Spring 2022 28

Hazards of this

// NaN

Why should I care about this?

• We can add listener functions to components,
but they don’t know to pass this!

• This will not work inside of our class:

myMethod() {
…
btn.addEventListener(“click”, this.onClick)
}

• this.onClick produces a function, which it calls,
but without the extra “this” parameter

CSE 331 Spring 2022 29

How to fix this

• Inside of another method (where this is already set)
the => lambda syntax does this automatically:

myMethod() {
…
btn.addEventListener(“click”,

() => this.onClick())
}

• The “this” inside of the => expression means
whatever this was in that method

CSE 331 Spring 2022 30

How to fix this

• Alternative: create a function with this already set
by using the bind method of a function object:

myMethod() {
…
btn.addEventListener(“click”,

this.onClick.bind(this))
}

CSE 331 Spring 2022 31

Classes

class Foo {
constructor(val) {
this.secretVal = val;

}

secretMethod(val) {
return val + this.secretVal;

}
}

let f = new Foo(3);
console.log(f.secretMethod(5)); // 8

CSE 331 Spring 2022 32

Classes

• new Foo creates an object that has methods of the class
– also calls the constructor

• Still has the same issue with this:

class Foo { … }

let f = new Foo(3);
let s = f.secretMethod;
console.log(s(5)); // NaN

let t = (x) => f.secretMethod(x);
console.log(t(5)); // 8

CSE 331 Spring 2022 33

JS vs Java Classes

• JS method signatures are just the name
– JS objects are just HashMaps
– field names are the keys

• Java methods signatures are name + arg types
– e.g., avg(int,int)

• JS has only one method with a given name
– language allows different numbers of arguments

• missing arguments are undefined

– can strengthen a spec by accepting a wider set of
possible input types

CSE 331 Spring 2022 34

obj.avg(3, 5)

Modules

• Each file is a separate unit (“namespace”)

• Only exported names are visible outside:

export function average(x, y) { … }

• Others can import using:

import { average } from ‘./filename’;

– file extension is not included

CSE 331 Spring 2022 35

