
CSE 331 Summer 2022

Software Design & Implementation

Topic: Subtyping; Ethics

CSE 331

💬 Discussion: How long would you last in a Zombie apocalypse?

CSE 331 Summer 2022

Reminders

• Think of HW5 as starter code for HW6
• Group discussion later in lecture

• Prep. Quiz: HW6 due Monday (7/25)

• HW6 due Thursday (7/28)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda

• Equality w/ Inheritance
• True Subtyping
• Java Subtyping
• Subtypes vs. Subclasses

• Review: Subtyping
• Designing for Inheritance
• Ethics I

CSE 331 Summer 2022

Review

CSE 331 Summer 2022

Substitution principle for classes

If B is a subtype of A, then a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B

– anything provable about an A is provable about a B

– if an instance of subtype is treated purely as supertype (only supertype
methods/fields used), then the result should be consistent with an object of the
supertype being manipulated

B is permitted to strengthen properties and add properties

– an overriding method must have a stronger (or equal) spec

– fine to add new methods (that preserve invariants)

B is not permitted to weaken the spec

– no overriding method with a weaker spec

– no method removal

CSE 331 Summer 2022

Substitution principle for methods

Constraints on methods

– for each supertype method, subtype must have such a method

• (could be inherited or overridden)

Each overridden method must strengthen (or match) the spec:

– ask nothing extra of client (“weaker precondition”)

• requires clause is at most as strict as in supertype’s method

– guarantee at least as much (“stronger postcondition”)

• effects clause is at least as strict as in the supertype method

• no new entries in modifies clause

• promise more (or the same) in returns & throws clauses
– cannot change return values or switch between return and throws

CSE 331 Summer 2022

Example: Subtyping

CSE 331 Summer 2022

Recall: Subtyping Example

class Product {

private int price; // in cents

public int getPrice() {

return price;

}

public int getTax() {

return (int)(getPrice() * 0.086);

}

}

class SaleProduct extends Product {

private float factor;

public int getPrice() {

return (int)(super.getPrice()*factor);

}

}

CSE 331 Summer 2022

Exercise: True subtypes

Suppose we have a method which, when given one product, recommends another:
class Product {

Product recommend(Product ref);

}

Which of these are possible forms of this method in SaleProduct (a true subtype of
Product)?

Product recommend(SaleProduct ref);

SaleProduct recommend(Product ref);

Product recommend(Object ref);

Product recommend(Product ref)

throws NoSaleException;

// good

// good

// bad

// bad

CSE 331 Summer 2022

Exercise: Java Subtype

Suppose we have a method which, when given one product, recommends another:
class Product {

Product recommend(Product ref);

}

Which of these are possible forms of this method in SaleProduct (a Java subtype of
Product)?

Product recommend(SaleProduct ref);

SaleProduct recommend(Product ref);

Product recommend(Object ref);

Product recommend(Product ref)

throws NoSaleException;

// good

// compiles, but in Java is

overloading

// bad, Java overloading

// bad

CSE 331 Summer 2022

There are lots of rules to overloading!

public class Confusing {

private Confusing(Object o) {

System.out.println("Object");

}

private Confusing(double[] dArray) {

System.out.println("double array");

}

public static void main(String[] args) {

new Confusing(null);

}

}

Taken from Java Puzzlers by
Joshua Bloch and Neal Gafter

CSE 331 Summer 2022

Subtypes vs. Subclasses

CSE 331 Summer 2022

Java subtyping

• Java types:

– defined by classes, interfaces, primitives

• Java subtyping stems from B extends A and B implements A declarations

• In a Java subtype, each corresponding method has:

– same argument types

• if different, then overloading — unrelated methods

– compatible return types

– no additional declared exceptions

CSE 331 Summer 2022

Java subtyping guarantees

Java promises a variable’s run-time type is a subclass of its declared type

Object o = new Date(); // OK

Date d = new Object(); // compile-time error

If a variable of declared (compile-time) type T1 holds a reference to an object of
actual (runtime) type T2,
then T2 must be a Java subtype of T1

Corollaries:

– objects always have implementations of the methods specified by their
declared type

– if all subtypes are true subtypes, then all objects meet the specification of their
declared type

Rules out a huge class of bugs

CSE 331 Summer 2022

Java subtyping non-guarantees

Java subtyping does not guarantee that overridden methods

– have smaller requires

– have smaller modifies

– have stronger postconditions

• Java only checks the return type not the postcondition

• could compute a completely different function

– have stronger effects

– have stronger throws (& only for the same cases as before)

– have no new unchecked exceptions

CSE 331 Summer 2022

Designing for Inheritance

CSE 331 Summer 2022

Inheritance can break encapsulation

public class InstrumentedHashSet<E> extends HashSet<E> {

private int addCount = 0; // count # insertions

public InstrumentedHashSet(Collection<? extends E> c){

super(c);

}

public boolean add(E o) {

addCount++;

return super.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();

return super.addAll(c);

}

public int getAddCount() { return addCount; }

}

CSE 331 Summer 2022

Dependence on implementation

What does this code print?
InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();

System.out.println(s.getAddCount());

s.addAll(Arrays.asList("CSE", "331"));

System.out.println(s.getAddCount());

• Answer depends on implementation of addAll in HashSet
– different implementations may behave differently!
– if HashSet’s addAll calls add, then double-counting

• AbstractCollection’s addAll specification:

– “adds all elements in the specified collection to this collection.”

– does not specify whether it calls add

• Lesson: subclassing typically requires designing for inheritance

– self-calls is not the only example… (more in future lectures)

// 0

// 4?!

CSE 331 Summer 2022

Solutions

1. Change spec of HashSet

– indicate all self-calls

– less flexibility for implementers

2. Avoid spec ambiguity by avoiding self-calls

a) “re-implement” methods such as addAll

• more work

b) use composition not inheritance

• no longer a subtype (unless an interface is handy)

• bad for equality tests, callbacks, etc.

CSE 331 Summer 2022

Solution: composition

public class InstrumentedHashSet<E> {

private final HashSet<E> s = new HashSet<E>();

private int addCount = 0;

public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);

}

public boolean add(E o) {

addCount++; return s.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();

return s.addAll(c);

}

public int getAddCount() { return addCount; }

}

The implementation

no longer matters

CSE 331 Summer 2022

Composition (wrappers, delegation)

Implementation reuse without inheritance

• Easy to reason about. Self-calls are irrelevant

• Example of a “wrapper” class

• Works around badly-designed / badly-specified classes

• Disadvantages (may be worthwhile price to pay):

– does not preserve subtyping

– sometimes tedious to write

– may be hard to apply to equality tests, callbacks, etc.

• (although we already saw equals is hard for subclasses)

CSE 331 Summer 2022

Composition does not preserve subtyping

• InstrumentedHashSet is not a HashSet anymore

– so can't easily substitute it

• It may be a true subtype of HashSet

– but Java doesn't know that!

– Java requires declared relationships

– not enough just to meet specification

• Interfaces to the rescue

– can declare that we implement interface Set

– if such an interface exists

CSE 331 Summer 2022

Interfaces reintroduce Java subtyping

public class InstrumentedHashSet<E> implements Set<E> {

private final Set<E> s = new HashSet<E>();

private int addCount = 0;

public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);

}

public boolean add(E o) {

addCount++;

return s.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();

return s.addAll(c);

}

public int getAddCount() { return addCount; }

// ... and every other method specified by Set<E>

}

normal Java style

CSE 331 Summer 2022

Interfaces and abstract classes

Provide interfaces for your functionality

– client code to interfaces rather than concrete classes

– allows different implementations later

– facilitates composition, wrapper classes

• basis of lots of useful, clever techniques

• we'll see more of these later

Consider also providing helper/template abstract classes

– makes writing new implementations much easier

– not necessary to use them to implement an interface, so retain
freedom to create radically different implementations

CSE 331 Summer 2022

Java library interface/class example

// root interface of collection hierarchy

interface Collection<E>

// skeletal implementation of Collection<E>

abstract class AbstractCollection<E> implements Collection<E>

// type of all ordered collections

interface List<E> extends Collection<E>

// skeletal implementation of List<E>

abstract class AbstractList<E>

extends AbstractCollection<E>

implements List<E>

// an old friend...

class ArrayList<E> extends AbstractList<E>

CSE 331 Summer 2022

Why interfaces instead of classes?

Java design decisions:

– a class has exactly one superclass

– a class may implement multiple interfaces

– an interface may extend multiple interfaces

Observation:

– multiple superclasses are difficult to use and to implement

– multiple interfaces, single superclass gets most of the benefit

CSE 331 Summer 2022

Benefits and drawbacks of inheritance

• Inheritance is a powerful way to achieve code reuse

• Inheritance can break encapsulation

– a subclass may need to depend on unspecified details of the implementation of
its superclass

• e.g., pattern of self-calls

– subclass may need to evolve in tandem with superclass

• okay when implementation of both is under control of the same
programmer

– this is tricky to get right and is a source of subtle bugs

• Effective Java:

– either design for inheritance or else prohibit it

– favor composition (and interfaces) to inheritance

CSE 331 Summer 2022

Forbidding Inheritance

class final Product {

private int price;

public int getPrice() {

return price;

}

public int getTax() {

return (int)(getPrice() * 0.086);

}

}

Final keyword indicates to Java that you do not want to allow any subclassing.

CSE 331 Summer 2022

Ethics I

CSE 331 Summer 2022

It should be noted that no ethically-trained software
engineer would ever consent to write a DestroyBaghdad
procedure. Basic professional ethics would instead require
him to write a DestroyCity procedure, to which Baghdad
could be given as a parameter.

- Coding Horror, Nathaniel Borenstein

CSE 331 Summer 2022

FBI–Apple encryption dispute

Question: Can governments compel us to assist in
unlocking cell phones whose data is encrypted?

– (2013) Edward Snowden leaks NSA capabilities

– (2015) Apple finishes work on security features so that
it can’t comply with governments

– (2016) FBI asks Apple to allow them to unlock iPhones

Concerns: User Data Privacy, Vulnerabilities

CSE 331 Summer 2022

Google LLC v. Oracle America, Inc.

– (2005) Google asked to license Java for
Android

– (2010) Oracle purchases Sun and sues
Google for copyright infringement

– (2012) District Judge rules that APIs can’t be
copyrighted + Google didn’t infringe.

– (2016) Same result in another district court

– (2017) Appellate court rules Google is not
protected by “fair use” – Oracle wins

– (2019) Supreme Court reverse decision and
says Google is protected by “fair use”

Concerns: Software Licensing,
Development

Question: Can APIs (i.e. specifications) be copyrighted?

CSE 331 Summer 2022

Technologists in US Policy

33

Fact: We need more science-literate policymakers (particularly with computing skills)

Roughly 4% have technical backgrounds, yet they make policies for all of us.

CSE 331 Summer 2022

Self-Driving Cars

Question: Should we allow self-driving cars to make moral decisions?

There are many ethical choices to be

made when it comes to autonomous

vehicles. Many of these explored in

https://www.moralmachine.net/

Compare the following:

- speed limit

- safest option

34

https://www.moralmachine.net/

CSE 331 Summer 2022

Cloud

Question: What can we do to reduce energy usage
in data centers?

Currently, datacenters consume ~200 TWh yearly

– More than most countries need

– In 2017, was ~1% of total energy demand

– In 2030, projected to be between 8% and 21%
of total energy demand…

Crytocurrency takes ~0.5% per year – not profitable!

CSE 331 Summer 2022

Computer Education + Accessibility

Question: Do we have an obligation to make computer education accessible to
everyone?

– Programming languages are primarily written in English!

– How can we make UIs more accessible to

• people without access to sense (sight, hearing, touch)?

• the elderly?

• the young?

– How do we teach students about ethics?

CSE 331 Summer 2022

AI: Bias and Fairness

Question: How can we ensure that
artificial intelligence is fair? What does
fair even mean?

• Developed at Allen Institute for
Artificial Intelligence (AI2)

• Leveraged LLMs to see if they could
describe moral judgements on
everyday situations

CSE 331 Summer 2022

Artificial Intelligence

CSE 331 Summer 2022

Artificial Intelligence

CSE 331 Summer 2022

Artificial Intelligence

CSE 331 Summer 2022

Artificial Intelligence

CSE 331 Summer 2022

Artificial Intelligence

CSE 331 Summer 2022

Artificial Intelligence

CSE 331 Summer 2022

Artificial Intelligence

CSE 331 Summer 2022

Artificial Intelligence

CSE 331 Summer 2022

Didn’t talk about

• Apple v. FBI

• Google v. Oracle

• Tech Policymakers

• Self-driving Cars

• Cloud Energy Usage

• Computer Education

• AI and Bias

• Social media

• Autonomous weapons

• Code theft

• Google Duplex

• Advertising

• Differentiable Privacy

Talked about

Discuss: Which of these do you find most concerning?

CSE 331 Summer 2022

Before next class...

1. Start on Prep. Quiz: HW6

– Review of the concepts we’ve seen this quarter

– A bit longer than what we normally give you

2. Read over spec for HW6 and do answers-hw6.txt early

– Implement your specification from HW5

– Can be tricky!

