CSE 331

Software Design & Implementation
Topic: Subtyping; Ethics

(=) Discussion: How long would you last in a Zombie apocalypse?

CSE 331 Summer 2022

Reminders

« Think of HW5 as starter code for HW6
« Group discussion later in lecture

Upcoming Deadlines

* Prep. Quiz: HW6 due Monday (7/25)
« HW6 due Thursday (7/28)

CSE 331 Summer 2022

Last Time...

Today's Agenda

Equality w/ Inheritance
True Subtyping

Java Subtyping
Subtypes vs. Subclasses

* Review: Subtyping
« Designing for Inheritance
 Ethics |

CSE 331 Summer 2022

Review

CSE 331 Summer 2022

Substitution principle for classes

If B is a subtype of A, then a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B
- anything provable about an A is provable about a B

- if an instance of subtype is treated purely as supertype (only supertype
methods/fields used), then the result should be consistent with an object of the
supertype being manipulated

B is permitted to strengthen properties and add properties
- an overriding method must have a stronger (or equal) spec
- fine to add new methods (that preserve invariants)

B is not permitted to weaken the spec

- no overriding method with a weaker spec
- no method removal

CSE 331 Summer 2022

Substitution principle for methods

Constraints on methods
- for each supertype method, subtype must have such a method
« (could be inherited or overridden)

Each overridden method must strengthen (or match) the spec:
- ask nothing extra of client (“weaker precondition”)
* requires clause is at most as strict as in supertype’s method
- guarantee at least as much (“stronger postcondition”)
« effects clause is at least as strict as in the supertype method
* NO new entries in modifies clause

* promise more (or the same) in returns & throws clauses
- cannot change return values or switch between return and throws

CSE 331 Summer 2022

Example: Subtyping

CSE 331 Summer 2022

Recall: Subtyping Example

class Product {
private int price; // in cents
public int getPrice () {
return price;
}
public int getTax () ({
return (int) (getPrice() * 0.086) ;
}

class SaleProduct extends Product {
private float factor;
public int getPrice() {
return (int) (super.getPrice () *factor)

}

} CSE 331 Summer 2022

Exercise: True subtypes

Suppose we have a method which, when given one product, recommends another:
class Product {
Product recommend (Product ref);

}

Which of these are possible forms of this method in SaleProduct (a true subtype of
Product)?

Product recommend (SaleProduct ref); // bad
SaleProduct recommend (Product ref); // good
Product recommend (Object ref); // good
Product recommend (Product ref) // bad

throws NoSaleException;

CSE 331 Summer 2022

Exercise: Java Subtype

Suppose we have a method which, when given one product, recommends another:
class Product {
Product recommend (Product ref);

}

Which of these are possible forms of this method in SaleProduct (a Java subtype of
Product)?

Product recommend (SaleProduct ref); // bad, Java overloading
SaleProduct recommend (Product ref); // good

Product recommend(Object ref); “ z::ﬁizzn% in Java is
Product recommend (Product ref) // bad

throws NoSaleException;

CSE 331 Summer 2022

There are lots of rules to overloading!

public class Confusing {

private Confusing(Object o) { Taken from Java Puzzlers by

System.out.println("Object") ; Joshua Bloch and Neal Gafter

private Confusing(double[] dArray) ({
System.out.println("double array"):;

public static void main(String[] args) {
new Confusing(null);

CSE 331 Summer 2022

Subtypes vs. Subclasses

CSE 331 Summer 2022

Java subtyping

* Java types:
- defined by classes, interfaces, primitives

+ Java subtyping stems from B extends A and B implements A declarations

* In aJava subtype, each corresponding method has:
- same argument types
- if different, then overloading — unrelated methods
- compatible return types
- no additional declared exceptions

CSE 331 Summer 2022

Java subtyping guarantees

Java promises a variable's run-time type is a subclass of its declared type
Object o = new Date(); // OK
Date d = new Object(); // compile-time error

If a variable of declared (compile-time) type T1 holds a reference to an object of
actual (runtime) type T2,
then T2 must be a Java subtype of T1

Corollaries:

- objects always have implementations of the methods specified by their
declared type

- if all subtypes are true subtypes, then all objects meet the specification of their
declared type

Rules out a huge class of bugs
CSE 331 Summer 2022

Java subtyping non-guarantees

Java subtyping does not guarantee that overridden methods

- have smaller requires

- have smaller modifies

- have stronger postconditions
* Java only checks the return type not the postcondition
 could compute a completely different function

- have stronger effects

- have stronger throws (& only for the same cases as before)

- have no new unchecked exceptions

CSE 331 Summer 2022

Designing for Inheritance

CSE 331 Summer 2022

Inheritance can break encapsulation

public class InstrumentedHashSet<E> extends HashSet<E> ({
private int addCount = 0; // count # insertions

public InstrumentedHashSet (Collection<? extends E> c) {
super (c) ;

}

public boolean add(E o) {
addCount++;
return super.add (o) ;

}

public boolean addAll (Collection<? extends E> c) {
addCount += c.size() ;
return super.addAll (c) ;

}
public int getAddCount () { return addCount; }

CSE 331 Summer 2022

Dependence on implementation

What does this code print?
InstrumentedHashSet<String> s = new InstrumentedHashSet<String>() ;

System.out.println (s.getAddCount()) ; // 0
s.addAll (Arrays.asList ("CSE", "331"));
System.out.println(s.getAddCount()) ; // 4?!

« Answer depends on implementation of addaAll in HashSet
- different implementations may behave differently!
- if HashSet's addall calls add, then double-counting

« AbstractCollection’s addAll specification:

- "adds all elements in the specified collection to this collection.”
- does not specify whether it calls add

« Lesson: subclassing typically requires designing for inheritance
- self-calls is not the only example... (more in future lectures)

CSE 331 Summer 2022

Solutions

1. Change spec of HashSet
— indicate all self-calls
— less flexibility for implementers

2. Avoid spec ambiguity by avoiding self-calls
a) “re-implement” methods such as addal1l
* more work
b) use composition not inheritance
* no longer a subtype (unless an interface is handy)
 bad for equality tests, callbacks, etc.

CSE 331 Summer 2022

Solution: composition

public class InstrumentedHashSet<E> {
private final HashSet<E> s = new HashSet<E>();
private int addCount = 0;

public InstrumentedHashSet (Collection<? extends E> c) {
this.addall (c) ;

} The implementation
public boolean add(E o) { no longer matters

addCount++; return s.add (o) ;
}
public boolean addAll (Collectio
addCount += c.size();
return s.addAll (c) ;

extends E> c) {

}
public int getAddCount() { return addCount; }

CSE 331 Summer 2022

Composition (wrappers, delegation)

Implementation reuse without inheritance

Easy to reason about. Self-calls are irrelevant
Example of a “wrapper” class
Works around badly-designed / badly-specified classes

Disadvantages (may be worthwhile price to pay):
- does not preserve subtyping
- sometimes tedious to write
- may be hard to apply to equality tests, callbacks, etc.
* (although we already saw equals is hard for subclasses)

CSE 331 Summer 2022

Composition does not preserve subtyping

« InstrumentedHashSet iS NOt a HashSet anymore
- SO can't easily substitute it

* |t may be a true subtype of HashSet
- but Java doesn't know that!
- Java requires declared relationships
- not enough just to meet specification

* |nterfaces to the rescue

- can declare that we implement interface set
- if such an interface exists

CSE 331 Summer 2022

normal Java style

Interfaces reintroduce Java

public class Instrumen ashSet<E> implements Set<E> {

private final Set<E> s = new HashSet<E>() ;

private int addCount = 0;

public InstrumentedHashSet (Collection<? extends E> c) {
this.addAll (c) ;

}

public boolean add(E o) {
addCount++;
return s.add (o) ;

}

public boolean addAll (Collection<? extends E> c) {
addCount += c.size();
return s.addAll (c) ;

}

public int getAddCount() { return addCount; }

// ... and every other method specified by Set<E>

} CSE 331 Summer 2022

Interfaces and abstract classes

Provide interfaces for your functionality
- client code to interfaces rather than concrete classes
- allows different implementations later
- facilitates composition, wrapper classes
* basis of lots of useful, clever techniques
« we'll see more of these later

Consider also providing helper/template abstract classes
- makes writing new implementations much easier

- not necessary to use them to implement an interface, so retain
freedom to create radically different implementations

CSE 331 Summer 2022

Java library interface/class example

// root interface of collection hierarchy
interface Collection<E>

// skeletal implementation of Collection<E>
abstract class AbstractCollection<E> implements Collection<E>

// type of all ordered collections
interface List<E> extends Collection<E>

// skeletal implementation of List<E>

abstract class AbstractList<E>
extends AbstractCollection<E>
implements List<E>

// an old friend...
class ArrayList<E> extends AbstractList<E>

CSE 331 Summer 2022

Why interfaces instead of classes?

Java design decisions:
- a class has exactly one superclass
- a class may implement multiple interfaces
- aninterface may extend multiple interfaces

Observation:

- multiple superclasses are difficult to use and to implement
- multiple interfaces, single superclass gets most of the benefit

CSE 331 Summer 2022

Benefits and drawbacks of inheritance

 Inheritance is a powerful way to achieve code reuse

* Inheritance can break encapsulation
- a subclass may need to depend on unspecified details of the implementation of

its superclass
* e.g., pattern of self-calls
- subclass may need to evolve in tandem with superclass
« okay when implementation of both is under control of the same
programmer
- this is tricky to get right and is a source of subtle bugs

« Effective Java:
- either design for inheritance or else prohibit it

- favor composition (and interfaces) to inheritance
CSE 331 Summer 2022

Forbidding Inheritance

class final Product {
private int price;
public int getPrice () {
return price;
}
public int getTax () ({
return (int) (getPrice() * 0.086) ;

}
}

Final keyword indicates to Java that you do not want to allow any subclassing.

CSE 331 Summer 2022

Ethics |

CSE 331 Summer 2022

It should be noted that no ethically-trained software
engineer would ever consent to write a DestroyBaghdad
procedure. Basic professional ethics would instead require
him to write a DestroyCity procedure, to which Baghdad
could be given as a parameter.

- Coding Horror, Nathaniel Borenstein

CSE 331 Summer 2022

FBI-Apple encryption dispute

Question: Can governments compel us to assistin
unlocking cell phones whose data is encrypted?

N - (2013) Edward Snowden leaks NSA capabilities
- (2015) Apple finishes work on security features so that
_. it can’t comply with governments
. - (2016) FBI asks Apple to allow them to unlock iPhones

Concerns: User Data Privacy, Vulnerabilities

CSE 331 Summer 2022

Google LLC v. Oracle America, Inc.

Question: Can APIs (i.e. specifications) be copyrighted?

- (2005) Google asked to license Java for
Android

- (2010) Oracle purchases Sun and sues
Google for copyright infringement

- (2012) District Judge rules that APIs can’t be
copyrighted + Google didn't infringe.

- (2016) Same result in another district court

- (2017) Appellate court rules Google is not
protected by “fair use” - Oracle wins

Concerns: Software Licensing,
Development

- (2019) Supreme Court reverse decision and
says Google is protected by “fair use”

CSE 331 Summer 2022

Technologists in US Policy

Fact: We need more science-literate policymakers (particularly with computing skills)
Roughly 4% have technical backgrounds, yet they make policies for all of us.

CSE 331 Summer 2022 33

Self-Driving Cars

Question: Should we allow self-driving cars to make moral decisions?
a b
There are many ethical choices to be
made when it comes to autonomous
vehicles. Many of these explored in

Compare the following:
- speed limit
- safest option

CSE 331 Summer 2022 34

https://www.moralmachine.net/

Cloud

Question: What can we do to reduce energy usage
in data centers?

Currently, datacenters consume ~200 TWh yearly
- More than most countries need
- In 2017, was ~1% of total energy demand

- In 2030, projected to be between 8% and 21%
of total energy demand...

Crytocurrency takes ~0.5% per year - not profitable!

CSE 331 Summer 2022

Data centers use more eletricity
than entire countries

Domestic eletricity consumption of selected
countries vs. data centers in 2020 in TWh

Nigeria . 29
Colombia - 73
Argentina _ 124
Egypt (I 153
south Africa [208

Data centers ﬂ//A 200-250

Indonesia _ 266
Uk [286

@m Source: Enerdata, IEA

Computer Education + Accessibility

Question: Do we have an obligation to make computer education accessible to
everyone?

- Programming languages are primarily written in English!
- How can we make Uls more accessible to
» people without access to sense (sight, hearing, touch)?
* the elderly?
* the young?
- How do we teach students about ethics?

CSE 331 Summer 2022

Al: Bias and Fairness

Question: How can we ensure that
artificial intelligence is fair? What does
fair even mean?

« Developed at Allen Institute for
Artificial Intelligence (Al2)

» Leveraged LLMs to see if they could
describe moral judgements on
everyday situations

CSE 331 Summer 2022

Artificial Intelligence

Delphi speculates:
1appropriate or offensive results.

Delphi’s responses are automatically extrapolated from a survey of US crowd workers and may contain inapp

“Should I run the blender at 3am in the morning when my
family is sleeping?”
- you shouldn't o

CSE 331 Summer 2022

Artificial Intelligence

A

Delphi speculates:

This statement may contain unintended offensive content. Reader discretion is strongly advised. Please be mindful before sharing.

“Feeding your cat using forks.”
- It's wrong vio4

CSE 331 Summer 2022

Artificial Intelligence

Delphi speculates:

Delphi's responses are automatically extrapolated from a survey of US crowd warkers and may contain inappropriate or offensive results.

“Ignoring a phone call from your friend.”
- It's rude v1.0.4

CSE 331 Summer 2022

Artificial Intelligence

Delphi speculates:

Delphi’s responses are automatically extrapolated from a survey of US crowd workers and may contain inappropriate or offensive results.

“Ignoring my boss’s phone call during my working hours.”
- It's wrong s

CSE 331 Summer 2022

Artificial Intelligence

Delphi speculates:
“Ignoring my boss’s phone call during my working hours, if
I'm in a meeting.”

-It's Ok(ly v1.0.4

CSE 331 Summer 2022

Artificial Intelligence

Delphi says:

“being poor ”
- it's bad

CSE 331 Summer 2022

Artificial Intelligence

Delphi says:

“being rich”
- It's good

CSE 331 Summer 2022

Artificial Intelligence

Delphi says:
“should 1 commit genocide if it makes everybody

happy”
- you should

CSE 331 Summer 2022

Talked about Didn’t talk about

* Applev. FBI » Social media

» Googlev. Oracle « Autonomous weapons
» Tech Policymakers * Code theft

» Self-driving Cars » Google Duplex

» Cloud Energy Usage » Advertising

» Computer Education
» Al and Bias

Differentiable Privacy

Discuss: Which of these do you find most concerning?

CSE 331 Summer 2022

Before next class...

1. Start on Prep. Quiz: HW6
- Review of the concepts we've seen this quarter
- A bit longer than what we normally give you

2. Read over spec for HW6 and do answers-hwe6.txt early
- Implement your specification from HW5
- Can be tricky!

CSE 331 Summer 2022

