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Software Design & Implementation

Topic: Subtyping; Ethics
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💬 Discussion: How long would you last in a Zombie apocalypse?
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Reminders

• Think of HW5 as starter code for HW6
• Group discussion later in lecture

• Prep. Quiz: HW6 due Monday (7/25)

• HW6 due Thursday (7/28)

Upcoming Deadlines



Last Time…

CSE 331 Summer 2022

Today’s Agenda

• Equality w/ Inheritance
• True Subtyping
• Java Subtyping
• Subtypes vs. Subclasses

• Review: Subtyping
• Designing for Inheritance
• Ethics I
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Review
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Substitution principle for classes

If B is a subtype of A, then a B can always be substituted for an A

Any property guaranteed by A must be guaranteed by B

– anything provable about an A is provable about a B

– if an instance of subtype is treated purely as supertype (only supertype 
methods/fields used), then the result should be consistent with an object of the 
supertype being manipulated

B is permitted to strengthen properties and add properties

– an overriding method must have a stronger (or equal) spec

– fine to add new methods (that preserve invariants)

B is not permitted to weaken the spec

– no overriding method with a weaker spec

– no method removal
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Substitution principle for methods

Constraints on methods

– for each supertype method, subtype must have such a method

• (could be inherited or overridden)

Each overridden method must strengthen (or match) the spec:

– ask nothing extra of client (“weaker precondition”)

• requires clause is at most as strict as in supertype’s method

– guarantee at least as much (“stronger postcondition”)

• effects clause is at least as strict as in the supertype method

• no new entries in modifies clause

• promise more (or the same) in returns & throws clauses
– cannot change return values or switch between return and throws
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Example: Subtyping
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Recall: Subtyping Example

class Product {

private int price; // in cents

public int getPrice() { 

return price; 

}

public int getTax() { 

return (int)(getPrice() * 0.086); 

}

}

class SaleProduct extends Product {

private float factor;

public int getPrice() { 

return (int)(super.getPrice()*factor); 

}

}
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Exercise: True subtypes

Suppose we have a method which, when given one product, recommends another:
class Product {

Product recommend(Product ref); 

}

Which of these are possible forms of this method in SaleProduct (a true subtype of 
Product)?

Product recommend(SaleProduct ref);

SaleProduct recommend(Product ref);  

Product recommend(Object ref); 

Product recommend(Product ref)

throws NoSaleException; 

// good

// good

// bad

// bad
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Exercise: Java Subtype

Suppose we have a method which, when given one product, recommends another:
class Product {

Product recommend(Product ref); 

}

Which of these are possible forms of this method in SaleProduct (a Java subtype of 
Product)?

Product recommend(SaleProduct ref);

SaleProduct recommend(Product ref);  

Product recommend(Object ref); 

Product recommend(Product ref)

throws NoSaleException; 

// good

// compiles, but in Java is

overloading

// bad, Java overloading

// bad
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There are lots of rules to overloading!

public class Confusing {

private Confusing(Object o) {

System.out.println("Object");

}

private Confusing(double[] dArray) {

System.out.println("double array");

}

public static void main(String[] args) {

new Confusing(null);

}

}

Taken from Java Puzzlers by 
Joshua Bloch and Neal Gafter
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Subtypes vs. Subclasses
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Java subtyping

• Java types:

– defined by classes, interfaces, primitives

• Java subtyping stems from B extends A and  B implements A declarations

• In a Java subtype, each corresponding method has:

– same argument types

• if different, then overloading — unrelated methods

– compatible return types

– no additional declared exceptions
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Java subtyping guarantees

Java promises a variable’s run-time type is a subclass of its declared type

Object o = new Date(); // OK

Date d = new Object(); // compile-time error

If a variable of declared (compile-time) type T1 holds a reference to an object of 
actual (runtime) type T2,
then T2 must be a Java subtype of T1

Corollaries:

– objects always have implementations of the methods specified by their 
declared type

– if all subtypes are true subtypes, then all objects meet the specification of their 
declared type

Rules out a huge class of bugs
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Java subtyping non-guarantees

Java subtyping does not guarantee that overridden methods

– have smaller requires

– have smaller modifies

– have stronger postconditions

• Java only checks the return type not the postcondition

• could compute a completely different function

– have stronger effects

– have stronger throws (& only for the same cases as before)

– have no new unchecked exceptions
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Designing for Inheritance



CSE 331 Summer 2022

Inheritance can break encapsulation

public class InstrumentedHashSet<E> extends HashSet<E> {

private int addCount = 0;  // count # insertions

public InstrumentedHashSet(Collection<? extends E> c){

super(c);

}

public boolean add(E o) {

addCount++;

return super.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();

return super.addAll(c);

}

public int getAddCount() { return addCount; }

}
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Dependence on implementation

What does this code print?
InstrumentedHashSet<String> s = new InstrumentedHashSet<String>();

System.out.println(s.getAddCount()); 

s.addAll(Arrays.asList("CSE", "331"));

System.out.println(s.getAddCount()); 

• Answer depends on implementation of addAll in HashSet
– different implementations may behave differently!
– if HashSet’s addAll calls add, then double-counting

• AbstractCollection’s addAll specification:

– “adds all elements in the specified collection to this collection.”

– does not specify whether it calls add

• Lesson: subclassing typically requires designing for inheritance

– self-calls is not the only example… (more in future lectures)

// 0

// 4?!
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Solutions

1. Change spec of HashSet

– indicate all self-calls

– less flexibility for implementers

2. Avoid spec ambiguity by avoiding self-calls

a) “re-implement” methods such as addAll

• more work

b) use composition not inheritance

• no longer a subtype (unless an interface is handy)

• bad for equality tests, callbacks, etc.
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Solution:  composition

public class InstrumentedHashSet<E> {

private final HashSet<E> s = new HashSet<E>();

private int addCount = 0;

public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);

}

public boolean add(E o) {

addCount++;   return s.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();   

return s.addAll(c);

}

public int getAddCount() {  return addCount; }

}

The implementation 

no longer matters



CSE 331 Summer 2022

Composition (wrappers, delegation)

Implementation reuse without inheritance

• Easy to reason about. Self-calls are irrelevant

• Example of a “wrapper” class

• Works around badly-designed / badly-specified classes

• Disadvantages (may be worthwhile price to pay):

– does not preserve subtyping

– sometimes tedious to write

– may be hard to apply to equality tests, callbacks, etc.

• (although we already saw equals is hard for subclasses)
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Composition does not preserve subtyping

• InstrumentedHashSet is not a HashSet anymore

– so can't easily substitute it

• It may be a true subtype of HashSet

– but Java doesn't know that!

– Java requires declared relationships

– not enough just to meet specification

• Interfaces to the rescue

– can declare that we implement interface Set

– if such an interface exists
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Interfaces reintroduce Java subtyping

public class InstrumentedHashSet<E> implements Set<E> {

private final Set<E> s = new HashSet<E>();

private int addCount = 0;

public InstrumentedHashSet(Collection<? extends E> c){

this.addAll(c);

}

public boolean add(E o) {

addCount++;

return s.add(o);

}

public boolean addAll(Collection<? extends E> c) {

addCount += c.size();

return s.addAll(c);

}

public int getAddCount() {  return addCount; }

// ... and every other method specified by Set<E>

}

normal Java style
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Interfaces and abstract classes

Provide interfaces for your functionality

– client code to interfaces rather than concrete classes

– allows different implementations later

– facilitates composition, wrapper classes

• basis of lots of useful, clever techniques

• we'll see more of these later

Consider also providing helper/template abstract classes

– makes writing new implementations much easier

– not necessary to use them to implement an interface, so retain 
freedom to create radically different implementations
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Java library interface/class example

// root interface of collection hierarchy

interface Collection<E>

// skeletal implementation of Collection<E> 

abstract class AbstractCollection<E> implements Collection<E>

// type of all ordered collections

interface List<E> extends Collection<E> 

// skeletal implementation of List<E>

abstract class AbstractList<E> 

extends AbstractCollection<E> 

implements List<E>

// an old friend...

class ArrayList<E> extends AbstractList<E>
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Why interfaces instead of classes?

Java design decisions:

– a class has exactly one superclass

– a class may implement multiple interfaces

– an interface may extend multiple interfaces

Observation:

– multiple superclasses are difficult to use and to implement

– multiple interfaces, single superclass gets most of the benefit



CSE 331 Summer 2022

Benefits and drawbacks of inheritance

• Inheritance is a powerful way to achieve code reuse

• Inheritance can break encapsulation

– a subclass may need to depend on unspecified details of the implementation of 
its superclass

• e.g., pattern of self-calls

– subclass may need to evolve in tandem with superclass

• okay when implementation of both is under control of the same 
programmer

– this is tricky to get right and is a source of subtle bugs

• Effective Java:

– either design for inheritance or else prohibit it

– favor composition (and interfaces) to inheritance
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Forbidding Inheritance

class final Product {

private int price;

public int getPrice() { 

return price; 

}

public int getTax() { 

return (int)(getPrice() * 0.086); 

}

}

Final keyword indicates to Java that you do not want to allow any subclassing.
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Ethics I
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It should be noted that no ethically-trained software 
engineer would ever consent to write a DestroyBaghdad
procedure. Basic professional ethics would instead require 
him to write a DestroyCity procedure, to which Baghdad 
could be given as a parameter.

- Coding Horror, Nathaniel Borenstein
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FBI–Apple encryption dispute 

Question: Can governments compel us to assist in 
unlocking cell phones whose data is encrypted? 

– (2013) Edward Snowden leaks NSA capabilities

– (2015) Apple finishes work on security features so that 
it can’t comply with governments

– (2016) FBI asks Apple to allow them to unlock iPhones

Concerns: User Data Privacy, Vulnerabilities
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Google LLC v. Oracle America, Inc.

– (2005) Google asked to license Java for 
Android

– (2010) Oracle purchases Sun and sues 
Google for copyright infringement

– (2012) District Judge rules that APIs can’t be 
copyrighted + Google didn’t infringe.

– (2016) Same result in another district court

– (2017) Appellate court rules Google is not 
protected by “fair use” – Oracle wins

– (2019) Supreme Court reverse decision and 
says Google is protected by “fair use”

Concerns: Software Licensing, 
Development

Question: Can APIs (i.e. specifications) be copyrighted?
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Technologists in US Policy

33

Fact: We need more science-literate policymakers (particularly with computing skills)

Roughly 4% have technical backgrounds, yet they make policies for all of us.
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Self-Driving Cars

Question: Should we allow self-driving cars to make moral decisions?

There are many ethical choices to be

made when it comes to autonomous

vehicles. Many of these explored in

https://www.moralmachine.net/ 

Compare the following:

- speed limit

- safest option

34

https://www.moralmachine.net/


CSE 331 Summer 2022

Cloud

Question: What can we do to reduce energy usage 
in data centers?

Currently, datacenters consume ~200 TWh yearly

– More than most countries need

– In 2017, was ~1% of total energy demand

– In 2030, projected to be between 8% and 21% 
of total energy demand…

Crytocurrency takes ~0.5% per year – not profitable!
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Computer Education + Accessibility

Question: Do we have an obligation to make computer education accessible to 
everyone? 

– Programming languages are primarily written in English! 

– How can we make UIs more accessible to

• people without access to sense (sight, hearing, touch)?

• the elderly?

• the young?

– How do we teach students about ethics?
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AI: Bias and Fairness

Question: How can we ensure that 
artificial intelligence is fair? What does 
fair even mean? 

• Developed at Allen Institute for 
Artificial Intelligence (AI2) 

• Leveraged LLMs to see if they could 
describe moral judgements on 
everyday situations
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Artificial Intelligence
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Artificial Intelligence
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Artificial Intelligence
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Artificial Intelligence
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Artificial Intelligence
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Artificial Intelligence
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Artificial Intelligence
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Artificial Intelligence
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Didn’t talk about

• Apple v. FBI

• Google v. Oracle

• Tech Policymakers

• Self-driving Cars

• Cloud Energy Usage

• Computer Education

• AI and Bias

• Social media

• Autonomous weapons

• Code theft

• Google Duplex

• Advertising

• Differentiable Privacy

Talked about

Discuss: Which of these do you find most concerning? 
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Before next class...

1. Start on Prep. Quiz: HW6

– Review of the concepts we’ve seen this quarter

– A bit longer than what we normally give you

2. Read over spec for HW6 and do answers-hw6.txt early

– Implement your specification from HW5

– Can be tricky! 


