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Software Design & Implementation
Topic: Introduction
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💬 Discussion: What are you excited for this summer?
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Reminders

• Read the welcome email
• Check your access to Ed, Gradescope, and Canvas
• Should see email about Gitlab repositories soon

• Syllabus Quiz due Thursday (6/22)
• HW1  due Thursday (6/22)

Upcoming Deadlines



Last Time… Today’s Agenda
• Welcome email
• Syllabus Overview

• Upcoming Assignments
• Motivation
• Reasoning

CSE 331 Summer 2023
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Upcoming Assignments
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Syllabus Quiz

• Due on Thursday night
– read the syllabus in depth
– answer a few multiple choice/select questions
– infinite attempts before deadline

• Why?
– had a lot of confusion in past quarters
– make student requests manageable for course staff
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HW1

• Due on Thursday night
– practice interview question
– write an algorithm to rearrange array elements as described
– argue in concise, convincing English that it is correct

• don’t just explain what the code does!
– do not run your code! (pretend it’s on a whiteboard)

• know that is correct without running it (a necessary skill)

• This is expected to be difficult (esp. the ”argue” part)
– graded on effort, not correctness
– do not spend more than 90 minutes on it
– want you to see that it is tricky… without the tools coming next
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Motivation
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What are the goals of CSE 331?

Learn the skills to be able to contribute to a modern software project
– move from CSE 143 problems toward what you’ll see

in industry and in upper-level courses

Specifically, how to write code of
– higher quality
– increased complexity

We will discuss tools and techniques to help with this and the concepts and 
ideas behind them

– there are timeless principles to both
– widely used across the industry
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What is high quality?

Code is high quality when it is

1. Correct
Everything else is of secondary importance

2. Easy to change
Most work is making changes to existing systems

3. Easy to understand
Needed for 1 & 2 above



CSE 331 Summer 2023

How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and 

one black shoe

Key Insight
1. Can’t stop people from making mistakes
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How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– type checkers, test runners, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Together can catch >97% of bugs.

technical interviews focus on this
(a.k.a. “reasoning”)
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Scale makes everything harder

Many studies showing scale makes quality harder to achieve
– Time to write N-line program grows faster than linear

• Good estimate is O(N1.05) [Boehm, ‘81]
– Bugs grow like Θ(N log N) [Jones, ‘12]

• 10% of errors are between modules [Seaman, ‘08]
– Communication costs dominate schedules [Brooks, ‘75]
– Small probability cases become high probability cases

• Corner cases are more important with more users

Corollary: quality must be even higher, per line, in order to achieve 
overall quality in a large program
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How do we cope with scale?

We tackle increased software scale with modularity
• Split code into pieces that can be built independently
• Each must be documented so others can use it
• Also helps understandability and changeability
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What are the goals of CSE 331?

In summary, we want our to support code of:

Higher Quality:
– Correct
– Easy to change
– Easy to understand

Increased Complexity:
– Modular
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Reasoning
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Our Approach

• We will learn a set of formal tools for proving correctness
– math can seem daunting – it will connect back! 
– later, this will also allow us to generate the code

• Most professionals can do reasoning like this in their head
– most do an informal version of what we will see
– with practice, it will be the same for you

• Formal version has key advantages
– teachable
– mechanical (no intuition or creativity required)
– necessary for hard problems

• we turn to formal tools when problems get too hard
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Formal Reasoning

• Invented by Robert Floyd and Sir Anthony Hoare
– Floyd won the Turing award in 1978
– Hoare won the Turing award in 1980

picture from Wikipedia

Tony HoareRobert Floyd

By%20https:/amturing.acm.org/award_winners/floyd_3720707.cfm,%20Fair%20use,%20https:/en.wikipedia.org/w/index.php?curid=59539154
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Terminology of Floyd Logic

• The program state is the values of all the (relevant) variables

• An assertion is a true / false claim (proposition) about the state at a given point 
during execution (e.g., on line 39)

• An assertion holds for a program state if the claim is true when the variables have 
those values

• An assertion before the code is a precondition
– these represent assumptions about when that code is used

• An assertion after the code is a postcondition
– these represent what we want the code to accomplish
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Hoare Triples

• A Hoare triple is two assertions and one piece of code:
{ P } S { Q }

– P the precondition
– S the code
– Q the postcondition 

• A Hoare triple { P } S { Q } is called valid if:
– in any state where P holds,

executing S produces a state where Q holds
– i.e., if P is true before S, then Q must be true after it
– otherwise, the triple is called invalid

specification

method body

code is correct iff triple is valid
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Notation
• Floyd logic writes assertions in {..}

– since Java code also has {..}, we will use {{…}}
– e.g., {{ w >= 1 }} x = 2 * w; {{ x >= 2 }}

• Assertions are math, not Java
– you should use the usual math notation

• (e.g., = instead of == for equals)
– purpose is communication with humans (not computers)
– we will need and, or, not as well

• can also write use ⋀ (and) ⋁ (or) etc.

• The Java language also has assertions (assert statements)
– throws an exception if the condition does not evaluate true
– we will discuss these more later in the course
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Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

  {{ x != 0 }} y = x*x; {{ y > 0 }}
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Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

  {{ x != 0 }} y = x*x; {{ y > 0 }}

Valid
• y could only be zero if x were zero (which it isn’t)
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Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

  {{ z != 1 }} y = z*z; {{ y != z }}
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Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

  {{ z != 1 }} y = z*z; {{ y != z }}

Invalid
• counterexample: z = 0
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Checking Validity

• So far:
– code is correct iff Hoare triple valid 
– decided if a Hoare triple is valid by ... hard thinking

• Soon: mechanical process for reasoning about
– assignment statements
– [next section] conditionals
– [next lecture] loops
– (all code can be understood in terms of those 3 elements)

• Next: terminology for comparing different assertions
– useful, e.g., to compare possible preconditions
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Weaker vs. Stronger Assertions

If P1 implies P2  (written P1 ⇒ P2), then:
– P1 is stronger than P2
– P2 is weaker than P1

Whenever P1 holds, P2 also holds
• So it is more (or at least as) “difficult” to satisfy P1 

– the program states where P1 holds are a subset of the program states where 
P2 holds

• So P1 puts more constraints on program states
• So it is a stronger set of requirements on the program state

– P1 gives you more information about the state than P2

P1 P2
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Examples

• x = 17 is stronger than x > 0

• x is prime is neither stronger nor weaker than x is odd

• x is prime and x > 2 is stronger than x is odd
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Floyd Logic Facts

• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Example:
– Suppose P is x >= 0 and P1 is x > 0

– Suppose Q is y > 0 and Q1 is y >= 0

– Since {{ x >= 0 }} y = x+1 {{ y > 0 }} is valid,

{{ x > 0 }} y = x+1 {{ y >= 0 }} is also valid

P1 P

Q Q1
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Floyd Logic Facts
• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Key points:
– always okay to strengthen a precondition
– always okay to weaken a postcondition

P1 P

Q Q1
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Floyd Logic Facts

• When is {P} ; {Q} is valid?
– with no code in between

P Q

• Valid if any state satisfying P also satisfies Q
• I.e., if P is stronger than Q
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Forward & Backward Reasoning
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Forward Reasoning

• Start with the given precondition
• Fill in the strongest postcondition

• For an assignment, x = y...
– add the fact “x = y” to what is known
– important subtleties here... (more on those later)

• Later: if statements and loops...
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Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ _________________________________ }}

 y = 42;

{{ _________________________________ }}

 z = w + x + y;

{{ _________________________________ }}
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Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}

 y = 42;

{{ _________________________________ }}

 z = w + x + y;

{{ _________________________________ }}
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Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}

 y = 42;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ _________________________________ }}
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Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}

 y = 42;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + x + y }}
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Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}

 y = 42;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + 59 }}
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Forward Reasoning

• Start with the given precondition
• Fill in the strongest postcondition

• For an assignment, x = y...
– add the fact “x = y” to what is known
– important subtleties here... (more on those later)

• Later: if statements and loops...
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Backward Reasoning

• Start with the required postcondition
• Fill in the weakest precondition

• For an assignment, x = y:
– just replace “x” with “y” in the postcondition
– if the condition using “y” holds beforehand, then the condition with “x” will 

afterward since x = y then

• Later: if statements and loops...
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Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
 x = 17;

{{ _________________________________ }}
 y = 42;

{{ _________________________________ }}
 z = w + x + y;

{{ z < 0 }}
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Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
 x = 17;

{{ _________________________________ }}

 y = 42;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}
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Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
 x = 17;

{{ w + x + 42 < 0 }}

 y = 42;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}
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Example of Backward Reasoning

Work backward from the desired postcondition

{{ w + 17 + 42 < 0 }}

 x = 17;

{{ w + x + 42 < 0 }}

 y = 42;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}
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Backward Reasoning

• Start with the required postcondition
• Fill in the weakest precondition

• For an assignment, x = y:
– just replace “x” with “y” in the postcondition
– if the condition using “y” holds beforehand, then the condition with “x” will 

afterward since x = y then

• Later: if statements and loops...
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Correctness by Forward Reasoning

Use forward reasoning to determine if this code is correct:

{{ w > 0 }}

 x = 17;

 y = 42;

 z = w + x + y;

{{ z > 50 }}
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Example of Forward Reasoning

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}
 y = 42;

{{ w > 0 and x = 17 and y = 42 }}
 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + 59 }}

{{ z > 50 }}

Do the facts that are always true
imply the facts we need?
I.e., is the bottom statement
weaker than the top one?

(Recall that weakening the postcondition is always okay.)
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Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}
 x = 17;

 y = 42;

 z = w + x + y;

{{ z < 0 }}
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Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}

{{ w + 17 + 42 < 0 }}
 x = 17;

{{ w + x + 42 < 0 }}
 y = 42;

{{ w + x + y < 0 }}
 z = w + x + y;

{{ z < 0 }}

Do the facts that are always true
imply the facts we need?

I.e., is the top statement
stronger than the bottom one?⟺ {{ w < -59 }}

(Recall that strengthening the precondition is always okay.)
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Combining Forward & Backward

It is okay to use both types of reasoning

• Reason forward from precondition

• Reason backward from postcondition

Will meet in the middle:

 {{ P }}
   S1
   S2

 {{ Q }}
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Combining Forward & Backward

It is okay to use both types of reasoning
• Reason forward from precondition
• Reason backward from postcondition

Will meet in the middle:

 {{ P }}
   S1

 {{ P1 }}
 {{ Q1 }}
   S2

 {{ Q }}

Valid provided P1 implies Q1
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Combining Forward & Backward

Reasoning in either direction gives valid assertions
Just need to check adjacent assertions:
• top assertion must imply bottom one

   {{ P }}  {{ P }} 
    S1  {{ Q1 }}
    S2   S1

   {{ P1 }}   S2

   {{ Q }}   {{ Q }}

{{ P }}

   S1

 {{ P1 }}

 {{ Q1 }}

   S2

 {{ Q }}
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Subtleties in Forward Reasoning...

• Forward reasoning can fail if applied blindly...

     {{ }}

      w = x + y;

     {{ w = x + y }}

      x = 4;

     {{ w = x + y and x = 4 }}

      y = 3;

     {{ w = x + y and x = 4 and y = 3 }}

This implies that w = 7, but that is not true!
– w equals whatever x + y was before they were changed
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Fix 1

• Use subscripts to refer to old values of the variables
• Un-subscripted variables should always mean current value

     {{ }}
      w = x + y;

     {{ w = x + y }}
      x = 4;

     {{ w = x1 + y and x = 4 }}
      y = 3;

     {{ w = x1 + y1 and x = 4 and y = 3 }}
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Fix 2 (better, when possible)

• Express prior values in terms of the current value

     {{ }}
      w = x + y;

     {{ w = x + y }}
      x = x + 4;

     {{ w = x1 + y and x = x1 + 4 }}

Note for updating variables, e.g., x = x + 4:
• Backward reasoning just substitutes new value (no change)
• Forward reasoning requires you to invert the “+” operation

Now, x1 = x - 4

so w = x1 + y ⟺ w = x - 4 + y
⇒ {{ w = x - 4 + y }}
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Forward vs. Backward

• Forward reasoning:
– Find strongest postcondition
– Intuitive: “simulate” the code in your head

• BUT you need to change facts to refer to prior values
– Inefficient: Introduces many irrelevant facts

• usually need to weaken as you go to keep things sane

• Backward reasoning
– Find weakest precondition
– Formally simpler, but (initially) unintuitive
– Efficient
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Before next class...

1. Familiarize yourself with website:

http://courses.cs.washington.edu/courses/cse331/23su/ 

– read the welcome email
– read the syllabus

2. Try to do HW1 and syllabus quiz before section tomorrow!
– submit a PDF on Gradescope
– limit this to at most 60 min
– do not use formal reasoning
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