
CSE 331 Summer 2023

Software Design & Implementation
Topic: Introduction

CSE 331

💬 Discussion: What are you excited for this summer?

CSE 331 Summer 2023

Reminders

• Read the welcome email
• Check your access to Ed, Gradescope, and Canvas
• Should see email about Gitlab repositories soon

• Syllabus Quiz due Thursday (6/22)
• HW1 due Thursday (6/22)

Upcoming Deadlines

Last Time… Today’s Agenda
• Welcome email
• Syllabus Overview

• Upcoming Assignments
• Motivation
• Reasoning

CSE 331 Summer 2023

CSE 331 Summer 2023

Upcoming Assignments

CSE 331 Summer 2023

Syllabus Quiz

• Due on Thursday night
– read the syllabus in depth
– answer a few multiple choice/select questions
– infinite attempts before deadline

• Why?
– had a lot of confusion in past quarters
– make student requests manageable for course staff

CSE 331 Summer 2023

HW1

• Due on Thursday night
– practice interview question
– write an algorithm to rearrange array elements as described
– argue in concise, convincing English that it is correct

• don’t just explain what the code does!
– do not run your code! (pretend it’s on a whiteboard)

• know that is correct without running it (a necessary skill)

• This is expected to be difficult (esp. the ”argue” part)
– graded on effort, not correctness
– do not spend more than 90 minutes on it
– want you to see that it is tricky… without the tools coming next

CSE 331 Summer 2023

Motivation

CSE 331 Summer 2023

What are the goals of CSE 331?

Learn the skills to be able to contribute to a modern software project
– move from CSE 143 problems toward what you’ll see

in industry and in upper-level courses

Specifically, how to write code of
– higher quality
– increased complexity

We will discuss tools and techniques to help with this and the concepts and
ideas behind them

– there are timeless principles to both
– widely used across the industry

CSE 331 Summer 2023

What is high quality?

Code is high quality when it is

1. Correct
Everything else is of secondary importance

2. Easy to change
Most work is making changes to existing systems

3. Easy to understand
Needed for 1 & 2 above

CSE 331 Summer 2023

How do we ensure correctness...

... when people are involved?

People have been known to
– walk into windows
– drive away with a coffee cup on the roof
– drive away still tied to gas pump
– lecture wearing one brown shoe and

one black shoe

Key Insight
1. Can’t stop people from making mistakes

CSE 331 Summer 2023

How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– type checkers, test runners, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Together can catch >97% of bugs.

technical interviews focus on this
(a.k.a. “reasoning”)

CSE 331 Summer 2023

Scale makes everything harder

Many studies showing scale makes quality harder to achieve
– Time to write N-line program grows faster than linear

• Good estimate is O(N1.05) [Boehm, ‘81]
– Bugs grow like Θ(N log N) [Jones, ‘12]

• 10% of errors are between modules [Seaman, ‘08]
– Communication costs dominate schedules [Brooks, ‘75]
– Small probability cases become high probability cases

• Corner cases are more important with more users

Corollary: quality must be even higher, per line, in order to achieve
overall quality in a large program

CSE 331 Summer 2023

How do we cope with scale?

We tackle increased software scale with modularity
• Split code into pieces that can be built independently
• Each must be documented so others can use it
• Also helps understandability and changeability

CSE 331 Summer 2023

What are the goals of CSE 331?

In summary, we want our to support code of:

Higher Quality:
– Correct
– Easy to change
– Easy to understand

Increased Complexity:
– Modular

CSE 331 Summer 2023

Reasoning

CSE 331 Summer 2023

Our Approach

• We will learn a set of formal tools for proving correctness
– math can seem daunting – it will connect back!
– later, this will also allow us to generate the code

• Most professionals can do reasoning like this in their head
– most do an informal version of what we will see
– with practice, it will be the same for you

• Formal version has key advantages
– teachable
– mechanical (no intuition or creativity required)
– necessary for hard problems

• we turn to formal tools when problems get too hard

CSE 331 Summer 2023

Formal Reasoning

• Invented by Robert Floyd and Sir Anthony Hoare
– Floyd won the Turing award in 1978
– Hoare won the Turing award in 1980

picture from Wikipedia

Tony HoareRobert Floyd

By%20https:/amturing.acm.org/award_winners/floyd_3720707.cfm,%20Fair%20use,%20https:/en.wikipedia.org/w/index.php?curid=59539154

CSE 331 Summer 2023

Terminology of Floyd Logic

• The program state is the values of all the (relevant) variables

• An assertion is a true / false claim (proposition) about the state at a given point
during execution (e.g., on line 39)

• An assertion holds for a program state if the claim is true when the variables have
those values

• An assertion before the code is a precondition
– these represent assumptions about when that code is used

• An assertion after the code is a postcondition
– these represent what we want the code to accomplish

CSE 331 Summer 2023

Hoare Triples

• A Hoare triple is two assertions and one piece of code:
{ P } S { Q }

– P the precondition
– S the code
– Q the postcondition

• A Hoare triple { P } S { Q } is called valid if:
– in any state where P holds,

executing S produces a state where Q holds
– i.e., if P is true before S, then Q must be true after it
– otherwise, the triple is called invalid

specification

method body

code is correct iff triple is valid

CSE 331 Summer 2023

Notation
• Floyd logic writes assertions in {..}

– since Java code also has {..}, we will use {{…}}
– e.g., {{ w >= 1 }} x = 2 * w; {{ x >= 2 }}

• Assertions are math, not Java
– you should use the usual math notation

• (e.g., = instead of == for equals)
– purpose is communication with humans (not computers)
– we will need and, or, not as well

• can also write use ⋀ (and) ⋁ (or) etc.

• The Java language also has assertions (assert statements)
– throws an exception if the condition does not evaluate true
– we will discuss these more later in the course

CSE 331 Summer 2023

Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

 {{ x != 0 }} y = x*x; {{ y > 0 }}

CSE 331 Summer 2023

Example 1

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

 {{ x != 0 }} y = x*x; {{ y > 0 }}

Valid
• y could only be zero if x were zero (which it isn’t)

CSE 331 Summer 2023

Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

 {{ z != 1 }} y = z*z; {{ y != z }}

CSE 331 Summer 2023

Example 2

Is the following Hoare triple valid or invalid?
– assume all variables are integers and there is no overflow

 {{ z != 1 }} y = z*z; {{ y != z }}

Invalid
• counterexample: z = 0

CSE 331 Summer 2023

Checking Validity

• So far:
– code is correct iff Hoare triple valid
– decided if a Hoare triple is valid by ... hard thinking

• Soon: mechanical process for reasoning about
– assignment statements
– [next section] conditionals
– [next lecture] loops
– (all code can be understood in terms of those 3 elements)

• Next: terminology for comparing different assertions
– useful, e.g., to compare possible preconditions

CSE 331 Summer 2023

Weaker vs. Stronger Assertions

If P1 implies P2 (written P1 ⇒ P2), then:
– P1 is stronger than P2
– P2 is weaker than P1

Whenever P1 holds, P2 also holds
• So it is more (or at least as) “difficult” to satisfy P1

– the program states where P1 holds are a subset of the program states where
P2 holds

• So P1 puts more constraints on program states
• So it is a stronger set of requirements on the program state

– P1 gives you more information about the state than P2

P1 P2

CSE 331 Summer 2023

Examples

• x = 17 is stronger than x > 0

• x is prime is neither stronger nor weaker than x is odd

• x is prime and x > 2 is stronger than x is odd

CSE 331 Summer 2023

Floyd Logic Facts

• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Example:
– Suppose P is x >= 0 and P1 is x > 0

– Suppose Q is y > 0 and Q1 is y >= 0

– Since {{ x >= 0 }} y = x+1 {{ y > 0 }} is valid,

{{ x > 0 }} y = x+1 {{ y >= 0 }} is also valid

P1 P

Q Q1

CSE 331 Summer 2023

Floyd Logic Facts
• Suppose {P} S {Q} is valid.

• If P1 is stronger than P,
then {P1} S {Q} is valid.

• If Q1 is weaker than Q,
then {P} S {Q1} is valid.

• Key points:
– always okay to strengthen a precondition
– always okay to weaken a postcondition

P1 P

Q Q1

CSE 331 Summer 2023

Floyd Logic Facts

• When is {P} ; {Q} is valid?
– with no code in between

P Q

• Valid if any state satisfying P also satisfies Q
• I.e., if P is stronger than Q

CSE 331 Summer 2023

Forward & Backward Reasoning

CSE 331 Summer 2023

Forward Reasoning

• Start with the given precondition
• Fill in the strongest postcondition

• For an assignment, x = y...
– add the fact “x = y” to what is known
– important subtleties here... (more on those later)

• Later: if statements and loops...

CSE 331 Summer 2023

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ _________________________________ }}

 y = 42;

{{ _________________________________ }}

 z = w + x + y;

{{ _________________________________ }}

CSE 331 Summer 2023

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}

 y = 42;

{{ _________________________________ }}

 z = w + x + y;

{{ _________________________________ }}

CSE 331 Summer 2023

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}

 y = 42;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ _________________________________ }}

CSE 331 Summer 2023

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}

 y = 42;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + x + y }}

CSE 331 Summer 2023

Example of Forward Reasoning

Work forward from the precondition

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}

 y = 42;

{{ w > 0 and x = 17 and y = 42 }}

 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + 59 }}

CSE 331 Summer 2023

Forward Reasoning

• Start with the given precondition
• Fill in the strongest postcondition

• For an assignment, x = y...
– add the fact “x = y” to what is known
– important subtleties here... (more on those later)

• Later: if statements and loops...

CSE 331 Summer 2023

Backward Reasoning

• Start with the required postcondition
• Fill in the weakest precondition

• For an assignment, x = y:
– just replace “x” with “y” in the postcondition
– if the condition using “y” holds beforehand, then the condition with “x” will

afterward since x = y then

• Later: if statements and loops...

CSE 331 Summer 2023

Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
 x = 17;

{{ _________________________________ }}
 y = 42;

{{ _________________________________ }}
 z = w + x + y;

{{ z < 0 }}

CSE 331 Summer 2023

Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
 x = 17;

{{ _________________________________ }}

 y = 42;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

CSE 331 Summer 2023

Example of Backward Reasoning

Work backward from the desired postcondition

{{ _________________________________ }}
 x = 17;

{{ w + x + 42 < 0 }}

 y = 42;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

CSE 331 Summer 2023

Example of Backward Reasoning

Work backward from the desired postcondition

{{ w + 17 + 42 < 0 }}

 x = 17;

{{ w + x + 42 < 0 }}

 y = 42;

{{ w + x + y < 0 }}

 z = w + x + y;

{{ z < 0 }}

CSE 331 Summer 2023

Backward Reasoning

• Start with the required postcondition
• Fill in the weakest precondition

• For an assignment, x = y:
– just replace “x” with “y” in the postcondition
– if the condition using “y” holds beforehand, then the condition with “x” will

afterward since x = y then

• Later: if statements and loops...

CSE 331 Summer 2023

Correctness by Forward Reasoning

Use forward reasoning to determine if this code is correct:

{{ w > 0 }}

 x = 17;

 y = 42;

 z = w + x + y;

{{ z > 50 }}

CSE 331 Summer 2023

Example of Forward Reasoning

{{ w > 0 }}

 x = 17;

{{ w > 0 and x = 17 }}
 y = 42;

{{ w > 0 and x = 17 and y = 42 }}
 z = w + x + y;

{{ w > 0 and x = 17 and y = 42 and z = w + 59 }}

{{ z > 50 }}

Do the facts that are always true
imply the facts we need?
I.e., is the bottom statement
weaker than the top one?

(Recall that weakening the postcondition is always okay.)

CSE 331 Summer 2023

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}
 x = 17;

 y = 42;

 z = w + x + y;

{{ z < 0 }}

CSE 331 Summer 2023

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

{{ w < -60 }}

{{ w + 17 + 42 < 0 }}
 x = 17;

{{ w + x + 42 < 0 }}
 y = 42;

{{ w + x + y < 0 }}
 z = w + x + y;

{{ z < 0 }}

Do the facts that are always true
imply the facts we need?

I.e., is the top statement
stronger than the bottom one?⟺ {{ w < -59 }}

(Recall that strengthening the precondition is always okay.)

CSE 331 Summer 2023

Combining Forward & Backward

It is okay to use both types of reasoning

• Reason forward from precondition

• Reason backward from postcondition

Will meet in the middle:

 {{ P }}
 S1
 S2

 {{ Q }}

CSE 331 Summer 2023

Combining Forward & Backward

It is okay to use both types of reasoning
• Reason forward from precondition
• Reason backward from postcondition

Will meet in the middle:

 {{ P }}
 S1

 {{ P1 }}
 {{ Q1 }}
 S2

 {{ Q }}

Valid provided P1 implies Q1

CSE 331 Summer 2023

Combining Forward & Backward

Reasoning in either direction gives valid assertions
Just need to check adjacent assertions:
• top assertion must imply bottom one

 {{ P }} {{ P }}
 S1 {{ Q1 }}
 S2 S1

 {{ P1 }} S2

 {{ Q }} {{ Q }}

{{ P }}

 S1

 {{ P1 }}

 {{ Q1 }}

 S2

 {{ Q }}

CSE 331 Summer 2023

Subtleties in Forward Reasoning...

• Forward reasoning can fail if applied blindly...

 {{ }}

 w = x + y;

 {{ w = x + y }}

 x = 4;

 {{ w = x + y and x = 4 }}

 y = 3;

 {{ w = x + y and x = 4 and y = 3 }}

This implies that w = 7, but that is not true!
– w equals whatever x + y was before they were changed

CSE 331 Summer 2023

Fix 1

• Use subscripts to refer to old values of the variables
• Un-subscripted variables should always mean current value

 {{ }}
 w = x + y;

 {{ w = x + y }}
 x = 4;

 {{ w = x1 + y and x = 4 }}
 y = 3;

 {{ w = x1 + y1 and x = 4 and y = 3 }}

CSE 331 Summer 2023

Fix 2 (better, when possible)

• Express prior values in terms of the current value

 {{ }}
 w = x + y;

 {{ w = x + y }}
 x = x + 4;

 {{ w = x1 + y and x = x1 + 4 }}

Note for updating variables, e.g., x = x + 4:
• Backward reasoning just substitutes new value (no change)
• Forward reasoning requires you to invert the “+” operation

Now, x1 = x - 4

so w = x1 + y ⟺ w = x - 4 + y
⇒ {{ w = x - 4 + y }}

CSE 331 Summer 2023

Forward vs. Backward

• Forward reasoning:
– Find strongest postcondition
– Intuitive: “simulate” the code in your head

• BUT you need to change facts to refer to prior values
– Inefficient: Introduces many irrelevant facts

• usually need to weaken as you go to keep things sane

• Backward reasoning
– Find weakest precondition
– Formally simpler, but (initially) unintuitive
– Efficient

CSE 331 Summer 2023

Before next class...

1. Familiarize yourself with website:

http://courses.cs.washington.edu/courses/cse331/23su/

– read the welcome email
– read the syllabus

2. Try to do HW1 and syllabus quiz before section tomorrow!
– submit a PDF on Gradescope
– limit this to at most 60 min
– do not use formal reasoning

	Default Section
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3

	HW0
	Slide 4
	Slide 5: Syllabus Quiz
	Slide 6: HW1

	Motivation
	Slide 7
	Slide 8: What are the goals of CSE 331?
	Slide 9: What is high quality?
	Slide 10: How do we ensure correctness...
	Slide 11: How do we ensure correctness?
	Slide 12: Scale makes everything harder
	Slide 13: How do we cope with scale?
	Slide 14: What are the goals of CSE 331?

	Reasoning
	Slide 15
	Slide 16: Our Approach
	Slide 17: Formal Reasoning
	Slide 18: Terminology of Floyd Logic
	Slide 19: Hoare Triples
	Slide 20: Notation
	Slide 21: Example 1
	Slide 22: Example 1
	Slide 23: Example 2
	Slide 24: Example 2
	Slide 25: Checking Validity
	Slide 26: Weaker vs. Stronger Assertions
	Slide 27: Examples
	Slide 28: Floyd Logic Facts
	Slide 29: Floyd Logic Facts
	Slide 30: Floyd Logic Facts
	Slide 31
	Slide 32: Forward Reasoning
	Slide 33: Example of Forward Reasoning
	Slide 34: Example of Forward Reasoning
	Slide 35: Example of Forward Reasoning
	Slide 36: Example of Forward Reasoning
	Slide 37: Example of Forward Reasoning
	Slide 38: Forward Reasoning
	Slide 39: Backward Reasoning
	Slide 40: Example of Backward Reasoning
	Slide 41: Example of Backward Reasoning
	Slide 42: Example of Backward Reasoning
	Slide 43: Example of Backward Reasoning
	Slide 44: Backward Reasoning
	Slide 45: Correctness by Forward Reasoning
	Slide 46: Example of Forward Reasoning
	Slide 47: Correctness by Backward Reasoning
	Slide 48: Correctness by Backward Reasoning
	Slide 49: Combining Forward & Backward
	Slide 50: Combining Forward & Backward
	Slide 51: Combining Forward & Backward
	Slide 52: Subtleties in Forward Reasoning...
	Slide 53: Fix 1
	Slide 54: Fix 2 (better, when possible)
	Slide 55: Forward vs. Backward

	Conclusion
	Slide 56: Before next class...

