CSE332: Data Abstractions

Lecture 10: More B Trees; Hashing

Dan Grossman
Spring 2012

B Tree Review

M-ary tree with room for L data items

at each leaf 3070120 21
Order property:
Subtree between keys x and y
contains only data that is > x
and <y (notice the >)

Balance property: X<3 3<x<7 7<x<12 12<x<21 21<x
All nodes and leaves at least half
full, and all leaves at same height

find and insert efficient
— insert uses splitting to handle
overflow, which may require

splitting parent, and so on
recursively

Spring 2012 CSE332: Data Abstractions 2

Can do a little better with insert

Eventually have to split up to the root (the tree will fill)

But can sometimes avoid splitting via adoption

— Change what leaf is correct by changing parent keys

— This idea “in reverse” is necessary in deletion (next)

EEl

Example:

Splitting

T

14

30

Inse rt(312

32

Spring 2012 CSE332: Data Abstractions

14

30

32

Adoption for insert

Eventually have to split up to the root (the tree will fill)

But can sometimes avoid splitting via adoption

— Change what leaf is correct by changing parent keys
— This idea “in reverse” is necessary in deletion (next)

! I

E le:
xample ! 18 ! I 30
3 18

Adoption 3 30
Inse rt(312

14 | 130 14 | 131

32 18 | |32

Spring 2012 CSE332: Data Abstractions

Deletion

1
!15]
3 15

12

16

14

M=31L=3

Spring 2012

8

'/‘1
15

8 I Delete(32)
>
! 32 B 40 ! ! 15
18 | |32 | |40 3
30| (36| |45 12 | |16
38 14

CSE332: Data Abstractions

;

1

,36 40
8|36

40

30

38

45

18 I Delete(15) 18 I
>
!15 I !36 40! !16 I !36 40!
3 | |15 s | |36 16 s | 36

1 40 3 1 40
12 | |16 30 | |38 | |45 12 30 | |38 | |45
14 14
What’s Adopt from
M=3 1 =3 wrong? a neighbor!

Spring 2012 CSE332: Data Abstractions 6

8

1
!16]
3 16

12

14

M=31L=3

Spring 2012

1

!36 40!
8 | |36

40

8

30

38

45

1
>
3 14

12

16

CSE332: Data Abstractions

;

1

!36 40
8 | |36

40

30

38

45

8

1
! 14 I
3 14

12

16

M=31L=3

Spring 2012

;

1

!36 40
8 | |36

40

30

38

45

Delete(16) 18 I
>
! 14 I ! 36 § 40 !
3 14 18 | |36 | |40
12 30 | |38 | |45

Uh-oh, neighbors at their
minimum!
CSE332: Data Abstractions

18

!l4
3

14

12

L

=l
01

18

36

40

3

18

36

40

30

38

45

12

30

38

45

14

M=31L=3

Spring 2012

Move in together and remove
leaf — now parent might

underflow; it has neighbors
CSE332: Data Abstractions

! e a("H '

18 | |36 | |40 3
12 30|38 | [45 12 1 |30 38 | |45
14 14

M=31L=3
Spring 2012 CSE332: Data Abstractions 10

Delete(14
o[1 <) [
!18] !40] !18] !40]
3 18 36 | |40 3 18 36 | |40

12 1 |30 38 | |45 12 | |30 38 | |45

14

M=31L=3
Spring 2012 CSE332: Data Abstractions 11

Delete(18
36 I (18) 36 I
! s ! of | ! ol | ! of |
3 | |18 36 | |40 3 |30 36 | |40

12 1 |30 38 | |45 12 38 | |45

M=31L=3
Spring 2012 CSE332: Data Abstractions 12

IB}\Oi I Sy)l/‘l%!ml I

!18
3 30 36 | |40

12 38 | |45 12 38 | |45
30

M=31L=3
Spring 2012 CSE332: Data Abstractions 13

12
30

M=31L=3

Spring 2012

38

45

CSE332: Data Abstractions

!

a &l - L
!] !40] !36 40
3 36 | |40 3 36

40

12

38

45

30

14

E

e

3 36 | (40
12 | |38 | |45
30

M=31L=3
Spring 2012

CSE332: Data Abstractions

v

3 36 | (40
12 | |38 | |45
30

15

Deletion algorithm, part 1

1. Remove the data from its leaf

2. Ifthe leaf now has[L/2] - 1, underflow!
— Ifaneighbor has > [L/2] items, adopt and update parent

— Else merge node with neighbor
« Guaranteed to have a legal number of items
 Parent now has one less node

3. If step (2) caused the parent to have [M/2] - 1 children,
underflow!

Spring 2012 CSE332: Data Abstractions 16

Deletion algorithm continued

3. Ifaninternal node has|[M/2] - 1 children
— If aneighbor has > [M/2] items, adopt and update parent
— Else merge node with neighbor
« Guaranteed to have a legal number of items

« Parent now has one less node, may need to continue
underflowing up the tree

Fine if we merge all the way up through the root
— Unless the root went from 2 children to 1
— In that case, delete the root and make child the root
— This is the only case that decreases tree height

Spring 2012 CSE332: Data Abstractions 17

Worst-Case Efficiency of Delete

* Find correct leaf: O(1log, M 1logy, n)
« Remove from leaf: O(L)

« Adopt from or merge with neighbor: O(L)
« Adopt or merge all the way up to root: O(M log,, n)

Total: O(L + M 1og,, n)
But it's not that bad:

— Merges are not that common
— Disk accesses are the name of the game: O(1og,, n)

Spring 2012 CSE332: Data Abstractions 18

B Trees Iin Java®?

For most of our data structures, we have encouraged writing high-
level, reusable code, such as in Java with generics

It is worthwhile to know enough about *how Java works” to
understand why this is probably a bad idea for B trees

— If you just want a balanced tree with worst-case logarithmic
operations, no problem

 If M=3, this is called a 2-3 tree
 If M=4, this is called a 2-3-4 tree
— Assuming our goal is efficient number of disk accesses
« Java has many advantages, but it wasn’t designed for this

The key issue Is extra levels of indirection...

Spring 2012 CSE332: Data Abstractions 19

Nalve approach

Even if we assume data items have int keys, you cannot get the
data representation you want for “really big data”

interface Keyed {
int getKey() ;

}

class BTreeNode<E implements Keyed> ({
static final int M = 128;

int[] keys = new int[M-1];
BTreeNode<E>[] children = new BTreeNode[M];
int numChildren = 0;

}
class BTreeleaf<E implements Keyed> {

static final int L = 32;
E[] data = (E[])new Object[L];
int numItems = 0O;

}

Spring 2012 CSE332: Data Abstractions 20

What that looks like

BTreeNode (3 objects with “header words”)
w-112/2045 --. (larger array)

M, | | .| .| - (largerarray)
[N

BTreelLeaf (data objects not in contiguous memory)
\

A\

~
A
70

LI, |.|.]|.| .- (larger array)

/11
0000

=

\

=
20

Spring 2012 CSE332: Data Abstractions 21

The moral

The point of B trees is to keep related data in contiguous memory

« All the red references on the previous slide are inappropriate
— As minor point, beware the extra “header words”

« But that's “the best you can do” in Java
— Again, the advantage is generic, reusable code

— But for your performance-critical web-index, not the way to
Implement your B-Tree for terabytes of data

« Otherlanguages (e.g., C++) have better support for “flattening
objects into arrays”

 Levels of indirection matter!

Spring 2012 CSE332: Data Abstractions 22

Conclusion: Balanced Trees

« Balanced trees make good dictionaries because they guarantee
logarithmic-time £ind, insert, and delete

— Essential and beautiful computer science
— But only if you can maintain balance within the time bound

- AVL trees maintain balance by tracking height and allowing all
children to differ in height by at most 1

- B trees maintain balance by keeping nodes at least half full and
all leaves at same height

« Other great balanced trees (see text; worth knowing they exist)
— Red-black trees: all leaves have depth within a factor of 2

— Splay trees: self-adjusting; amortized guarantee; no extra
space for height information

Spring 2012 CSE332: Data Abstractions 23

Motivating Hash Tables

For dictionary with n key/value pairs

insert find delete
* Unsorted linked-list O(1) O(n) O(n)
« Unsorted array O(1) O(n) O(n)
« Sorted linked list O(n) O(n) O(n)
« Sorted array O(n) O(logn) Of(n)
- Balanced tree O(logn) O(logn) O(logn)
« Magic array O(1) O(1) O(1)

Sufficient “magic”:
— Compute array index for an item in O(1) time [doable]
— Have a different index for every item [magic]

Spring 2012 CSE332: Data Abstractions 24

Hash Tables

Aim for constant-time (i.e., O(1)) £ind, insert, and delete
— “On average” under some often-reasonable assumptions

A hash table is an array of some fixed size

hash table
0
« Basic idea:
hash function:
Index = h(key)
>
key space (e.g., integers, strings) TableSize —1

Spring 2012 CSE332: Data Abstractions 25

Hash Tables vs. Balanced Trees

* Interms of a Dictionary ADT for just insert, £ind, delete, hash
tables and balanced trees are just different data structures

— Hash tables O(1) on average (assuming few collisions)
— Balanced trees O(1og n) worst-case

« Constant-time is better, right?
— Yes, but you need “hashing to behave” (must avoid collisions)

— Yes, but £indMin, findMax, predecessor, and successor
go from O(1log n) to O(n), printSorted from O(n) to O(n 1log n)

« Why your textbook considers this to be a different ADT
« Not so important to argue over the definitions

Spring 2012 CSE332: Data Abstractions 26

Hash Tables

 There are m possible keys (m typically large, even infinite)
* We expect our table to have only n items
* nis much less than m (often written n << m)

Many dictionaries have this property

— Compiler: All possible identifiers allowed by the language vs.
those used in some file of one program

— Database: All possible student names vs. students enrolled

— Al: All possible chess-board configurations vs. those
considered by the current player

Spring 2012 CSE332: Data Abstractions 27

Hash functions

An ideal hash function:

» |s fast to compute

« “Rarely” hashes two “used” keys to the same index hash table
— Often impossible in theory; easy in practice

— WIill handle collisions in next lecture 0
hash function:
Index = h(key)
>
key space (e.g., integers, strings) TableSize -1

Spring 2012 CSE332: Data Abstractions 28

Who hashes what?

« Hash tables can be generic
— To store elements of type E, we just need E to be:
1. Comparable: order any two E (as with all dictionaries)
2. Hashable: convert any E to an int

 When hash tables are a reusable library, the division of
responsibility generally breaks down into two roles:

client hash table library

collision? ollision

E mmmes) |t mmmms) table-index | :
> resolution

 We will learn both roles, but most programmers “in the real world”
spend more time as clients while understanding the library

Spring 2012 CSE332: Data Abstractions 29

More on roles

Some ambiguity in terminology on which parts are “hashing”
client hash table library

collision? collision
resolution

E mm==) [nt mmms) table-index |
\—'—l
_'_l

“hashing”? “hashing™?

Two roles must both contribute to minimizing collisions (heuristically)
* Client should aim for different ints for expected items
— Avoid “wasting” any part of E or the 32 bits of the int
« Library should aim for putting “similar” ints in different indices
— Conversion to index is almost always “mod table-size”
— Using prime numbers for table-size is common

Spring 2012 CSE332: Data Abstractions 30

What to hash?

We will focus on the two most common things to hash: ints and strings

— If you have objects with several fields, it is usually best to
have most of the “identifying fields” contribute to the hash to

avoid collisions

— Example:

class Person {
String first; String middle; String last;

Date birthdate;
}

— An inherent trade-off: hashing-time vs. collision-avoidance
 Badidea(?): Only use first name
 Good idea(?): Only use middle initial
« Admittedly, what-to-hash is often unprincipled ®

Spring 2012 CSE332: Data Abstractions 31

Hashing integers

» Kkey space = integers

« Simple hash function:

h (key) = key % TableSize
— Client: £(x) = x
— Libraryg(x) = x % TableSize

— Fairly fast and natural

« Example:
— TableSize =10
— Insert 7, 18, 41, 34, 10

— (As usual, ignoring data “along for
the ride”)

Spring 2012 CSE332: Data Abstractions

© 00 N O 01 b W0 N - O

32

Hashing integers

» Kkey space = integers

« Simple hash function:

h (key) = key %
— Client: £(x) = x
— Libraryg(x) = x

TableSize

$ TableSize

— Fairly fast and natural

« Example:
— TableSize =10
— Insert 7, 18, 41, 34

— (As usual, ignoring
the ride”)

Spring 2012

, 10
data “along for

CSE332: Data Abstractions

© 00 N O 01 b W0 N - O

10

41

34

18

33

Collision-avoidance

« With“x % TableSize” the number of collisions depends on

— the ints inserted (obviously)
— TableSize

« Larger table-size tends to help, but not always
— Example: 70, 24, 56, 43, 10
with TableSize = 10 and TableSize = 60

« Technique: Pick table size to be prime. Why?
— Real-life data tends to have a pattern
— “Multiples of 617 are probably less likely than “multiples of 60

— Next time we’ll see that one collision-handling strategy does
provably well with prime table size

Spring 2012 CSE332: Data Abstractions 34

More on prime table size

If TableSize is 60 and...
— Lots of data items are multiples of 5, wasting 80% of table
— Lots of data items are multiples of 10, wasting 90% of table
— Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61...
— Collisions can still happen, but 5, 10, 15, 20, ... will fill table
— Collisions can still happen but 10, 20, 30, 40, ... will fill table
— Collisions can still happen but 2, 4, 6, 8, ... will fill table

In general, if x and y are “co-prime” (means ged (x,y) ==1), then
(a * x) $y== (b * x) $ yifandonlyifa $ y == $y

— S0 good to have a TableSize that has no common factors
with any “likely pattern” x

Spring 2012 CSE332: Data Abstractions 35

Okay, back to the client

« If keys aren’t ints, the client must convert to an int
— Trade-off: speed and distinct keys hashing to distinct ints

* Very important example: Strings
— Key space K =545,S,...51.1
« (where s, are chars: s; € [0,52] or s; € [0,256] or s; € [0,2%9])
— Some choices: Which avoid collisions best?

1. h(K) =sy, % TableSize

m—1
2. h(K)= [Z S j % TableSize
i—0

k-1
3. h(K)= Z s, -37' | % TableSize

=0
Spring 2012 CSE332: Data Abstractions 36

Specializing hash functions

How might you hash differently if all your strings were web
addresses (URLS)?

Spring 2012 CSE332: Data Abstractions

37

Combining hash functions

A few rules of thumb / tricks:
1. Use all 32 bits (careful, that includes negative numbers)

2. Use different overlapping bits for different parts of the hash
— Thisis why a factor of 37! works better than 256
— Example: “abcde” and “ebcda”

3. When smashing two hashes into one hash, use bitwise-xor
— bitwise-and produces too many O bits
— bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other resources

5. If keys are known ahead of time, choose a perfect hash

Spring 2012 CSE332: Data Abstractions 38

One expert suggestion

* intresult=17; FHC(li}fQ Java

Second Fdition

« foreach field f

— int fieldHashcode =

* boolean: (f? 1: 0)

byte, char, short, int: (int) f ;
long: (int) (f A (f >>> 32)) | S
float: Float.floatTolntBits(f)
double: Double.doubleToLongBits(f), then above

* Object: object.nashCode()
— result = 31 * result + fieldHashcode

Spring 2012 CSE332: Data Abstractions 39

