
CSE332: Data Abstractions

Lecture 10: More B Trees; Hashing

Dan Grossman

Spring 2012

B Tree Review

• M-ary tree with room for L data items

at each leaf

• Order property:

Subtree between keys x and y

contains only data that is  x

and < y (notice the )

• Balance property:

All nodes and leaves at least half

full, and all leaves at same height

• find and insert efficient

– insert uses splitting to handle

overflow, which may require

splitting parent, and so on

recursively

 Spring 2012 2 CSE332: Data Abstractions

3 7 12 21

21x 12x<21 7x<12 3x<7 x<3

Can do a little better with insert

Eventually have to split up to the root (the tree will fill)

But can sometimes avoid splitting via adoption

– Change what leaf is correct by changing parent keys

– This idea “in reverse” is necessary in deletion (next)

Example:

Spring 2012 3 CSE332: Data Abstractions

3

14

18

30

18

3

14

18

30

18

Insert(31)

32

31

32

31

Splitting

Adoption for insert

Eventually have to split up to the root (the tree will fill)

But can sometimes avoid splitting via adoption

– Change what leaf is correct by changing parent keys

– This idea “in reverse” is necessary in deletion (next)

Example:

Spring 2012 4 CSE332: Data Abstractions

3

14

18

30

18

3

14

30

31

30

Insert(31)

32

Adoption

18 32

Delete(32)

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

3

12

14

15

16

15

18

30

40

18

40

45

Deletion

M = 3 L = 3

36

38

36

Spring 2012 5 CSE332: Data Abstractions

Delete(15)

3

12

14

15

16

15

18

30

36 40

36

38

18

40

45

3

12

14

16

16

18

30

36 40

36

38

18

40

45

M = 3 L = 3

What’s

wrong?

Adopt from

a neighbor!

Spring 2012 6 CSE332: Data Abstractions

3

12

14

16

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

16

16

18

30

36 40

36

38

18

40

45

Spring 2012 7 CSE332: Data Abstractions

Delete(16)

3

12

14

16

14

18

30

36 40

36

38

18

40

45

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

Uh-oh, neighbors at their

minimum!

Spring 2012 8 CSE332: Data Abstractions

3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

14

18

30

36 40

36

38

18

40

45

3

12

14

Move in together and remove

leaf – now parent might

underflow; it has neighbors
Spring 2012 9 CSE332: Data Abstractions

3

12

14

18

30

36 40

36

38

18

40

45

M = 3 L = 3

3

12

14

18

18

30

40

36

38

36

40

45

Spring 2012 10 CSE332: Data Abstractions

Delete(14)

3

12

14

18

18

30

40

36

38

36

40

45

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

Spring 2012 11 CSE332: Data Abstractions

Delete(18)

3

12

18

18

30

40

36

38

36

40

45

M = 3 L = 3

3

12

30

30

40

36

38

36

40

45

Spring 2012 12 CSE332: Data Abstractions

3

12

30

40

36

38

36

40

45

M = 3 L = 3

3

12

18

30

40

36

38

36

40

45

Spring 2012 13 CSE332: Data Abstractions

3

12

30

40

36

38

36

40

45

36 40

3

12

30

3

36

38

40

45

M = 3 L = 3

Spring 2012 14 CSE332: Data Abstractions

36 40

3

12

30

36

38

40

45

M = 3 L = 3

36 40

3

12

30

3

36

38

40

45

Spring 2012 15 CSE332: Data Abstractions

Deletion algorithm, part 1

1. Remove the data from its leaf

2. If the leaf now has L/2 - 1, underflow!

– If a neighbor has > L/2 items, adopt and update parent

– Else merge node with neighbor

• Guaranteed to have a legal number of items

• Parent now has one less node

3. If step (2) caused the parent to have M/2 - 1 children,

underflow!

– …

Spring 2012 16 CSE332: Data Abstractions

Deletion algorithm continued

3. If an internal node has M/2 - 1 children

– If a neighbor has > M/2 items, adopt and update parent

– Else merge node with neighbor

• Guaranteed to have a legal number of items

• Parent now has one less node, may need to continue

underflowing up the tree

Fine if we merge all the way up through the root

– Unless the root went from 2 children to 1

– In that case, delete the root and make child the root

– This is the only case that decreases tree height

Spring 2012 17 CSE332: Data Abstractions

Worst-Case Efficiency of Delete

• Find correct leaf: O(log2 M logM n)

• Remove from leaf: O(L)

• Adopt from or merge with neighbor: O(L)

• Adopt or merge all the way up to root: O(M logM n)

Total: O(L + M logM n)

But it’s not that bad:

– Merges are not that common

– Disk accesses are the name of the game: O(logM n)

Spring 2012 18 CSE332: Data Abstractions

 B Trees in Java?

For most of our data structures, we have encouraged writing high-

level, reusable code, such as in Java with generics

It is worthwhile to know enough about “how Java works” to

understand why this is probably a bad idea for B trees

– If you just want a balanced tree with worst-case logarithmic

operations, no problem

• If M=3, this is called a 2-3 tree

• If M=4, this is called a 2-3-4 tree

– Assuming our goal is efficient number of disk accesses

• Java has many advantages, but it wasn’t designed for this

The key issue is extra levels of indirection…

Spring 2012 19 CSE332: Data Abstractions

Naïve approach

Even if we assume data items have int keys, you cannot get the

data representation you want for “really big data”

Spring 2012 20 CSE332: Data Abstractions

interface Keyed {
 int getKey();
}
class BTreeNode<E implements Keyed> {
 static final int M = 128;
 int[] keys = new int[M-1];
 BTreeNode<E>[] children = new BTreeNode[M];
 int numChildren = 0;
 …
}
class BTreeLeaf<E implements Keyed> {
 static final int L = 32;
 E[] data = (E[])new Object[L];
 int numItems = 0;
 …
}

What that looks like

Spring 2012 21 CSE332: Data Abstractions

BTreeNode (3 objects with “header words”)

M-1 12 20 45

M

70

BTreeLeaf (data objects not in contiguous memory)

20

… (larger array)

… (larger array)

L … (larger array)

The moral

• The point of B trees is to keep related data in contiguous memory

• All the red references on the previous slide are inappropriate

– As minor point, beware the extra “header words”

• But that’s “the best you can do” in Java

– Again, the advantage is generic, reusable code

– But for your performance-critical web-index, not the way to

implement your B-Tree for terabytes of data

• Other languages (e.g., C++) have better support for “flattening

objects into arrays”

• Levels of indirection matter!

Spring 2012 22 CSE332: Data Abstractions

Conclusion: Balanced Trees

• Balanced trees make good dictionaries because they guarantee
logarithmic-time find, insert, and delete

– Essential and beautiful computer science

– But only if you can maintain balance within the time bound

• AVL trees maintain balance by tracking height and allowing all

children to differ in height by at most 1

• B trees maintain balance by keeping nodes at least half full and

all leaves at same height

• Other great balanced trees (see text; worth knowing they exist)

– Red-black trees: all leaves have depth within a factor of 2

– Splay trees: self-adjusting; amortized guarantee; no extra

space for height information

 Spring 2012 23 CSE332: Data Abstractions

Motivating Hash Tables

For dictionary with n key/value pairs

 insert find delete

• Unsorted linked-list O(1) O(n) O(n)

• Unsorted array O(1) O(n) O(n)

• Sorted linked list O(n) O(n) O(n)

• Sorted array O(n) O(log n) O(n)

• Balanced tree O(log n) O(log n) O(log n)

• Magic array O(1) O(1) O(1)

Sufficient “magic”:

– Compute array index for an item in O(1) time [doable]

– Have a different index for every item [magic]

Spring 2012 24 CSE332: Data Abstractions

Hash Tables

• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some often-reasonable assumptions

• A hash table is an array of some fixed size

• Basic idea:

Spring 2012 25 CSE332: Data Abstractions

0

…

TableSize –1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

Hash Tables vs. Balanced Trees

• In terms of a Dictionary ADT for just insert, find, delete, hash

tables and balanced trees are just different data structures

– Hash tables O(1) on average (assuming few collisions)

– Balanced trees O(log n) worst-case

• Constant-time is better, right?

– Yes, but you need “hashing to behave” (must avoid collisions)

– Yes, but findMin, findMax, predecessor, and successor

go from O(log n) to O(n), printSorted from O(n) to O(n log n)

• Why your textbook considers this to be a different ADT

• Not so important to argue over the definitions

Spring 2012 26 CSE332: Data Abstractions

Hash Tables

• There are m possible keys (m typically large, even infinite)

• We expect our table to have only n items

• n is much less than m (often written n << m)

Many dictionaries have this property

– Compiler: All possible identifiers allowed by the language vs.

those used in some file of one program

– Database: All possible student names vs. students enrolled

– AI: All possible chess-board configurations vs. those

considered by the current player

– …

Spring 2012 27 CSE332: Data Abstractions

Hash functions

An ideal hash function:

• Is fast to compute

• “Rarely” hashes two “used” keys to the same index

– Often impossible in theory; easy in practice

– Will handle collisions in next lecture

Spring 2012 28 CSE332: Data Abstractions

0

…

TableSize –1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

Who hashes what?

• Hash tables can be generic

– To store elements of type E, we just need E to be:

1. Comparable: order any two E (as with all dictionaries)

2. Hashable: convert any E to an int

• When hash tables are a reusable library, the division of

responsibility generally breaks down into two roles:

Spring 2012 29 CSE332: Data Abstractions

• We will learn both roles, but most programmers “in the real world”

spend more time as clients while understanding the library

E int table-index
collision? collision

resolution

client hash table library

More on roles

Spring 2012 30 CSE332: Data Abstractions

Two roles must both contribute to minimizing collisions (heuristically)

• Client should aim for different ints for expected items

– Avoid “wasting” any part of E or the 32 bits of the int

• Library should aim for putting “similar” ints in different indices

– Conversion to index is almost always “mod table-size”

– Using prime numbers for table-size is common

E int table-index
collision? collision

resolution

client hash table library

Some ambiguity in terminology on which parts are “hashing”

“hashing”? “hashing”?

What to hash?

We will focus on the two most common things to hash: ints and strings

– If you have objects with several fields, it is usually best to

have most of the “identifying fields” contribute to the hash to

avoid collisions

– Example:
 class Person {

 String first; String middle; String last;

 Date birthdate;

 }

– An inherent trade-off: hashing-time vs. collision-avoidance

• Bad idea(?): Only use first name

• Good idea(?): Only use middle initial

• Admittedly, what-to-hash is often unprincipled 

Spring 2012 31 CSE332: Data Abstractions

Hashing integers

• key space = integers

• Simple hash function:

 h(key) = key % TableSize

– Client: f(x) = x

– Library g(x) = x % TableSize

– Fairly fast and natural

• Example:

– TableSize = 10

– Insert 7, 18, 41, 34, 10

– (As usual, ignoring data “along for

the ride”)

Spring 2012 32 CSE332: Data Abstractions

0

1

2

3

4

5

6

7

8

9

Hashing integers

Spring 2012 33 CSE332: Data Abstractions

0 10

1 41

2

3

4 34

5

6

7 7

8 18

9

• key space = integers

• Simple hash function:

 h(key) = key % TableSize

– Client: f(x) = x

– Library g(x) = x % TableSize

– Fairly fast and natural

• Example:

– TableSize = 10

– Insert 7, 18, 41, 34, 10

– (As usual, ignoring data “along for

the ride”)

Collision-avoidance

• With “x % TableSize” the number of collisions depends on

– the ints inserted (obviously)

– TableSize

• Larger table-size tends to help, but not always

– Example: 70, 24, 56, 43, 10

 with TableSize = 10 and TableSize = 60

• Technique: Pick table size to be prime. Why?

– Real-life data tends to have a pattern

– “Multiples of 61” are probably less likely than “multiples of 60”

– Next time we’ll see that one collision-handling strategy does

provably well with prime table size

 Spring 2012 34 CSE332: Data Abstractions

More on prime table size

If TableSize is 60 and…

– Lots of data items are multiples of 5, wasting 80% of table

– Lots of data items are multiples of 10, wasting 90% of table

– Lots of data items are multiples of 2, wasting 50% of table

If TableSize is 61…

– Collisions can still happen, but 5, 10, 15, 20, … will fill table

– Collisions can still happen but 10, 20, 30, 40, … will fill table

– Collisions can still happen but 2, 4, 6, 8, … will fill table

In general, if x and y are “co-prime” (means gcd(x,y)==1), then

 (a * x) % y == (b * x) % y if and only if a % y == b % y

– So good to have a TableSize that has no common factors

with any “likely pattern” x

Spring 2012 35 CSE332: Data Abstractions

Okay, back to the client

• If keys aren’t ints, the client must convert to an int

– Trade-off: speed and distinct keys hashing to distinct ints

• Very important example: Strings

– Key space K = s0s1s2…sm-1

• (where si are chars: si  [0,52] or si  [0,256] or si  [0,216])

– Some choices: Which avoid collisions best?

1. h(K) = s0 % TableSize

2. h(K) = % TableSize

3. h(K) = % TableSize

Spring 2012 36 CSE332: Data Abstractions

1

0

m

i

i

s




 
 
 
















1

0

37
k

i

i

is

Specializing hash functions

How might you hash differently if all your strings were web

addresses (URLs)?

Spring 2012 37 CSE332: Data Abstractions

Combining hash functions

A few rules of thumb / tricks:

1. Use all 32 bits (careful, that includes negative numbers)

2. Use different overlapping bits for different parts of the hash

– This is why a factor of 37i works better than 256i

– Example: “abcde” and “ebcda”

3. When smashing two hashes into one hash, use bitwise-xor

– bitwise-and produces too many 0 bits

– bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other resources

5. If keys are known ahead of time, choose a perfect hash

Spring 2012 38 CSE332: Data Abstractions

One expert suggestion

• int result = 17;

• foreach field f

– int fieldHashcode =

• boolean: (f ? 1: 0)

• byte, char, short, int: (int) f

• long: (int) (f ^ (f >>> 32))

• float: Float.floatToIntBits(f)

• double: Double.doubleToLongBits(f), then above

• Object: object.hashCode()

– result = 31 * result + fieldHashcode

Spring 2012 CSE332: Data Abstractions 39

