
CSE332: Data Abstractions

Lecture 11: Hash Tables

Dan Grossman

Spring 2012

Hash Tables: Review

• Aim for constant-time (i.e., O(1)) find, insert, and delete

– “On average” under some reasonable assumptions

• A hash table is an array of some fixed size

– But growable as we’ll see

Spring 2012 2 CSE332: Data Abstractions

E int table-index
collision? collision

resolution

client hash table library

0

…

TableSize –1

hash table

Collision resolution

Collision:

 When two keys map to the same location in the hash table

We try to avoid it, but number-of-keys exceeds table size

So hash tables should support collision resolution

– Ideas?

Spring 2012 3 CSE332: Data Abstractions

Separate Chaining

Chaining:

 All keys that map to the same

 table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

 insert 10, 22, 107, 12, 42

 with mod hashing

 and TableSize = 10

Spring 2012 4 CSE332: Data Abstractions

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

Separate Chaining

Spring 2012 5 CSE332: Data Abstractions

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 / Chaining:

 All keys that map to the same

 table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

 insert 10, 22, 107, 12, 42

 with mod hashing

 and TableSize = 10

Separate Chaining

Spring 2012 6 CSE332: Data Abstractions

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

10 /

22 /

Chaining:

 All keys that map to the same

 table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

 insert 10, 22, 107, 12, 42

 with mod hashing

 and TableSize = 10

Separate Chaining

Spring 2012 7 CSE332: Data Abstractions

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

22 /

107 /

Chaining:

 All keys that map to the same

 table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

 insert 10, 22, 107, 12, 42

 with mod hashing

 and TableSize = 10

Separate Chaining

Spring 2012 8 CSE332: Data Abstractions

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

12

107 /

22 /

Chaining:

 All keys that map to the same

 table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

 insert 10, 22, 107, 12, 42

 with mod hashing

 and TableSize = 10

Separate Chaining

Spring 2012 9 CSE332: Data Abstractions

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

Chaining:

 All keys that map to the same

 table location are kept in a list

(a.k.a. a “chain” or “bucket”)

As easy as it sounds

Example:

 insert 10, 22, 107, 12, 42

 with mod hashing

 and TableSize = 10

Thoughts on chaining

• Worst-case time for find?

– Linear

– But only with really bad luck or bad hash function

– So not worth avoiding (e.g., with balanced trees at each

bucket)

• Beyond asymptotic complexity, some “data-structure

engineering” may be warranted

– Linked list vs. array vs. chunked list (lists should be short!)

– Move-to-front (cf. Project 2)

– Better idea: Leave room for 1 element (or 2?) in the table

itself, to optimize constant factors for the common case

• A time-space trade-off…

Spring 2012 10 CSE332: Data Abstractions

Time vs. space (constant factors only here)

Spring 2012 11 CSE332: Data Abstractions

0

1 /

2

3 /

4 /

5 /

6 /

7

8 /

9 /

10 /

42

107 /

12 22 /

0 10 /

1 / X

2 42

3 / X

4 / X

5 / X

6 / X

7 107 /

8 / X

9 / X

12 22 /

More Rigorous Chaining Analysis

Definition: The load factor, , of a hash table is

Spring 2012 12 CSE332: Data Abstractions

N

TableSize
 

 number of elements

Under chaining, the average number of elements per bucket is ____

So if some inserts are followed by random finds, then on average:

• Each unsuccessful find compares against ____ items

• Each successful find compares against _____ items

More rigorous chaining analysis

Definition: The load factor, , of a hash table is

Spring 2012 13 CSE332: Data Abstractions

N

TableSize
 

 number of elements

Under chaining, the average number of elements per bucket is 

So if some inserts are followed by random finds, then on average:

• Each unsuccessful find compares against  items

• Each successful find compares against  / 2 items

So we like to keep  fairly low (e.g., 1 or 1.5 or 2) for chaining

Alternative: Use empty space in the table

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Spring 2012 14 CSE332: Data Abstractions

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 /

Alternative: Use empty space in the table

Spring 2012 15 CSE332: Data Abstractions

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Spring 2012 16 CSE332: Data Abstractions

0 8

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Spring 2012 17 CSE332: Data Abstractions

0 8

1 109

2 /

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Alternative: Use empty space in the table

Spring 2012 18 CSE332: Data Abstractions

0 8

1 109

2 10

3 /

4 /

5 /

6 /

7 /

8 38

9 19

• Another simple idea: If h(key) is already full,

– try (h(key) + 1) % TableSize. If full,

– try (h(key) + 2) % TableSize. If full,

– try (h(key) + 3) % TableSize. If full…

• Example: insert 38, 19, 8, 109, 10

Open addressing

This is one example of open addressing

In general, open addressing means resolving collisions by trying a

sequence of other positions in the table.

Trying the next spot is called probing

– We just did linear probing

• ith probe was (h(key) + i) % TableSize

– In general have some probe function f and use

h(key) + f(i) % TableSize

Open addressing does poorly with high load factor 

– So want larger tables

– Too many probes means no more O(1)

Spring 2012 19 CSE332: Data Abstractions

Terminology

We and the book use the terms

– “chaining” or “separate chaining”

– “open addressing”

Very confusingly,

– “open hashing” is a synonym for “chaining”

– “closed hashing” is a synonym for “open addressing”

(If it makes you feel any better,

most trees in CS grow upside-down )

Spring 2012 20 CSE332: Data Abstractions

Other operations

insert finds an open table position using a probe function

What about find?

– Must use same probe function to “retrace the trail” for the data

– Unsuccessful search when reach empty position

What about delete?

– Must use “lazy” deletion. Why?

• Marker indicates “no data here, but don’t stop probing”

– Note: delete with chaining is plain-old list-remove

Spring 2012 21 CSE332: Data Abstractions

(Primary) Clustering

It turns out linear probing is a bad idea, even though the probe

function is quick to compute (which is a good thing)

Spring 2012 22 CSE332: Data Abstractions

[R. Sedgewick]

Tends to produce

clusters, which lead to

long probing sequences

• Called primary

clustering

• Saw this starting in

our example

Analysis of Linear Probing

• Trivial fact: For any  < 1, linear probing will find an empty slot

– It is “safe” in this sense: no infinite loop unless table is full

• Non-trivial facts we won’t prove:

 Average # of probes given  (in the limit as TableSize →)

– Unsuccessful search:

– Successful search:

• This is pretty bad: need to leave sufficient empty space in the

table to get decent performance (see chart)

Spring 2012 23 CSE332: Data Abstractions

  











2
1

1
1

2

1



 












1

1
1

2

1

In a chart

• Linear-probing performance degrades rapidly as table gets full

– (Formula assumes “large table” but point remains)

• By comparison, chaining performance is linear in  and has no

trouble with >1

Spring 2012 24 CSE332: Data Abstractions

Quadratic probing

• We can avoid primary clustering by changing the probe function

 (h(key) + f(i)) % TableSize

• A common technique is quadratic probing:

 f(i) = i2

– So probe sequence is:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + 1) % TableSize

• 2nd probe: (h(key) + 4) % TableSize

• 3rd probe: (h(key) + 9) % TableSize

• …

• ith probe: (h(key) + i2) % TableSize

• Intuition: Probes quickly “leave the neighborhood”

Spring 2012 25 CSE332: Data Abstractions

Quadratic Probing Example

Spring 2012 26 CSE332: Data Abstractions

0

1

2

3

4

5

6

7

8

9

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Spring 2012 27 CSE332: Data Abstractions

0

1

2

3

4

5

6

7

8

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Spring 2012 28 CSE332: Data Abstractions

0

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Spring 2012 29 CSE332: Data Abstractions

0 49

1

2

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Spring 2012 30 CSE332: Data Abstractions

0 49

1

2 58

3

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Quadratic Probing Example

Spring 2012 31 CSE332: Data Abstractions

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

TableSize=10

Insert:

89

18

49

58

79

Another Quadratic Probing Example

Spring 2012 32 CSE332: Data Abstractions

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6

Another Quadratic Probing Example

Spring 2012 33 CSE332: Data Abstractions

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5

6 76

Another Quadratic Probing Example

Spring 2012 34 CSE332: Data Abstractions

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

Spring 2012 35 CSE332: Data Abstractions

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2

3

4

5 40

6 76

Another Quadratic Probing Example

Spring 2012 36 CSE332: Data Abstractions

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3

4

5 40

6 76

Another Quadratic Probing Example

Spring 2012 37 CSE332: Data Abstractions

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Another Quadratic Probing Example

Spring 2012 38 CSE332: Data Abstractions

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

0 48

1

2 5

3 55

4

5 40

6 76

Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6

• Excel shows takes “at least” 50 probes and a pattern
• Proof uses induction and (n2+5) % 7 = ((n-7)2+5) % 7

• In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k

From Bad News to Good News

• Bad news:

– Quadratic probing can cycle through the same full indices,

never terminating despite table not being full

• Good news:

– If TableSize is prime and  < ½, then quadratic probing will

find an empty slot in at most TableSize/2 probes

– So: If you keep  < ½ and TableSize is prime, no need to

detect cycles

– Proof is posted in lecture11.txt

• Also, slightly less detailed proof in textbook

• Key fact: For prime T and 0 < i,j < T/2 where i  j,

 (k + i2) % T  (k + j2) % T (i.e., no index repeat)

Spring 2012 39 CSE332: Data Abstractions

Clustering reconsidered

• Quadratic probing does not suffer from primary clustering:

no problem with keys initially hashing to the same neighborhood

• But it’s no help if keys initially hash to the same index

– Called secondary clustering

• Can avoid secondary clustering with a probe function that

depends on the key: double hashing…

Spring 2012 40 CSE332: Data Abstractions

Double hashing

Idea:

– Given two good hash functions h and g, it is very unlikely
that for some key, h(key) == g(key)

– So make the probe function f(i) = i*g(key)

Probe sequence:

• 0th probe: h(key) % TableSize

• 1st probe: (h(key) + g(key)) % TableSize

• 2nd probe: (h(key) + 2*g(key)) % TableSize

• 3rd probe: (h(key) + 3*g(key)) % TableSize

• …

• ith probe: (h(key) + i*g(key)) % TableSize

Detail: Make sure g(key) cannot be 0

Spring 2012 41 CSE332: Data Abstractions

Double-hashing analysis

• Intuition: Because each probe is “jumping” by g(key) each

time, we “leave the neighborhood” and “go different places from

other initial collisions”

• But we could still have a problem like in quadratic probing where

we are not “safe” (infinite loop despite room in table)

– It is known that this cannot happen in at least one case:

• h(key) = key % p

• g(key) = q – (key % q)

• 2 < q < p

• p and q are prime

Spring 2012 42 CSE332: Data Abstractions

More double-hashing facts

• Assume “uniform hashing”

– Means probability of g(key1) % p == g(key2) % p is

1/p

• Non-trivial facts we won’t prove:

 Average # of probes given  (in the limit as TableSize →)

– Unsuccessful search (intuitive):

– Successful search (less intuitive):

• Bottom line: unsuccessful bad (but not as bad as linear probing),

but successful is not nearly as bad

Spring 2012 43 CSE332: Data Abstractions

1

1 

1 1
log

1
e

 

 
 
 

Charts

Spring 2012 44 CSE332: Data Abstractions

Where are we?

• Chaining is easy

– find, delete proportional to load factor on average

– insert can be constant if just push on front of list

• Open addressing uses probing, has clustering issues as table fills

– Why use it:

• Less memory allocation?

• Easier data representation?

• Now:

– Growing the table when it gets too full (“rehashing”)

– Relation between hashing/comparing and connection to Java

Spring 2012 45 CSE332: Data Abstractions

Rehashing

• As with array-based stacks/queues/lists, if table gets too full,

create a bigger table and copy everything

• With chaining, we get to decide what “too full” means

– Keep load factor reasonable (e.g., < 1)?

– Consider average or max size of non-empty chains?

• For open addressing, half-full is a good rule of thumb

• New table size

– Twice-as-big is a good idea, except, uhm, that won’t be prime!

– So go about twice-as-big

– Can have a list of prime numbers in your code since you won’t

grow more than 20-30 times

Spring 2012 46 CSE332: Data Abstractions

More on rehashing

Spring 2012 47 CSE332: Data Abstractions

• What if we copy all data to the same indices in the new table?

– Will not work; we calculated the index based on TableSize

• Go through table, do standard insert for each into new table

– Run-time?

– O(n): Iterate through old table

• Resize is an O(n) operation, involving n calls to the hash function

– Is there some way to avoid all those hash function calls?

– Space/time tradeoff: Could store h(key) with each data item

– Growing the table is still O(n); only helps by a constant factor

Hashing and comparing

• Need to emphasize a critical detail:

– We initially hash E to get a table index

– While chaining or probing we compare to E

• Just need equality testing (i.e., “is it what I want”)

• So a hash table needs a hash function and a comparator

– In Project 2, you will use two function objects

– The Java library uses a more object-oriented approach:
each object has an equals method and a hashCode method

Spring 2012 48 CSE332: Data Abstractions

class Object {

 boolean equals(Object o) {…}

 int hashCode() {…}

 …

}

Equal Objects Must Hash the Same

• The Java library (and your project hash table) make a very

important assumption that clients must satisfy…

• Object-oriented way of saying it:

 If a.equals(b), then we must require

a.hashCode()==b.hashCode()

• Function-object way of saying it:

 If c.compare(a,b) == 0, then we must require

 h.hash(a) == h.hash(b)

• Why is this essential?

Spring 2012 49 CSE332: Data Abstractions

Java bottom line

• Lots of Java libraries use hash tables, perhaps without your

knowledge

• So: If you ever override equals, you need to override

hashCode also in a consistent way

– See CoreJava book, Chapter 5 for other “gotchas” with
equals

Spring 2012 50 CSE332: Data Abstractions

Bad Example

Spring 2012 51 CSE332: Data Abstractions

class PolarPoint {
 double r = 0.0;
 double theta = 0.0;
 void addToAngle(double theta2) { theta+=theta2; }
 …
 boolean equals(Object otherObject) {
 if(this==otherObject) return true;
 if(otherObject==null) return false;
 if(getClass()!=other.getClass()) return false;
 PolarPoint other = (PolarPoint)otherObject;
 double angleDiff =
 (theta – other.theta) % (2*Math.PI);
 double rDiff = r – other.r;
 return Math.abs(angleDiff) < 0.0001
 && Math.abs(rDiff) < 0.0001;
 }
 // wrong: must override hashCode!
}

• Think about using a hash table holding points

By the way: comparison has rules too

We have not empahsized important “rules” about comparison for:

– All our dictionaries

– Sorting (next major topic)

Comparison must impose a consistent, total ordering:

For all a, b, and c,

– If compare(a,b) < 0, then compare(b,a) > 0

– If compare(a,b) == 0, then compare(b,a) == 0

– If compare(a,b) < 0 and compare(b,c) < 0,

then compare(a,c) < 0

Spring 2012 52 CSE332: Data Abstractions

Final word on hashing

• The hash table is one of the most important data structures

– Supports only find, insert, and delete efficiently

• Important to use a good hash function

• Important to keep hash table at a good size

• What we skipped: Perfect hashing, universal hash functions,

hopscotch hashing, cuckoo hashing

• Side-comment: hash functions have uses beyond hash tables

– Examples: Cryptography, check-sums

Spring 2012 53 CSE332: Data Abstractions

