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Hash Tables: Review 

• Aim for constant-time (i.e., O(1)) find, insert, and delete 

– “On average” under some reasonable assumptions 
 

• A hash table is an array of some fixed size 

– But growable as we’ll see 
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Collision resolution 

Collision:  

 When two keys map to the same location in the hash table 

 

We try to avoid it, but number-of-keys exceeds table size 

 

So hash tables should support collision resolution 

– Ideas? 
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Separate Chaining 

Chaining:  

 All keys that map to the same  

     table location are kept in a list    

(a.k.a. a “chain” or “bucket”) 

 

As easy as it sounds 

 

Example:  

 insert 10, 22, 107, 12, 42  

 with mod hashing  

 and TableSize = 10 

 

Spring 2012 4 CSE332: Data Abstractions 

0 / 

1 / 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 / 

9 / 



Separate Chaining 
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Separate Chaining 
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Separate Chaining 
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 All keys that map to the same  
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As easy as it sounds 

 

Example:  

 insert 10, 22, 107, 12, 42  
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Separate Chaining 

Spring 2012 9 CSE332: Data Abstractions 

0 

1 / 

2 

3 / 

4 / 

5 / 

6 / 

7 

8 / 

9 / 

10 / 

42 

107 / 

12 22 / 

Chaining:  

 All keys that map to the same  

     table location are kept in a list    

(a.k.a. a “chain” or “bucket”) 

 

As easy as it sounds 

 

Example:  

 insert 10, 22, 107, 12, 42  

 with mod hashing  

 and TableSize = 10 

 



Thoughts on chaining 

• Worst-case time for find?  

– Linear 

– But only with really bad luck or bad hash function 

– So not worth avoiding (e.g., with balanced trees at each 

bucket) 

 

• Beyond asymptotic complexity, some “data-structure 

engineering” may be warranted 

– Linked list vs. array vs. chunked list (lists should be short!) 

– Move-to-front (cf. Project 2) 

– Better idea: Leave room for 1 element (or 2?) in the table 

itself, to optimize constant factors for the common case 

• A time-space trade-off… 
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Time vs. space (constant factors only here) 
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More Rigorous Chaining Analysis 

Definition: The load factor, , of a hash table is 
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N

TableSize
 

 number of elements 

Under chaining, the average number of elements per bucket is ____ 

 

So if some inserts are followed by random finds, then on average: 

• Each unsuccessful find compares against ____ items 

• Each successful find compares against _____ items 

   

 



More rigorous chaining analysis 

Definition: The load factor, , of a hash table is 
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N

TableSize
 

 number of elements 

Under chaining, the average number of elements per bucket is  

 

So if some inserts are followed by random finds, then on average: 

• Each unsuccessful find compares against  items 

• Each successful find compares against  / 2 items 

 

So we like to keep   fairly low (e.g., 1 or 1.5 or 2) for chaining 

   

 



Alternative: Use empty space in the table 

• Another simple idea: If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 
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Alternative: Use empty space in the table 

Spring 2012 15 CSE332: Data Abstractions 

0 / 

1 / 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 38 

9 19 

• Another simple idea: If h(key) is already full,  
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– try (h(key) + 3) % TableSize.  If full… 
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Alternative: Use empty space in the table 
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• Another simple idea: If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 



Alternative: Use empty space in the table 
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• Another simple idea: If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 



Alternative: Use empty space in the table 
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• Another simple idea: If h(key) is already full,  

– try (h(key) + 1) % TableSize.  If full, 

– try (h(key) + 2) % TableSize.  If full, 

– try (h(key) + 3) % TableSize.  If full… 

 

• Example: insert 38, 19, 8, 109, 10 



Open addressing 

This is one example of open addressing 
 

In general, open addressing means resolving collisions by trying a 

sequence of other positions in the table. 
 

Trying the next spot is called probing 

– We just did linear probing 

• ith probe was (h(key) + i) % TableSize 

– In general have some probe function f and use              

h(key) + f(i) % TableSize 
 

Open addressing does poorly with high load factor  

– So want larger tables 

– Too many probes means no more O(1) 
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Terminology 

We and the book use the terms 

– “chaining” or “separate chaining” 

– “open addressing” 

 

Very confusingly, 

– “open hashing” is a synonym for “chaining” 

– “closed hashing” is a synonym for “open addressing” 

 

 

(If it makes you feel any better,  

most trees in CS grow upside-down ) 

Spring 2012 20 CSE332: Data Abstractions 



Other operations 

insert finds an open table position using a probe function 

 

What about find? 

– Must use same probe function to “retrace the trail” for the data 

– Unsuccessful search when reach empty position 

 

What about delete? 

– Must use “lazy” deletion.  Why? 

• Marker indicates “no data here, but don’t stop probing” 

– Note: delete with chaining is plain-old list-remove 
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(Primary) Clustering 

It turns out linear probing is a bad idea, even though the probe 

function is quick to compute (which is a good thing) 
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[R. Sedgewick] 

Tends to produce 

clusters, which lead to 

long probing sequences 

• Called primary 

clustering 

• Saw this starting in 

our example 



Analysis of Linear Probing 

• Trivial fact: For any  < 1, linear probing will find an empty slot 

– It is “safe” in this sense: no infinite loop unless table is full 

 

• Non-trivial facts we won’t prove: 

 Average # of probes given  (in the limit as TableSize → ) 

– Unsuccessful search: 

 

 

– Successful search:   

 

 

• This is pretty bad: need to leave sufficient empty space in the 

table to get decent performance (see chart) 
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In a chart 

• Linear-probing performance degrades rapidly as table gets full 

– (Formula assumes “large table” but point remains) 

 

 

 

 

 

 

 

 

 

• By comparison, chaining performance is linear in  and has no 

trouble with >1 
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Quadratic probing 

• We can avoid primary clustering by changing the probe function 

  (h(key) + f(i)) % TableSize 
 

• A common technique is quadratic probing: 

  f(i) = i2 

– So probe sequence is: 

• 0th probe:  h(key) % TableSize 

• 1st probe: (h(key) + 1) % TableSize 

• 2nd probe: (h(key) + 4) % TableSize 

• 3rd probe: (h(key) + 9) % TableSize 

• … 

• ith probe: (h(key) + i2) % TableSize 
 

• Intuition: Probes quickly “leave the neighborhood” 
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Quadratic Probing Example 
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Quadratic Probing Example 
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Quadratic Probing Example 
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Quadratic Probing Example 
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Quadratic Probing Example 
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Another Quadratic Probing Example 
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TableSize = 7 
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Another Quadratic Probing Example 
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TableSize = 7 
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Another Quadratic Probing Example 

Spring 2012 34 CSE332: Data Abstractions 

TableSize = 7 
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Another Quadratic Probing Example 
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Another Quadratic Probing Example 
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TableSize = 7 

 

Insert: 

76                 (76 % 7 = 6) 
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Doh!: For all n, ((n*n) +5) % 7 is 0, 2, 5, or 6 

•  Excel shows takes “at least” 50 probes and a pattern 
•  Proof uses induction and  (n2+5) % 7 = ((n-7)2+5) % 7 

•  In fact, for all c and k, (n2+c) % k = ((n-k)2+c) % k 



From Bad News to Good News 

• Bad news:  

– Quadratic probing can cycle through the same full indices, 

never terminating despite table not being full 
 

• Good news:  

– If TableSize is prime and  < ½, then quadratic probing will 

find an empty slot in at most TableSize/2 probes 

– So: If you keep  < ½ and TableSize is prime, no need to 

detect cycles 
 

– Proof is posted in lecture11.txt 

• Also, slightly less detailed proof in textbook 

• Key fact: For prime T and 0 < i,j < T/2 where i  j, 

    (k + i2) % T  (k + j2) % T (i.e., no index repeat) 
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Clustering reconsidered 

• Quadratic probing does not suffer from primary clustering:       

no problem with keys initially hashing to the same neighborhood 

 

• But it’s no help if keys initially hash to the same index 

– Called secondary clustering 

 

• Can avoid secondary clustering with a probe function that 

depends on the key: double hashing… 
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Double hashing 

Idea:  

– Given two good hash functions h and g, it is very unlikely 
that for some key,  h(key) == g(key) 

– So make the probe function f(i) = i*g(key) 
 

Probe sequence: 

• 0th probe:  h(key) % TableSize 

• 1st probe:  (h(key) + g(key))   % TableSize 

• 2nd probe: (h(key) + 2*g(key)) % TableSize 

• 3rd probe: (h(key) + 3*g(key)) % TableSize 

• … 

• ith probe: (h(key) + i*g(key)) % TableSize 
 

Detail: Make sure g(key) cannot be 0 
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Double-hashing analysis 

• Intuition: Because each probe is “jumping” by g(key) each 

time, we “leave the neighborhood” and “go different places from 

other initial collisions” 

 

• But we could still have a problem like in quadratic probing where 

we are not “safe” (infinite loop despite room in table) 

– It is known that this cannot happen in at least one case: 

• h(key) = key % p 

• g(key) = q – (key % q) 

• 2 < q < p 

• p and q are prime 
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More double-hashing facts 

• Assume “uniform hashing”  

– Means probability of g(key1) % p == g(key2) % p is 

1/p 
 

• Non-trivial facts we won’t prove: 

 Average # of probes given  (in the limit as TableSize → ) 

– Unsuccessful search (intuitive): 

 

 

– Successful search (less intuitive): 

 
 

• Bottom line: unsuccessful bad (but not as bad as linear probing), 

but successful is not nearly as bad 
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Charts 
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Where are we? 

• Chaining is easy 

– find, delete proportional to load factor on average 

– insert can be constant if just push on front of list 

 

• Open addressing  uses probing, has clustering issues as table fills 

– Why use it: 

• Less memory allocation?  

• Easier data representation? 

 

• Now:  

– Growing the table when it gets too full (“rehashing”) 

– Relation between hashing/comparing and connection to Java 
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Rehashing 

• As with array-based stacks/queues/lists, if table gets too full, 

create a bigger table and copy everything 
 

• With chaining, we get to decide what “too full” means 

– Keep load factor reasonable (e.g., < 1)? 

– Consider average or max size of non-empty chains? 

 

• For open addressing, half-full is a good rule of thumb 
 

 

• New table size 

– Twice-as-big is a good idea, except, uhm, that won’t be prime! 

– So go about twice-as-big  

– Can have a list of prime numbers in your code since you won’t 

grow more than 20-30 times 
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More on rehashing 
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• What if we copy all data to the same indices in the new table? 

– Will not work; we calculated the index based on TableSize 
 

 

• Go through table, do standard insert for each into new table 

– Run-time? 

– O(n):  Iterate through old table 
 

 

• Resize is an O(n) operation, involving n calls to the hash function  

– Is there some way to avoid all those hash function calls? 

– Space/time tradeoff: Could store h(key) with each data item 

– Growing the table is still O(n); only helps by a constant factor 



Hashing and comparing 

• Need to emphasize a critical detail: 

– We initially hash E to get a table index 

– While chaining or probing we compare to E 

• Just need equality testing (i.e., “is it what I want”) 
 

• So a hash table needs a hash function and a comparator 

– In Project 2, you will use two function objects 

– The Java library uses a more object-oriented approach:     
each object has an equals method and a hashCode method 
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class Object {  

  boolean equals(Object o) {…} 

  int hashCode() {…} 

  … 

} 



Equal Objects Must Hash the Same 

• The Java library (and your project hash table) make a very 

important assumption that clients must satisfy… 
 

• Object-oriented way of saying it: 

 If a.equals(b), then we must require 

a.hashCode()==b.hashCode() 
 

• Function-object way of saying it: 

       If c.compare(a,b) == 0, then we must require 

           h.hash(a) == h.hash(b) 

 

• Why is this essential? 
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Java bottom line 

• Lots of Java libraries use hash tables, perhaps without your 

knowledge 
 

• So: If you ever override equals, you need to override 

hashCode also in a consistent way 

– See CoreJava book, Chapter 5 for other “gotchas” with 
equals 
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Bad Example 
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class PolarPoint { 
  double r = 0.0; 
  double theta = 0.0; 
  void addToAngle(double theta2) { theta+=theta2; } 
  … 
  boolean equals(Object otherObject) { 
     if(this==otherObject) return true; 
     if(otherObject==null) return false; 
     if(getClass()!=other.getClass()) return false; 
     PolarPoint other = (PolarPoint)otherObject; 
    double angleDiff =  
         (theta – other.theta) % (2*Math.PI); 
     double rDiff = r – other.r; 
     return Math.abs(angleDiff) < 0.0001 
            && Math.abs(rDiff) < 0.0001; 
  } 
 // wrong: must override hashCode! 
} 

• Think about using a hash table holding points 



By the way: comparison has rules too 

We have not empahsized important “rules” about comparison for: 

– All our dictionaries 

– Sorting (next major topic) 

 

Comparison must impose a consistent, total ordering: 

 

For all a, b, and c, 

– If compare(a,b) < 0, then compare(b,a) > 0 

– If compare(a,b) == 0, then compare(b,a) == 0 

– If compare(a,b) < 0 and compare(b,c) < 0,                        

then compare(a,c) < 0 
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Final word on hashing 

• The hash table is one of the most important data structures 

– Supports only find, insert, and delete efficiently 

 

• Important to use a good hash function 

 

• Important to keep hash table at a good size 

 

• What we skipped: Perfect hashing, universal hash functions, 

hopscotch hashing, cuckoo hashing 

 

• Side-comment: hash functions have uses beyond hash tables 

– Examples: Cryptography, check-sums 
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