CSE332: Data Abstractions

Lecture 12: Introduction to Sorting

Dan Grossman
Spring 2012

Introduction to Sorting

« Have covered stacks, queues, priority gueues, and dictionaries
— All focused on providing one element at a time

« But often we know we want “all the things” in some order
— Humans can sort, but computers can sort fast
— Very common to need data sorted somehow
 Alphabetical list of people
« List of countries ordered by population

« Algorithms have different asymptotic and constant-factor trade-offs
— No single “best” sort for all scenarios
— Knowing one way to sort just isn't enough

Spring 2012 CSE332: Data Abstractions 2

More Reasons to Sort

General technique in computing:
Preprocess data to make subsequent operations faster

Example: Sort the data so that you can
— Find the k! largest in constant time for any k

— Perform binary search to find elements in logarithmic time
Whether the performance of the preprocessing matters depends on

— How often the data will change
— How much data there is

Spring 2012 CSE332: Data Abstractions 3

Careful Statement of the Basic Problem

For now, assume we have n comparable elements in an array and
we want to rearrange them to be in increasing order

Input:
— An array A of data records
— A key value in each data record
— A comparison function (consistent and total)

Effect:

— Reorganize the elements of A such that for any i and j,
fi < jthenA[i] £ A[J]
— (Also, A must have exactly the same data it started with)

An algorithm doing this is a comparison sort

Spring 2012 CSE332: Data Abstractions

Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and
back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”
— Sorts that do this naturally are called stable sorts

— Others could tag each item with its original position and
adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”
— Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare
— Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory
— Use an “external sorting” algorithm

Spring 2012 CSE332: Data Abstractions 5

Sorting: The Big Picture

Surprising amount of juicy computer science over next 2 lectures...

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Shell sort Quick sort (avg)

Spring 2012 CSE332: Data Abstractions 6

