
CSE332: Data Abstractions

Lecture 12: Introduction to Sorting

Dan Grossman

Spring 2012

Introduction to Sorting

• Have covered stacks, queues, priority queues, and dictionaries

– All focused on providing one element at a time

• But often we know we want “all the things” in some order

– Humans can sort, but computers can sort fast

– Very common to need data sorted somehow

• Alphabetical list of people

• List of countries ordered by population

• Algorithms have different asymptotic and constant-factor trade-offs

– No single “best” sort for all scenarios

– Knowing one way to sort just isn’t enough

Spring 2012 2 CSE332: Data Abstractions

More Reasons to Sort

General technique in computing:

 Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

– Find the kth largest in constant time for any k

– Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends on

– How often the data will change

– How much data there is

Spring 2012 3 CSE332: Data Abstractions

Careful Statement of the Basic Problem

For now, assume we have n comparable elements in an array and

we want to rearrange them to be in increasing order

Input:

– An array A of data records

– A key value in each data record

– A comparison function (consistent and total)

Effect:

– Reorganize the elements of A such that for any i and j,

if i < j then A[i] A[j]

– (Also, A must have exactly the same data it started with)

An algorithm doing this is a comparison sort

Spring 2012 4 CSE332: Data Abstractions

Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and

back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”

– Sorts that do this naturally are called stable sorts

– Others could tag each item with its original position and

adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”

– Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare

– Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory

– Use an “external sorting” algorithm

Spring 2012 5 CSE332: Data Abstractions

Sorting: The Big Picture

Surprising amount of juicy computer science over next 2 lectures…

Spring 2012 6 CSE332: Data Abstractions

Simple

algorithms:

O(n2)

Fancier

algorithms:

O(n log n)

Comparison

lower bound:

(n log n)

Specialized

algorithms:

O(n)

Handling

huge data

sets

Insertion sort

Selection sort

Shell sort

…

Heap sort

Merge sort

Quick sort (avg)

…

Bucket sort

Radix sort

External

sorting

