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Introduction to Sorting

« Have covered stacks, queues, priority gueues, and dictionaries
— All focused on providing one element at a time

« But often we know we want “all the things” in some order
— Humans can sort, but computers can sort fast
— Very common to need data sorted somehow
 Alphabetical list of people
« List of countries ordered by population

« Algorithms have different asymptotic and constant-factor trade-offs
— No single “best” sort for all scenarios
— Knowing one way to sort just isn't enough
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More Reasons to Sort

General technique in computing:
Preprocess data to make subsequent operations faster

Example: Sort the data so that you can
— Find the k! largest in constant time for any k

— Perform binary search to find elements in logarithmic time
Whether the performance of the preprocessing matters depends on

— How often the data will change
— How much data there is
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Careful Statement of the Basic Problem

For now, assume we have n comparable elements in an array and
we want to rearrange them to be in increasing order

Input:
— An array A of data records
— A key value in each data record
— A comparison function (consistent and total)

Effect:

— Reorganize the elements of A such that for any i and j,
fi < jthenA[i] £ A[J]
— (Also, A must have exactly the same data it started with)

An algorithm doing this is a comparison sort
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Variations on the Basic Problem

1. Maybe elements are in a linked list (could convert to array and
back in linear time, but some algorithms needn’t do so)

2. Maybe ties need to be resolved by “original array position”
— Sorts that do this naturally are called stable sorts

— Others could tag each item with its original position and
adjust comparisons accordingly (non-trivial constant factors)

3. Maybe we must not use more than O(1) “auxiliary space”
— Sorts meeting this requirement are called in-place sorts

4. Maybe we can do more with elements than just compare
— Sometimes leads to faster algorithms

5. Maybe we have too much data to fit in memory
— Use an “external sorting” algorithm
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Sorting: The Big Picture

Surprising amount of juicy computer science over next 2 lectures...

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets
Insertion sort  Heap sort Bucket sort External
Selection sort  Merge sort Radix sort sorting

Shell sort Quick sort (avg)
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