

CSE332: Data Abstractions Lecture 14: Beyond Comparison Sorting

Dan Grossman Spring 2012

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...

Simple	Fancier	Comparison	Specialized	Handling
algorithms:	algorithms:	lower bound:	algorithms:	huge data
O(n ²)	O(n log n)	$\Omega(n \log n)$	O(n)	sets
Insertion sort Selection sort Shell sort			Bucket sort Radix sort	External sorting

How Fast Can We Sort?

- Heap sort & Merge sort have $O(n \log n)$ worst-case running time
- Quick sort has $O(n \log n)$ average-case running time
- These bounds are all tight, actually $\Theta(n \log n)$
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or O(n log log n)
 - Instead: *prove* that this is *impossible*
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

A General View of Sorting

- Assume we have *n* elements to sort
 - For simplicity, assume none are equal (no duplicates)
- How many *permutations* of the elements (possible orderings)?
- Example, n=3

 a[0]<a[1]<a[2]
 a[0]<a[2]<a[1]
 a[1]<a[2]<a[0]
 a[1]<a[2]<a[0]
 a[2]<a[1]
 a[2]<a[1]
- In general, *n* choices for least element, *n*-1 for next, *n*-2 for next, ...
 n(*n*-1)(*n*-2)...(2)(1) = *n*! possible orderings

Counting Comparisons

- So every sorting algorithm has to "find" the right answer among the n! possible answers
 - Starts "knowing nothing" and gains information with each comparison
 - Intuition: Each comparison can at best eliminate half the remaining possibilities
 - Must narrow answer down to a single possibility
- What we will show:

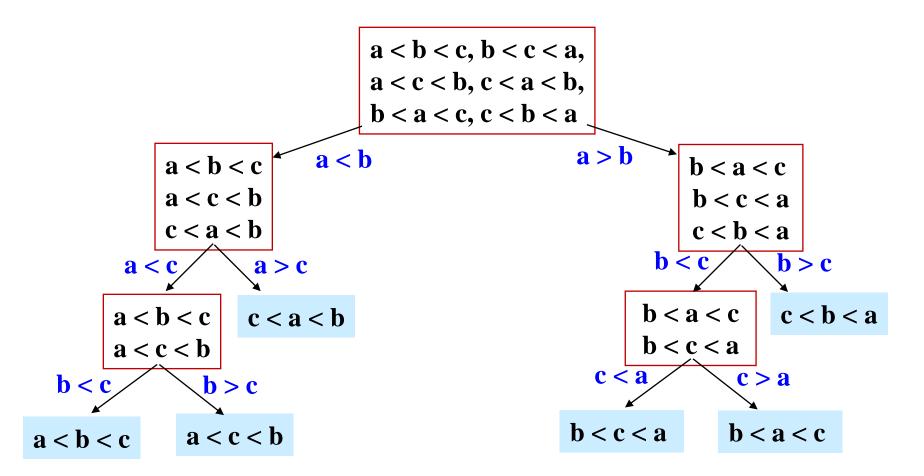
Any sorting algorithm must do at least $(1/2)n\log_2 n - (1/2)n$ (which is $\Omega(n \log n)$) comparisons

 Otherwise there are at least two permutations among the n! possible that cannot yet be distinguished, so the algorithm would have to guess and could be wrong

Counting Comparisons

- Don't know what the algorithm is, but it cannot make progress without doing comparisons
 - Eventually does a first comparison "is a < b ?"</p>
 - Can use the result to decide what second comparison to do
 - Etc.: comparison *k* can be chosen based on first *k-1* results
- Can represent this process as a *decision tree*
 - Nodes contain "set of remaining possibilities"
 - Edges are "answers from a comparison"
 - The algorithm does not actually build the tree; it's what our proof uses to represent "the most the algorithm could know so far" as the algorithm progresses

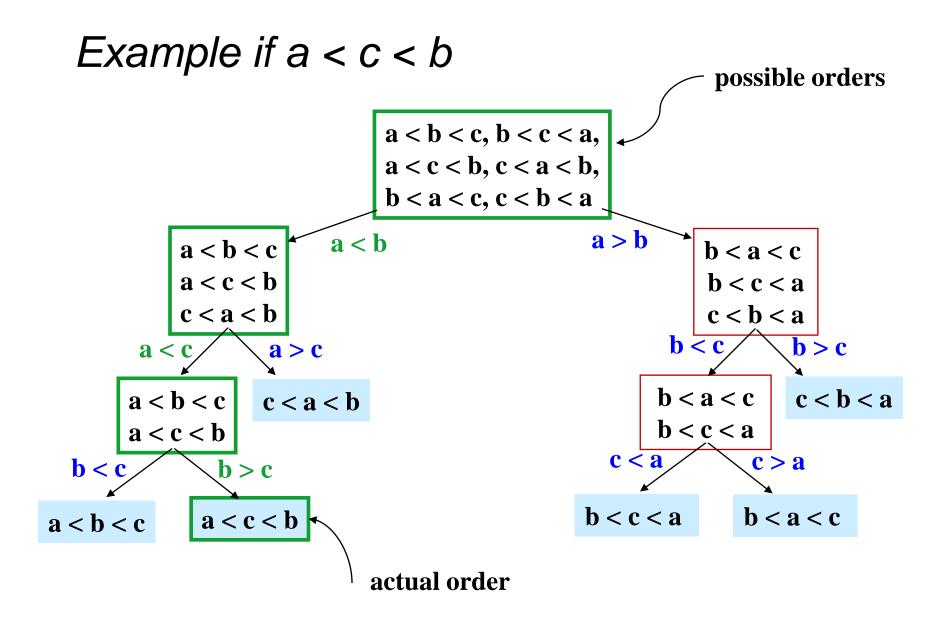
One Decision Tree for n=3



- The leaves contain all the possible orderings of a, b, c
- A different algorithm would lead to a different tree

Spring 2012

CSE332: Data Abstractions



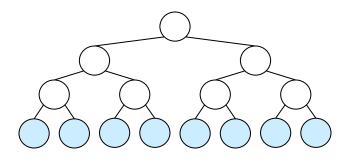
What the Decision Tree Tells Us

- A binary tree because each comparison has 2 outcomes
 - (No duplicate elements)
 - (Would have 1 outcome if a comparison is redundant)
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a different leaf
 - So the tree must be big enough to have *n*! leaves
 - Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with n! leaves
 - So no algorithm can have worst-case running time better than the height of a tree with n! leaves
 - Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with *n*! leaves
 - Turns out average-case is same asymptotically
 - A comparison sort could be worse than this height, but it cannot be better
- Now: a binary tree with n! leaves has height $\Omega(n \log n)$
 - Factorial function grows very quickly
 - Height could be more, but cannot be less
- Conclusion: Comparison sorting is Ω (*n* log *n*)
 - An amazing computer-science result: proves all the clever programming in the world cannot sort in linear time

Lower bound on height

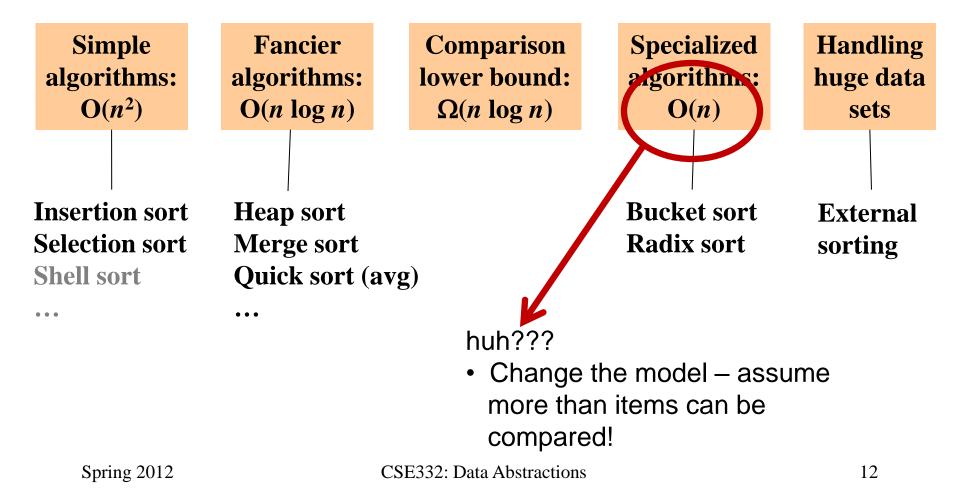


- The height of a binary tree with L leaves is at least $log_2 L$
- So the height of our decision tree, h:

 $\begin{array}{ll} h \geq \log_2 \left(n! \right) & \text{property of binary trees} \\ = \log_2 \left(n^* (n-1)^* (n-2) \dots (2)(1) \right) & \text{definition of factorial} \\ = \log_2 n & + \log_2 \left(n-1 \right) + \dots + \log_2 1 & \text{property of logarithms} \\ \geq \log_2 n & + \log_2 \left(n-1 \right) + \dots + \log_2 \left(n/2 \right) & \text{drop smaller terms } (\geq 0) \\ \geq \log_2 \left(n/2 \right) & + \log_2 \left(n/2 \right) + \dots + \log_2 \left(n/2 \right) & \text{shrink terms to } \log_2 \left(n/2 \right) \\ = (n/2)\log_2 \left(n/2 \right) & \text{arithmetic} \\ = (n/2)(\log_2 n - \log_2 2) & \text{property of logarithms} \\ = (1/2)n\log_2 n - (1/2)n & \text{arithmetic} \\ \text{"="} \Omega \left(n \log n \right) \end{array}$

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...



BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range)
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a *count* of how times that bucket has been used
- Output result via linear pass through array of buckets

count array		
1	3	
2	1	
3	2	
4	2	
5	3	

• Example:

K=5

input (5,1,3,4,3,2,1,1,5,4,5) output: 1,1,1,2,3,3,4,4,5,5,5

Analyzing Bucket Sort

- Overall: *O*(*n*+*K*)
 - Linear in *n*, but also linear in *K*
 - $\Omega(n \log n)$ lower bound does not apply because this is not a comparison sort
- Good when *K* is smaller (or not much larger) than *n*
 - Do not spend time doing comparisons of duplicates
- Bad when *K* is much larger than *n*
 - Wasted space; wasted time during final linear O(K) pass
- For data in addition to integer keys, use list at each bucket

Spring 2012

CSE332: Data Abstractions

Radix sort

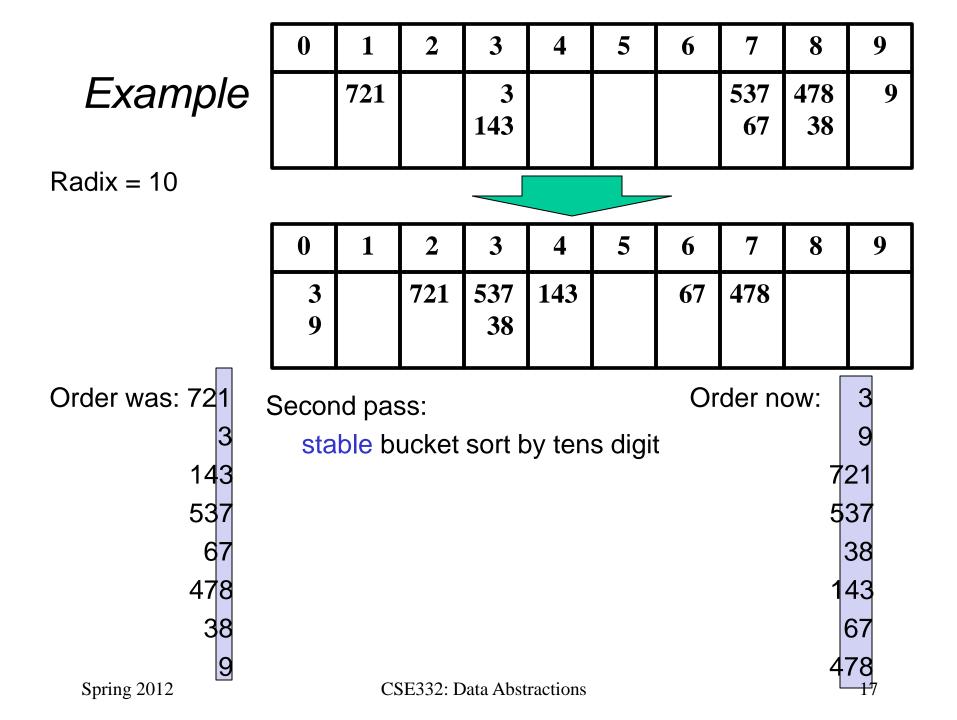
- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - Starting with *least* significant digit
 - Keeping sort stable
 - Invariant: After *k* passes (digits), the last *k* digits are sorted
- Aside: Origins go back to the 1890 U.S. census

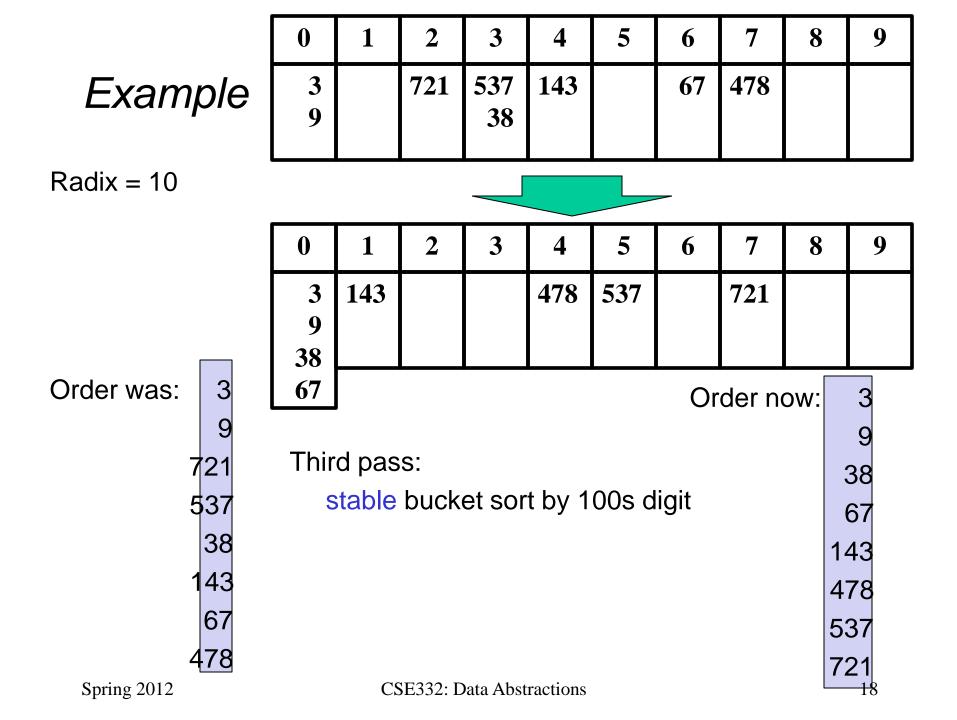
Example

Radix = 10

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9

Input: 478 537 9 721 3 38 143 67	First pass: bucket sort by ones digit	Order now: 721 3 143 537 67 478 38 9
Spring 2012	CSE332: Data Abstractions	16





Analysis

Input size: *n* Number of buckets = Radix: *B* Number of passes = "Digits": *P*

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - 15*(52 + *n*)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties

Last Slide on Sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - Selection sort, Insertion sort (latter linear for mostly-sorted)
 - Good for "below a cut-off" to help divide-and-conquer sorts
- *O*(*n* log *n*) sorts
 - Heap sort, in-place but not stable nor parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place but not stable and $O(n^2)$ in worst-case
 - Often fastest, but depends on costs of comparisons/copies
- Ω (*n* log *n*) is worst-case and average lower-bound for sorting by comparisons
- Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!