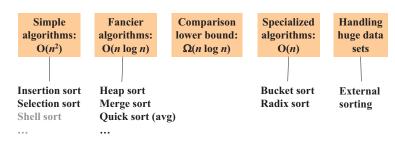


CSE332: Data Abstractions Lecture 14: Beyond Comparison Sorting

Dan Grossman Spring 2012

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...



Spring 2012

CSE332: Data Abstractions

CSE332. Data Abstractions

How Fast Can We Sort?

- Heap sort & Merge sort have O(n log n) worst-case running time
- Quick sort has O(n log n) average-case running time
- These bounds are all tight, actually ⊕(n log n)
- So maybe we need to dream up another algorithm with a lower asymptotic complexity, such as O(n) or O(n log log n)
 - Instead: prove that this is impossible
 - Assuming our comparison model: The only operation an algorithm can perform on data items is a 2-element comparison

Spring 2012

CSE332: Data Abstractions

3

A General View of Sorting

- · Assume we have n elements to sort
 - For simplicity, assume none are equal (no duplicates)
- How many permutations of the elements (possible orderings)?
- Example, n=3

a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2] a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

In general, n choices for least element, n-1 for next, n-2 for next, ...
 n(n-1)(n-2)...(2)(1) = n! possible orderings

Spring 2012 CSE332: Data Abstractions

Counting Comparisons

- So every sorting algorithm has to "find" the right answer among the n! possible answers
 - Starts "knowing nothing" and gains information with each comparison
 - Intuition: Each comparison can at best eliminate half the remaining possibilities
 - Must narrow answer down to a single possibility
- · What we will show:

Any sorting algorithm must do at least $(1/2)n\log_2 n - (1/2)n$ (which is $\Omega(n\log n)$) comparisons

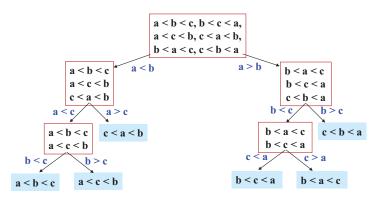
 Otherwise there are at least two permutations among the n! possible that cannot yet be distinguished, so the algorithm would have to guess and could be wrong

Counting Comparisons

- Don't know what the algorithm is, but it cannot make progress without doing comparisons
 - Eventually does a first comparison "is a < b?"
 - Can use the result to decide what second comparison to do
 - Etc.: comparison k can be chosen based on first k-1 results
- · Can represent this process as a decision tree
 - Nodes contain "set of remaining possibilities"
 - Edges are "answers from a comparison"
 - The algorithm does not actually build the tree; it's what our proof uses to represent "the most the algorithm could know so far" as the algorithm progresses

Spring 2012 CSE332: Data Abstractions 5 Spring 2012 CSE332: Data Abstractions

One Decision Tree for n=3



- · The leaves contain all the possible orderings of a, b, c
- · A different algorithm would lead to a different tree

Spring 2012 CSE332: Data Abstractions

Example if a < c < bpossible orders a < b < c, b < c < a,a < c < b, c < a < b,b < a < c, c < b < aa < b < cb < a < ca < c < bb < c < ac < a < bc < b < aa > cc < b < aa < b < cc < a < b $\overline{\mathbf{b}} > \mathbf{c}$ $b \le a \le c$ a < c < ba < b < cactual order Spring 2012 CSE332: Data Abstractions

What the Decision Tree Tells Us

- · A binary tree because each comparison has 2 outcomes
 - (No duplicate elements)
 - (Would have 1 outcome if a comparison is redundant)
- Because any data is possible, any algorithm needs to ask enough questions to produce all n! answers
 - Each answer is a different leaf
 - So the tree must be big enough to have n! leaves
 - Running any algorithm on any input will at best correspond to a root-to-leaf path in some decision tree with n! leaves
 - So no algorithm can have worst-case running time better than the height of a tree with n! leaves
 - Worst-case number-of-comparisons for an algorithm is an input leading to a longest path in algorithm's decision tree

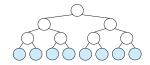
Spring 2012 CSE332: Data Abstractions

Where are we

- Proven: No comparison sort can have worst-case running time better than the height of a binary tree with n! leaves
 - Turns out average-case is same asymptotically
 - A comparison sort could be worse than this height, but it cannot be better
- Now: a binary tree with n! leaves has height $\Omega(n \log n)$
 - Factorial function grows very quickly
 - Height could be more, but cannot be less
- Conclusion: Comparison sorting is Ω ($n \log n$)
 - An amazing computer-science result: proves all the clever programming in the world cannot sort in linear time

Spring 2012 CSE332: Data Abstractions 10

Lower bound on height

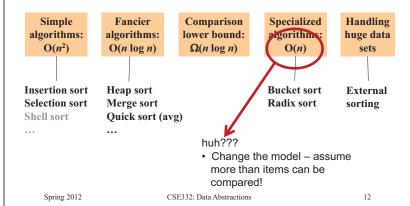


- The height of a binary tree with L leaves is at least log₂ L
- So the height of our decision tree, h:

 $h \ge \log_2(n!)$ property of binary trees definition of factorial $= log_2 (n*(n-1)*(n-2)...(2)(1))$ = log₂ n $+ \log_2 (n-1) + ... + \log_2 1$ property of logarithms + \log_2 (n-1) + ... + \log_2 (n/2) drop smaller terms (\geq 0) $\geq \log_2 \left(\text{n/2} \right) \ + \log_2 \left(\text{n/2} \right) \ + \ldots \ + \log_2 \left(\text{n/2} \right) \text{ shrink terms to } \log_2 \left(\text{n/2} \right)$ $= (n/2) \log_2 (n/2)$ arithmetic property of logarithms $= (n/2)(\log_2 n - \log_2 2)$ $= (1/2) n \log_2 n - (1/2) n$ arithmetic "=" Ω ($n \log n$) Spring 2012 CSE332: Data Abstractions 11

The Big Picture

Surprising amount of juicy computer science: 2-3 lectures...



BucketSort (a.k.a. BinSort)

- If all values to be sorted are known to be integers between 1 and K (or any small range)
 - Create an array of size K
 - Put each element in its proper bucket (a.k.a. bin)
 - If data is only integers, no need to store more than a count of how times that bucket has been used
- Output result via linear pass through array of buckets

count array					
1	3				
2	1				
3	2				
4	2				
5	3				

Example:

K=5

input (5,1,3,4,3,2,1,1,5,4,5) output: 1,1,1,2,3,3,4,4,5,5,5

Spring 2012

CSE332: Data Abstractions

Analyzing Bucket Sort

- Overall: O(n+K)
 - Linear in n, but also linear in K
 - Ω(n log n) lower bound does not apply because this is not a comparison sort
- Good when K is smaller (or not much larger) than n
 - Do not spend time doing comparisons of duplicates
- Bad when K is much larger than n
 - Wasted space; wasted time during final linear O(K) pass
- · For data in addition to integer keys, use list at each bucket

Spring 2012 CSE332: Data Abstractions 14

Radix sort

- Radix = "the base of a number system"
 - Examples will use 10 because we are used to that
 - In implementations use larger numbers
 - For example, for ASCII strings, might use 128
- Idea:
 - Bucket sort on one digit at a time
 - Number of buckets = radix
 - · Starting with least significant digit
 - · Keeping sort stable
 - Invariant: After k passes (digits), the last k digits are sorted
- · Aside: Origins go back to the 1890 U.S. census

Spring 2012 CSE332: Data Abstractions 15

Example

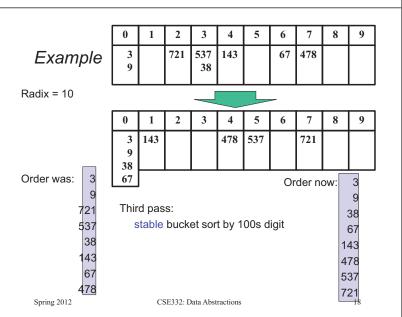
Radix = 10

13

0	1	2	3	4	5	6	7	8	9
	721		3 143				537 67	478 38	9

Input: 478
537
First pass:
9 bucket sort by ones digit
721
537
3 67
38
143
67
Spring 2012
CSE332: Data Abstractions

	0	1	2	3	4	5	6	7	8	9
Example		721		3 143				537 67	478 38	9
Radix = 10	adix = 10									
	0	1	2	3	4	5	6	7	8	9
	3 9		721	537 38	143		67	478		
537 5 67 478 1 38									7: 5	3 9 21 37 38 43 67
Spring 2012 CSE332: Data Abstractions							4	78 17		



Analysis

Input size: n

Number of buckets = Radix: *B* Number of passes = "Digits": *P*

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

- Example: Strings of English letters up to length 15
 - 15*(52 + n)
 - This is less than $n \log n$ only if n > 33,000
 - Of course, cross-over point depends on constant factors of the implementations
 - And radix sort can have poor locality properties

Spring 2012 CSE332: Data Abstractions 19

Last Slide on Sorting

- Simple $O(n^2)$ sorts can be fastest for small n
 - Selection sort, Insertion sort (latter linear for mostly-sorted)
 - Good for "below a cut-off" to help divide-and-conquer sorts
- *O*(*n* **log** *n*) sorts
 - Heap sort, in-place but not stable nor parallelizable
 - Merge sort, not in place but stable and works as external sort
 - Quick sort, in place but not stable and $O(n^2)$ in worst-case
 - Often fastest, but depends on costs of comparisons/copies

20

- Ω (n log n) is worst-case and average lower-bound for sorting by comparisons
- · Non-comparison sorts
 - Bucket sort good for small number of key values
 - Radix sort uses fewer buckets and more phases
- Best way to sort? It depends!

Spring 2012 CSE332: Data Abstractions