
CSE332: Data Abstractions

Lecture 15: Introduction to Graphs

Dan Grossman

Spring 2012

Graphs

• A graph is a formalism for representing relationships among items

– Very general definition because very general concept

• A graph is a pair

 G = (V,E)

– A set of vertices, also known as nodes

 V = {v1,v2,…,vn}

– A set of edges

 E = {e1,e2,…,em}

• Each edge ei is a pair of vertices

 (vj,vk)

• An edge “connects” the vertices

• Graphs can be directed or undirected

Spring 2012 2 CSE332: Data Abstractions

Han

Leia

Luke

V = {Han,Leia,Luke}

E = {(Luke,Leia),

 (Han,Leia),

 (Leia,Han)}

An ADT?

• Can think of graphs as an ADT with operations like
isEdge((vj,vk))

• But it is unclear what the “standard operations” are

• Instead we tend to develop algorithms over graphs and then use

data structures that are efficient for those algorithms

• Many important problems can be solved by:

1. Formulating them in terms of graphs

2. Applying a standard graph algorithm

• To make the formulation easy and standard, we have a lot of
standard terminology about graphs

Spring 2012 3 CSE332: Data Abstractions

Some Graphs

For each, what are the vertices and what are the edges?

• Web pages with links

• Facebook friends

• “Input data” for the Kevin Bacon game

• Methods in a program that call each other

• Road maps (e.g., Google maps)

• Airline routes

• Family trees

• Course pre-requisites

• …

Wow: Using the same algorithms for problems across so many

domains sounds like “core computer science and engineering”

 Spring 2012 4 CSE332: Data Abstractions

Undirected Graphs

• In undirected graphs, edges have no specific direction

– Edges are always “two-way”

Spring 2012 5 CSE332: Data Abstractions

• Thus, (u,v) E implies (v,u) E

– Only one of these edges needs to be in the set

– The other is implicit, so normalize how you check for it

• Degree of a vertex: number of edges containing that vertex

– Put another way: the number of adjacent vertices

A

B

C

D

Directed Graphs

• In directed graphs (sometimes called digraphs), edges have a

direction

Spring 2012 6 CSE332: Data Abstractions

• Thus, (u,v) E does not imply (v,u) E.

• Let (u,v) E mean u → v

• Call u the source and v the destination

• In-Degree of a vertex: number of in-bound edges,

 i.e., edges where the vertex is the destination

• Out-Degree of a vertex: number of out-bound edges

 i.e., edges where the vertex is the source

or

2 edges here

A

B

C

D
A

B

C

Self-Edges, Connectedness

• A self-edge a.k.a. a loop is an edge of the form (u,u)

– Depending on the use/algorithm, a graph may have:

• No self edges

• Some self edges

• All self edges (often therefore implicit, but we will be explicit)

• A node can have a degree / in-degree / out-degree of zero

• A graph does not have to be connected

– Even if every node has non-zero degree

Spring 2012 7 CSE332: Data Abstractions

More Notation

For a graph G = (V,E)

• |V| is the number of vertices

• |E| is the number of edges

– Minimum?

– Maximum for undirected?

– Maximum for directed?

• If (u,v) E

– Then v is a neighbor of u, i.e., v is adjacent to u

– Order matters for directed edges

• u is not adjacent to v unless (v,u) E

Spring 2012 8 CSE332: Data Abstractions

A

B

C

V = {A, B, C, D}

E = {(C, B),

 (A, B),

 (B, A)

 (C, D)}

D

More notation

For a graph G=(V,E):

• |V| is the number of vertices

• |E| is the number of edges

– Minimum? 0

– Maximum for undirected? |V||V+1|/2 O(|V|2)

– Maximum for directed? |V|2 O(|V|2)

 (assuming self-edges allowed, else subtract |V|)

• If (u,v) E

– Then v is a neighbor of u, i.e., v is adjacent to u

– Order matters for directed edges

• u is not adjacent to v unless (v,u) E

Spring 2012 9 CSE332: Data Abstractions

A

B

C

D

Examples again

Which would use directed edges? Which would have self-edges?

Which would be connected? Which could have 0-degree nodes?

• Web pages with links

• Facebook friends

• “Input data” for the Kevin Bacon game

• Methods in a program that call each other

• Road maps (e.g., Google maps)

• Airline routes

• Family trees

• Course pre-requisites

• …

Spring 2012 10 CSE332: Data Abstractions

Weighted Graphs

• In a weighed graph, each edge has a weight a.k.a. cost

– Typically numeric (most examples use ints)

– Orthogonal to whether graph is directed

– Some graphs allow negative weights; many do not

Spring 2012 11 CSE332: Data Abstractions

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Examples

What, if anything, might weights represent for each of these?

Do negative weights make sense?

• Web pages with links

• Facebook friends

• “Input data” for the Kevin Bacon game

• Methods in a program that call each other

• Road maps (e.g., Google maps)

• Airline routes

• Family trees

• Course pre-requisites

• …

Spring 2012 12 CSE332: Data Abstractions

Paths and Cycles

• A path is a list of vertices [v0,v1,…,vn] such that (vi,vi+1)

E for all 0 i < n. Say “a path from v0 to vn”

• A cycle is a path that begins and ends at the same node (v0==vn)

Spring 2012 13 CSE332: Data Abstractions

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

• Path length: Number of edges in a path

• Path cost: Sum of weights of edges in a path

Example where

 P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Spring 2012 14 CSE332: Data Abstractions

Seattle

San Francisco Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(P) = 5

 cost(P) = 11.5

Simple Paths and Cycles

• A simple path repeats no vertices, except the first might be the

last

 [Seattle, Salt Lake City, San Francisco, Dallas]

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

• Recall, a cycle is a path that ends where it begins

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

 [Seattle, Salt Lake City, Seattle, Dallas, Seattle]

• A simple cycle is a cycle and a simple path

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Spring 2012 15 CSE332: Data Abstractions

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D?

Does the graph contain any cycles?

Spring 2012 16 CSE332: Data Abstractions

A

B

C

D

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No

Spring 2012 17 CSE332: Data Abstractions

A

B

C

D

Undirected-Graph Connectivity

• An undirected graph is connected if for all

 pairs of vertices u,v, there exists a path from u to v

• An undirected graph is complete, a.k.a. fully connected if for all
pairs of vertices u,v, there exists an edge from u to v

Spring 2012 18 CSE332: Data Abstractions

Connected graph Disconnected graph

plus self edges

Directed-Graph Connectivity

• A directed graph is strongly connected if

there is a path from every vertex to every

other vertex

• A directed graph is weakly connected if

there is a path from every vertex to every

other vertex ignoring direction of edges

• A complete a.k.a. fully connected directed

graph has an edge from every vertex to

every other vertex

 Spring 2012 19 CSE332: Data Abstractions

plus self edges

Examples

For undirected graphs: connected?

For directed graphs: strongly connected? weakly connected?

• Web pages with links

• Facebook friends

• “Input data” for the Kevin Bacon game

• Methods in a program that call each other

• Road maps (e.g., Google maps)

• Airline routes

• Family trees

• Course pre-requisites

• …

Spring 2012 20 CSE332: Data Abstractions

Trees as Graphs

When talking about graphs,

we say a tree is a graph that is:

– undirected

– acyclic

– connected

So all trees are graphs, but not

all graphs are trees

How does this relate to the trees

we know and love?...

Spring 2012 21 CSE332: Data Abstractions

A

B

D E

C

F

H G

Example:

Rooted Trees

• We are more accustomed to rooted trees where:

– We identify a unique root

– We think of edges are directed: parent to children

• Given a tree, picking a root gives a unique rooted tree

– The tree is just drawn differently and with undirected edges

Spring 2012 22 CSE332: Data Abstractions

A

B

D E

C

F

H G

redrawn

A

B

D E

C

F

H G

Rooted Trees

• We are more accustomed to rooted trees where:

– We identify a unique root

– We think of edges are directed: parent to children

• Given a tree, picking a root gives a unique rooted tree

– The tree is just drawn differently and with undirected edges

Spring 2012 23 CSE332: Data Abstractions

A

B

D E

C

F

H G

redrawn

F

G H C

A

B

D E

Directed Acyclic Graphs (DAGs)

• A DAG is a directed graph with no (directed) cycles

– Every rooted directed tree is a DAG

– But not every DAG is a rooted directed tree

– Every DAG is a directed graph

– But not every directed graph is a DAG

Spring 2012 24 CSE332: Data Abstractions

Examples

Which of our directed-graph examples do you expect to be a DAG?

• Web pages with links

• “Input data” for the Kevin Bacon game

• Methods in a program that call each other

• Airline routes

• Family trees

• Course pre-requisites

• …

Spring 2012 25 CSE332: Data Abstractions

Density / Sparsity

• Recall: In an undirected graph, 0 ≤ |E| < |V|2

• Recall: In a directed graph: 0 ≤ |E| ≤ |V|2

• So for any graph, O(|E|+|V|2) is O(|V|2)

• Another fact: If an undirected graph is connected, then |V|-1 ≤ |E|

• Because |E| is often much smaller than its maximum size, we do not

always approximate |E| as O(|V|2)

– This is a correct bound, it just is often not tight

– If it is tight, i.e., |E| is (|V|2) we say the graph is dense

• More sloppily, dense means “lots of edges”

– If |E| is O(|V|) we say the graph is sparse

• More sloppily, sparse means “most possible edges missing”

Spring 2012 26 CSE332: Data Abstractions

What is the Data Structure?

• So graphs are really useful for lots of data and questions

– For example, “what’s the lowest-cost path from x to y”

• But we need a data structure that represents graphs

• The “best one” can depend on:

– Properties of the graph (e.g., dense versus sparse)

– The common queries (e.g., “is (u,v) an edge?” versus

“what are the neighbors of node u?”)

• So we’ll discuss the two standard graph representations

– Adjacency Matrix and Adjacency List

– Different trade-offs, particularly time versus space

Spring 2012 27 CSE332: Data Abstractions

Adjacency Matrix

• Assign each node a number from 0 to |V|-1

• A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

– If M is the matrix, then M[u][v] being true

means there is an edge from u to v

Spring 2012 28 CSE332: Data Abstractions

A B C

A

B

C

D

D

A

B

C

D T

T

T T

F F F

F F F

F F

F F F F

Adjacency Matrix Properties

• Running time to:

– Get a vertex’s out-edges:

– Get a vertex’s in-edges:

– Decide if some edge exists:

– Insert an edge:

– Delete an edge:

• Space requirements:

• Best for sparse or dense graphs?

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

Spring 2012 CSE332: Data Abstractions 29

Adjacency Matrix Properties

• Running time to:

– Get a vertex’s out-edges: O(|V|)

– Get a vertex’s in-edges: O(|V|)

– Decide if some edge exists: O(1)

– Insert an edge: O(1)

– Delete an edge: O(1)

• Space requirements:

– |V|2 bits

• Best for sparse or dense graphs?

– Best for dense graphs

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

Spring 2012 CSE332: Data Abstractions 30

Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?

• How can we adapt the representation for weighted graphs?

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F
Spring 2012 CSE332: Data Abstractions 31

Adjacency Matrix Properties

• How will the adjacency matrix vary for an undirected graph?

– Undirected will be symmetric about diagonal axis

• How can we adapt the representation for weighted graphs?

– Instead of a Boolean, store a number in each cell

– Need some value to represent ‘not an edge’

• In some situations, 0 or -1 works

A B C

A

B

C

D

D

T

T

T T

F F F

F F F

F F

F F F F

Spring 2012 CSE332: Data Abstractions 32

Adjacency List

• Assign each node a number from 0 to |V|-1

• An array of length |V| in which each entry stores a list of all

adjacent vertices (e.g., linked list)

Spring 2012 33 CSE332: Data Abstractions

A

B

C

D

A

B

C

D

B /

A /

D B /

/

Adjacency List Properties

• Running time to:

– Get all of a vertex’s out-edges:

– Get all of a vertex’s in-edges:

– Decide if some edge exists:

– Insert an edge:

– Delete an edge:

• Space requirements:

• Best for dense or sparse graphs?

A

B

C

D

B /

A /

D B /

/

Spring 2012 CSE332: Data Abstractions 34

Adjacency List Properties

• Running time to:

– Get all of a vertex’s out-edges:

 O(d) where d is out-degree of vertex

– Get all of a vertex’s in-edges:

 O(|E|) (but could keep a second adjacency list for this!)

– Decide if some edge exists:

 O(d) where d is out-degree of source

– Insert an edge: O(1) (unless you need to check if it’s there)

– Delete an edge: O(d) where d is out-degree of source

• Space requirements:

– O(|V|+|E|)

• Best for dense or sparse graphs?

– Best for sparse graphs, so usually just stick with linked lists

A

B

C

D

B /

A /

D B /

/

Spring 2012 CSE332: Data Abstractions 35

Undirected Graphs

Adjacency matrices & adjacency lists both do fine for undirected graphs

• Matrix: Can save roughly 2x space

– But may slow down operations in languages with “proper” 2D

arrays (not Java, which has only arrays of arrays)

– How would you “get all neighbors”?

• Lists: Each edge in two lists to support efficient “get all neighbors”

Example:

Spring 2012 36 CSE332: Data Abstractions

A

B

C

D

A B C

A

B

C

D

D

T

T

T T

F F F

F T F

F F

F F T F

F

T

T A

B

C

D

B /

A

D B /

C /

C /

Next…

Okay, we can represent graphs

Now let’s implement some useful and non-trivial algorithms

• Topological sort: Given a DAG, order all the vertices so that

every vertex comes before all of its neighbors

• Shortest paths: Find the shortest or lowest-cost path from x to y

– Related: Determine if there even is such a path

Spring 2012 37 CSE332: Data Abstractions

