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Graphs 

• A graph is a formalism for representing relationships among items 

– Very general definition because very general concept 
 

• A graph is a pair 

 G = (V,E) 

– A set of vertices, also known as nodes   

 V = {v1,v2,…,vn} 

– A set of edges  

 E = {e1,e2,…,em} 

• Each edge ei is a pair of vertices  

 (vj,vk) 

• An edge “connects” the vertices 
 

• Graphs can be directed or undirected 
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An ADT? 

• Can think of graphs as an ADT with operations like 
isEdge((vj,vk)) 
 

• But it is unclear what the “standard operations” are 
 

• Instead we tend to develop algorithms over graphs and then use 

data structures that are efficient for those algorithms 
 

• Many important problems can be solved by: 

1. Formulating them in terms of graphs 

2. Applying a standard graph algorithm 

 

• To make the formulation easy and standard, we have a lot of 
standard terminology about graphs 
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Some Graphs 

For each, what are the vertices and what are the edges? 
 

• Web pages with links 

• Facebook friends 

• “Input data” for the Kevin Bacon game 

• Methods in a program that call each other 

• Road maps (e.g., Google maps) 

• Airline routes 

• Family trees 

• Course pre-requisites 

• … 
 

Wow: Using the same algorithms for problems across so many 

domains sounds like “core computer science and engineering” 
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Undirected Graphs 

• In undirected graphs, edges have no specific direction 

– Edges are always “two-way” 
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• Thus, (u,v)  E implies (v,u)  E   

– Only one of these edges needs to be in the set 

– The other is implicit, so normalize how you check for it 
 

• Degree of a vertex: number of edges containing that vertex 

– Put another way: the number of adjacent vertices 
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Directed Graphs 

• In directed graphs (sometimes called digraphs), edges have a 

direction 
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• Thus, (u,v)  E does not imply (v,u)  E.   

• Let (u,v)  E mean u → v  

• Call u the source and v the destination 

• In-Degree of a vertex: number of in-bound edges,  

     i.e., edges where the vertex is the destination 

• Out-Degree of a vertex: number of out-bound edges 

     i.e., edges where the vertex is the source 

 

or 

2 edges here 
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Self-Edges, Connectedness 

 

• A self-edge a.k.a. a loop is an edge of the form (u,u) 

– Depending on the use/algorithm, a graph may have: 

• No self edges 

• Some self edges 

• All self edges (often therefore implicit, but we will be explicit) 
 

• A node can have a degree / in-degree / out-degree of zero 
 

• A graph does not have to be connected 

– Even if every node has non-zero degree 
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More Notation 

For a graph G = (V,E)  

 

• |V| is the number of vertices 

• |E| is the number of edges 

– Minimum? 

– Maximum for undirected? 

– Maximum for directed? 

 

• If (u,v)  E  

– Then v is a neighbor of u, i.e., v is adjacent to u 

– Order matters for directed edges 

• u is not adjacent to v unless (v,u)  E 
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More notation 

For a graph G=(V,E): 

 

• |V| is the number of vertices 

• |E| is the number of edges 

– Minimum?                           0 

– Maximum for undirected? |V||V+1|/2  O(|V|2) 

– Maximum for directed?     |V|2  O(|V|2) 

   (assuming self-edges allowed, else subtract |V|) 

 

• If (u,v)  E  

– Then v is a neighbor of u, i.e., v is adjacent to u 

– Order matters for directed edges 

• u is not adjacent to v unless (v,u)  E 
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Examples again 

Which would use directed edges?  Which would have self-edges?  

Which would be connected?  Which could have 0-degree nodes? 

 

• Web pages with links 

• Facebook friends 

• “Input data” for the Kevin Bacon game 

• Methods in a program that call each other 

• Road maps (e.g., Google maps) 

• Airline routes 

• Family trees 

• Course pre-requisites 

• … 
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Weighted Graphs 

• In a weighed graph, each edge has a weight a.k.a. cost 

– Typically numeric (most examples use ints) 

– Orthogonal  to whether graph is directed 

– Some graphs allow negative weights; many do not 
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Examples 

What, if anything, might weights represent for each of these?   

Do negative weights make sense? 

 

• Web pages with links 

• Facebook friends 

• “Input data” for the Kevin Bacon game 

• Methods in a program that call each other 

• Road maps (e.g., Google maps) 

• Airline routes 

• Family trees 

• Course pre-requisites 

• … 
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Paths and Cycles 

• A path is a list of vertices [v0,v1,…,vn] such that (vi,vi+1) 

E for all 0  i < n.  Say “a path from v0 to vn” 

 

• A cycle is a path that begins and ends at the same node (v0==vn) 
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Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle] 



Path Length and Cost 

• Path length: Number of edges in a path 

• Path cost: Sum of  weights of edges in a path 

 

Example where  

  P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle] 
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length(P) = 5 

  cost(P) = 11.5 

 



Simple Paths and Cycles 

• A simple path repeats no vertices, except the first might be the 

last 

 [Seattle, Salt Lake City, San Francisco, Dallas] 

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle] 

 

• Recall, a cycle is a path that  ends where it begins 

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle] 

 [Seattle, Salt Lake City, Seattle, Dallas, Seattle] 

 

• A simple cycle is a cycle and a simple path 

 [Seattle, Salt Lake City, San Francisco, Dallas, Seattle] 
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Paths and Cycles in Directed Graphs 

Example: 

 

 

 

 

 

 

Is there a path from A to D? 

 

Does the graph contain any cycles? 
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Paths and Cycles in Directed Graphs 

Example: 

 

 

 

 

 

 

Is there a path from A to D?    No 

 

Does the graph contain any cycles?    No 
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Undirected-Graph Connectivity 

• An undirected graph is connected if for all 

 pairs of vertices u,v, there exists a path from u to v 

 

 

 

 

 

 

• An undirected graph is complete, a.k.a. fully connected if for all 
pairs of vertices u,v, there exists an edge from u to v 
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Directed-Graph Connectivity 

• A directed graph is strongly connected if 

there is a path from every vertex to every 

other vertex 

 

 

• A directed graph is weakly connected if 

there is a path from every vertex to every 

other vertex ignoring direction of edges 

 

 

• A complete a.k.a. fully connected directed 

graph has an edge from every vertex to 

every other vertex 

 

 Spring 2012 19 CSE332: Data Abstractions 

plus self edges 



Examples 

For undirected graphs: connected?   

For directed graphs: strongly connected? weakly connected? 

 

• Web pages with links 

• Facebook friends 

• “Input data” for the Kevin Bacon game 

• Methods in a program that call each other 

• Road maps (e.g., Google maps) 

• Airline routes 

• Family trees 

• Course pre-requisites 

• … 
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Trees as Graphs 

When talking about graphs,  

we say a tree is a graph that is: 

– undirected 

– acyclic 

– connected 

 

So all trees are graphs, but not 

all graphs are trees 

 

How does this relate to the trees 

we know and love?... 
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Rooted Trees 

• We are more accustomed to rooted trees where: 

– We identify a unique root 

– We think of edges are directed: parent to children 
 

• Given a tree, picking a root gives a unique rooted tree  

– The tree is just drawn differently and with undirected edges 
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Rooted Trees 

• We are more accustomed to rooted trees where: 

– We identify a unique root 

– We think of edges are directed: parent to children 
 

• Given a tree, picking a root gives a unique rooted tree  

– The tree is just drawn differently and with undirected edges 
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Directed Acyclic Graphs (DAGs) 

• A DAG is a directed graph with no (directed) cycles 

– Every rooted directed tree is a DAG 

– But not every DAG is a rooted directed tree 

 

 

 

 

 

– Every DAG is a directed graph 

– But not every directed graph is a DAG 
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Examples 

Which of our directed-graph examples do you expect to be a DAG? 

 

• Web pages with links 

• “Input data” for the Kevin Bacon game 

• Methods in a program that call each other 

• Airline routes 

• Family trees 

• Course pre-requisites 

• … 
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Density / Sparsity 

• Recall: In an undirected graph, 0 ≤ |E| < |V|2 

• Recall: In a directed graph: 0 ≤ |E| ≤ |V|2 

• So for any graph, O(|E|+|V|2) is O(|V|2) 
 

• Another fact: If an undirected graph is connected, then |V|-1 ≤ |E| 
 

• Because |E| is often much smaller than its maximum size, we do not 

always approximate |E| as O(|V|2) 

– This is a correct bound, it just is often not tight 

– If it is tight, i.e., |E| is (|V|2) we say the graph is dense 

• More sloppily, dense means “lots of edges” 

– If |E| is O(|V|) we say the graph is sparse 

• More sloppily, sparse means “most possible edges missing” 
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What is the Data Structure? 

• So graphs are really useful for lots of data and questions  

– For example, “what’s the lowest-cost path from x to y” 

 

• But we need a data structure that represents graphs 

 

• The “best one” can depend on: 

– Properties of the graph (e.g., dense versus sparse) 

– The common queries (e.g., “is (u,v) an edge?” versus 

“what are the neighbors of node u?”) 

 

• So we’ll discuss the two standard graph representations 

– Adjacency Matrix and Adjacency List 

– Different trade-offs, particularly time versus space 
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Adjacency Matrix 

• Assign each node a number from 0 to |V|-1 

• A |V| x |V| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0) 

– If M is the matrix, then M[u][v] being true                    

means there is an edge from u to v 
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Adjacency Matrix Properties 

• Running time to: 

– Get a vertex’s out-edges:  

– Get a vertex’s in-edges:  

– Decide if some edge exists:  

– Insert an edge:  

– Delete an edge:  

 

• Space requirements: 

 
 

• Best for sparse or dense graphs? 
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Adjacency Matrix Properties 

• Running time to: 

– Get a vertex’s out-edges: O(|V|) 

– Get a vertex’s in-edges: O(|V|) 

– Decide if some edge exists: O(1) 

– Insert an edge: O(1) 

– Delete an edge: O(1) 

 

• Space requirements: 

– |V|2 bits 
 

• Best for sparse or dense graphs? 

– Best for dense graphs 
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Adjacency Matrix Properties 

• How will the adjacency matrix vary for an undirected graph? 

 

 

• How can we adapt the representation for weighted graphs? 
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Adjacency Matrix Properties 

• How will the adjacency matrix vary for an undirected graph? 

– Undirected will be symmetric about diagonal axis 

 

• How can we adapt the representation for weighted graphs? 

– Instead of a Boolean, store a number in each cell 

– Need some value to represent ‘not an edge’ 

• In some situations, 0 or -1 works 
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Adjacency List 

• Assign each node a number from 0 to |V|-1 

• An array of length |V| in which each entry stores a list of all 

adjacent vertices (e.g., linked list) 
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Adjacency List Properties 

• Running time to: 

– Get all of a vertex’s out-edges:  

   

– Get all of a vertex’s in-edges: 

   

– Decide if some edge exists:  

   

– Insert an edge:   

– Delete an edge:   
 

• Space requirements: 

 
 

• Best for dense or sparse graphs?  
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Adjacency List Properties 

• Running time to: 

– Get all of a vertex’s out-edges:  

 O(d) where d is out-degree of vertex 

– Get all of a vertex’s in-edges: 

 O(|E|) (but could keep a second adjacency list for this!) 

– Decide if some edge exists:  

 O(d) where d is out-degree of source 

– Insert an edge: O(1) (unless you need to check if it’s there) 

– Delete an edge: O(d) where d is out-degree of source 
 

• Space requirements: 

– O(|V|+|E|) 
 

• Best for dense or sparse graphs?  

– Best for sparse graphs, so usually just stick with linked lists 
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Undirected Graphs 

Adjacency matrices & adjacency lists both do fine for undirected graphs 

• Matrix: Can save roughly 2x space 

– But may slow down operations in languages with “proper” 2D 

arrays (not Java, which has only arrays of arrays) 

– How would you “get all neighbors”? 

• Lists: Each edge in two lists to support efficient “get all neighbors” 

 

Example: 

 

 

Spring 2012 36 CSE332: Data Abstractions 

A 

B 

C 

D 

   

A B C 

A 

B 

C 

D 

D 

T 

T 

T T 

F F F 

F T F 

F F 

F F T F 

F 

T 

T A 

B 

C 

D 

B / 

A 

D B / 

C  / 

C  / 



Next… 

Okay, we can represent graphs 

 

Now let’s implement some useful and non-trivial algorithms 

 

• Topological sort: Given a DAG, order all the vertices so that 

every vertex comes before all of its neighbors 

 

• Shortest paths: Find the shortest or lowest-cost path from x to y 

– Related: Determine if there even is such a path 
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