CSE332: Data Abstractions

Lecture 15: Introduction to Graphs

Dan Grossman
Spring 2012

Graphs

A graph is a formalism for representing relationships among items
— Very general definition because very general concept

A graph is a pair
grap p Han Luke
G = (V,E)
— A set of vertices, also known as nodes Leia
V = {vy,Vy,.., v}
— A set of edges V = {Han,Leia,Luke}
E = {e;,ey,..,8,]) E = {(Luke,Leia),
+ Each edge e; is a pair of vertices (Har_l'Lela) !
(Leia,Han)}
(Vj rVk)
» An edge “connects” the vertices
Graphs can be directed or undirected
Spring 2012 CSE332: Data Abstractions 2

An ADT?

» Can think of graphs as an ADT with operations like
isEdge ((vj /VE))

» Butitis unclear what the “standard operations” are

* Instead we tend to develop algorithms over graphs and then use
data structures that are efficient for those algorithms

* Many important problems can be solved by:
1. Formulating them in terms of graphs
2. Applying a standard graph algorithm

* To make the formulation easy and standard, we have a lot of
standard terminology about graphs

Spring 2012 CSE332: Data Abstractions 3

Some Graphs

For each, what are the vertices and what are the edges?

* Web pages with links

» Facebook friends

* “Input data” for the Kevin Bacon game

* Methods in a program that call each other
* Road maps (e.g., Google maps)

* Airline routes

* Family trees

» Course pre-requisites

Wow: Using the same algorithms for problems across so many
domains sounds like “core computer science and engineering”

Spring 2012 CSE332: Data Abstractions 4

Undirected Graphs

» Inundirected graphs, edges have no specific direction

— Edges are always “two-way”
D

A

e Thus, (u,v) € Eimplies (v,u) € E
— Only one of these edges needs to be in the set
— The other is implicit, so normalize how you check for it

» Degree of a vertex: number of edges containing that vertex
— Put another way: the number of adjacent vertices

Spring 2012 CSE332: Data Abstractions 5

Directed Graphs

» Indirected graphs (sometimes called digraphs), edges have a
direction O

O A C
A or

/
2 edges here B

B
e Thus, (u,v) € Edoesnotimply (v,u) € E.

e Let (u,v) € E meanu—v
» Call u the source and v the destination
» In-Degree of a vertex: number of in-bound edges,
i.e., edges where the vertex is the destination
» Out-Degree of a vertex: number of out-bound edges
i.e., edges where the vertex is the source

Spring 2012 CSE332: Data Abstractions 6

Self-Edges, Connectedness

A self-edge a.k.a. a loop is an edge of the form (u,u)
— Depending on the use/algorithm, a graph may have:
* No self edges
* Some self edges
» All self edges (often therefore implicit, but we will be explicit)

A node can have a degree / in-degree / out-degree of zero

A graph does not have to be connected
— Even if every node has non-zero degree

Spring 2012 CSE332: Data Abstractions 7

More Notation O

ForagraphG = (V,E)

« | V| is the number of vertices

Vv = {A, B, C, D}
* |E| is the number of edges E = {(C, B),
— Minimum? (A, B),
— Maximum for undirected? (B, A)
(C, D)}

— Maximum for directed?

e If (u,v) € E
— Then v is a neighbor of u, i.e., v is adjacent to u
— Order matters for directed edges
e uis not adjacentto v unless (v,u) € E

Spring 2012 CSE332: Data Abstractions 8

More notation O

For a graph G=(V,E):

» | V]| is the number of vertices
* |E| is the number of edges
— Minimum? 0
— Maximum for undirected? | V| |V+1|/2 € O(|V]|?)
— Maximum for directed? |V|2 € O(|V]|?)
(assuming self-edges allowed, else subtract |V])

e If (u,v) € E
— Then v is a neighbor of u, i.e., v is adjacent to u
— Order matters for directed edges
» uis not adjacentto v unless (v,u) € E
Spring 2012 CSE332: Data Abstractions 9

Examples again

Which would use directed edges? Which would have self-edges?
Which would be connected? Which could have 0-degree nodes?

* Web pages with links

» Facebook friends

* “Input data” for the Kevin Bacon game

* Methods in a program that call each other
* Road maps (e.g., Google maps)

* Airline routes

* Family trees

» Course pre-requisites

Spring 2012 CSE332: Data Abstractions 10

Weighted Graphs

» In aweighed graph, each edge has a weight a.k.a. cost
— Typically numeric (most examples use ints)
— Orthogonal to whether graph is directed
— Some graphs allow negative weights; many do not

Clinton 20
Mukilteo
Kingston Q% Edmonds

Bainbridge 35 Seattle

(2]

Bremerton
Spring 2012 CSE332: Data Abstractions 11

Examples

What, if anything, might weights represent for each of these?
Do negative weights make sense?

* Web pages with links

» Facebook friends

* “Input data” for the Kevin Bacon game

* Methods in a program that call each other
* Road maps (e.g., Google maps)

* Airline routes

* Family trees

» Course pre-requisites

Spring 2012 CSE332: Data Abstractions 12

Paths and Cycles

* Anpathis a list of vertices [v,,vq,..,v,] suchthat (v;,v;,;)€
E forall0 < i < n. Say “apathfrom v, tov,”

» Acycle is a path that begins and ends at the same node (vy==v,)

Chicago

Seattle

(Q salt Lake City

San Francisco
Dallas

Path Length and Cost

» Path length: Number of edges in a path
» Path cost: Sum of weights of edges in a path

Example where
P= [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Chicago

Seattle

length(P) =5
cost(P)=11.5

Example: [Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle] San Francisco Dallas
Spring 2012 CSE332: Data Abstractions 13 Spring 2012 CSE332: Data Abstractions 14
Simple Paths and Cycles Paths and Cycles in Directed Graphs

» A simple path repeats no vertices, except the first might be the
last

[Seattle, Salt Lake City, San Francisco, Dallas]
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

* Recall, a cycle is a path that ends where it begins
[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]
[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

« Asimple cycle is a cycle and a simple path

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

Spring 2012 CSE332: Data Abstractions 15

Example:
D
A C
B
Is there a path from A to D?
Does the graph contain any cycles?
Spring 2012 CSE332: Data Abstractions 16

Paths and Cycles in Directed Graphs

Example:

Is there a path from A to D? No

Does the graph contain any cycles? No

Spring 2012 CSE332: Data Abstractions 17

Undirected-Graph Connectivity

* Anundirected graph is connected if for all
pairs of vertices u, v, there exists a path fromu to v

e v

Connected graph Disconnected graph

* An undirected graph is complete, a.k.a. fully connected if for all
pairs of vertices u, v, there exists an edge fromu to v

plus self edges

Spring 2012 CSE332: Data Abstractions 18

Directed-Graph Connectivity

» Adirected graph is strongly connected if
there is a path from every vertex to every
other vertex

«\»
">

» Adirected graph is weakly connected if
there is a path from every vertex to every
other vertex ignoring direction of edges

* A complete a.k.a. fully connected directed
graph has an edge from every vertex to
every other vertex
plus self edges
19

Spring 2012 CSE332: Data Abstractions

Examples

For undirected graphs: connected?
For directed graphs: strongly connected? weakly connected?

* Web pages with links

» Facebook friends

* “Input data” for the Kevin Bacon game

* Methods in a program that call each other
* Road maps (e.g., Google maps)

* Airline routes

* Family trees

« Course pre-requisites

Spring 2012 CSE332: Data Abstractions 20

Trees as Graphs

When talking about graphs, Example:
we say a tree is a graph that is: @ @
— undirected
— acyclic
— connected

So all trees are graphs, but not
all graphs are trees

@00 CE

How does this relate to the trees
we know and love?...

Spring 2012 CSE332: Data Abstractions

21

Rooted Trees

» We are more accustomed to rooted trees where:
— We identify a unique root
— We think of edges are directed: parent to children

* Given a tree, picking a root gives a unique rooted tree
— The tree is just drawn differently and with undirected edges

o), (E)
& (A)
redrawn
@ B) ©
© © ® @®
O © @

Rooted Trees

» We are more accustomed to rooted trees where:
— We identify a unique root
— We think of edges are directed: parent to children

» Given a tree, picking a root gives a unique rooted tree
— The tree is just drawn differently and with undirected edges

@ ® (F)
®)
redrawn @ @ @
— W
(B)
® ®

© @

Spring 2012 CSE332: Data Abstractions

-0

23

Directed Acyclic Graphs (DAGSs)

* A DAG is a directed graph with no (directed) cycles
— Every rooted directed tree is a DAG
— But not every DAG is a rooted directed tree

— Every DAG is a directed graph
— But not every directed graph is a DAG

Spring 2012 CSE332: Data Abstractions 24

Examples

Which of our directed-graph examples do you expect to be a DAG?

* Web pages with links

* “Input data” for the Kevin Bacon game

* Methods in a program that call each other
» Airline routes

* Family trees

» Course pre-requisites

Spring 2012 CSE332: Data Abstractions 25

Density / Sparsity

* Recall: In an undirected graph, 0 <|E| <|V|?
* Recall: In a directed graph: 0 < [E| < [V]?
» So for any graph, O(|E[+V|?) is O(|V|?*)

» Another fact: If an undirected graph is connected, then |V|-1 <|E|

» Because [E| is often much smaller than its maximum size, we do not
always approximate |E| as O(|V[?)
— This is a correct bound, it just is often not tight
— Ifitis tight, i.e., |E| is ©(V|?) we say the graph is dense
* More sloppily, dense means “lots of edges”
— If [E| is O(|V]|) we say the graph is sparse
» More sloppily, sparse means “most possible edges missing”

Spring 2012 CSE332: Data Abstractions 26

What is the Data Structure?

» So graphs are really useful for lots of data and questions
— For example, “what’s the lowest-cost path from x to y”

» But we need a data structure that represents graphs

The “best one” can depend on:
— Properties of the graph (e.g., dense versus sparse)
— The common queries (e.g., “is (u,v) an edge?” versus
“what are the neighbors of node u?”)

» So we'll discuss the two standard graph representations
— Adjacency Matrix and Adjacency List
— Different trade-offs, particularly time versus space

Spring 2012 CSE332: Data Abstractions 27

Adjacency Matrix

» Assign each node a number from 0 to |V|-1
* A |V]| x |V]| matrix (i.e., 2-D array) of Booleans (or 1 vs. 0)

— IfMis the matrix, then M[u] [v] being true
means there is an edge from u to v

A B C D

o ALF
A C B| T | F|F |F
B clF | T F |T
D/ F | F|F |F
Spring 2012 CSE332: Data Abstractions 28

Adjacency Matrix Properties

* Running time to:

— Get a vertex’s out-edges:

— Get a vertex’s in-edges:
— Decide if some edge exists:

— Insert an edge:

T a = »
—
M
M

— Delete an edge:

* Space requirements:

» Best for sparse or dense graphs?

Spring 2012 CSE332: Data Abstractions 29

Adjacency Matrix Properties

* Running time to:

— Get a vertex’s out-edges: O(|V|)

— Get a vertex’s in-edges: O(|V|)
— Decide if some edge exists: O(1)

— Insert an edge: O(1)
— Delete an edge: O(1)

o A = >
—
M
M
M

* Space requirements:
— |VI? bits

» Best for sparse or dense graphs?
— Best for dense graphs

Spring 2012 CSE332: Data Abstractions 30

Adjacency Matrix Properties

» How will the adjacency matrix vary for an undirected graph?

* How can we adapt the representation for weighted graphs?

Adjacency Matrix Properties

» How will the adjacency matrix vary for an undirected graph?
— Undirected will be symmetric about diagonal axis

* How can we adapt the representation for weighted graphs?
— Instead of a Boolean, store a number in each cell
— Need some value to represent ‘not an edge’

A C D * In some situations, 0 or -1 works B C D
Al F| T| F | F Fy T FF
B| T | F|F|F T F|F|F
clF | T F|T c/F | T | F T
D F | F|F|F DIF]F]F]F
Spring 2012 CSE332: Data Abstractions 31 Spring 2012 CSE332: Data Abstractions 32
. . . .) A —{B]/]
Adjacency List Adjacency List Properties

* Assign each node a number from 0 to | V| -1

* An array of length | V| in which each entry stores a list of all
adjacent vertices (e.g., linked list)

* Running time to:

— Get all of a vertex’s out-edges: C] EE E

D
— Get all of a vertex’s in-edges: !
OD A —HB]/] — Decide if some edge exists:
A C
B — — Insert an edge:
N — Delete an edge:
C ——{D] +—{B[/] » Space requirements:
D /
» Best for dense or sparse graphs?
Spring 2012 CSE332: Data Abstractions 33 Spring 2012 CSE332: Data Abstractions 34
. , , —r B[/] .
Adjacency List Properties Undirected Graphs
B | —

* Running time to:

— Get all of a vertex’s out-edges: C] EE E

O(d) where d is out-degree of vertex
Get all of a vertex’s in-edges:

O(|E|) (but could keep a second adjacency list for this!)

— Decide if some edge exists:

O(d) where d is out-degree of source

Insert an edge: O(1) (unless you need to check if it's there)
— Delete an edge: O(d) where d is out-degree of source

/

* Space requirements:
- O(|VI+|E])
» Best for dense or sparse graphs?

— Best for sparse graphs, so usually just stick with linked lists
Spring 2012 CSE332: Data Abstractions

35

Adjacency matrices & adjacency lists both do fine for undirected graphs
* Matrix: Can save roughly 2x space

— But may slow down operations in languages with “proper” 2D
arrays (not Java, which has only arrays of arrays)

— How would you “get all neighbors™?
« Lists: Each edge in two lists to support efficient “get all neighbors”
A B C D

0

Example:
D

=}
S
—
_|
a
|
E
i
=]
=]

T D\ —plc]/]

CSE332: Data Abstractions 36

Spring 2012

Next...

Okay, we can represent graphs
Now let’s implement some useful and non-trivial algorithms

» Topological sort: Given a DAG, order all the vertices so that
every vertex comes before all of its neighbors

» Shortest paths: Find the shortest or lowest-cost path from x to y
— Related: Determine if there even is such a path

Spring 2012 CSE332: Data Abstractions 37

