

CSE332: Data Abstractions

Lecture 16: Topological Sort / Graph Traversals

Dan Grossman

Spring 2012

Topological Sort

Problem: Given a DAG $G=(\mathbf{V}, \mathbf{E})$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it

Example input:

Example output:

$$
142,143,311,331,332,312,341,351,333,440,352
$$

Questions and comments

- Why do we perform topological sorts only on DAGs?
- Because a cycle means there is no correct answer
- Is there always a unique answer?
- No, there can be 1 or more answers; depends on the graph
- Graph with 5 topological orders:
- What DAGs have exactly 1 answer?
- Lists

- Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

Uses

- Figuring out how to finish your degree
- Computing the order in which to recompute cells in a spreadsheet
- Determining the order to compile files using a Makefile
- In general, using a dependency graph to find an order of execution

A First Algorithm for Topological Sort

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
a) Choose a vertex \mathbf{v} with labeled with in-degree of 0
b) Output \mathbf{v} and conceptually remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that (\mathbf{v}, \mathbf{u}) in \mathbf{E}), decrement the in-degree of \mathbf{u}

Example

Output:

Node: $\quad 142143311312331332333341351352440$ Removed?
In-degree: $\begin{array}{llllllllllll} & 1 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1\end{array}$

Example

Node: 142143311312331332333341351352440
Removed? x
$\begin{array}{llllllllllll}\text { In-degree: } & 0 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\ 0 & & & & & & & & & \end{array}$

Example

Node: $\quad 142143311312331332333341351352440$
Removed? x x

In-degree:	0	1	1	2	1	1	2	1	1	2	1
		0	0		0			0	0		

Example

Output: 142

Node: $\quad 142143311312331332333341351352440$ Removed? x x x

In-degree:	0	1	1	2	1	1	2	1	1	2	1
		0	0	1	0	0		0	0	1	

Example

Output: 142

Node: 142143311312331332333341351352440 Removed? x x x x

In-degree:	0	1	1	2	1	1	2	1	1	2	1
		0	0	1	0	0		0	0	1	

Example

Output: 142

Node: $\quad 142143311312331332333341351352440$ Removed? x x x x x

In-degree:	0	1	1	2	1	1	2	1	1	2	1
		0	0	1	0	0	1	0	0	1	0

Example

Output: 142

Node: $\quad 142143311312331332333341351352440$ Removed? x x x x x x

In-degree:	0	1	1	2	1	1	2	1	1	2	1
		0	0	1	0	0	1	0	0	1	0

Example

Output: 142 143 311 331 332 312 341

Node: $\quad 142143311312331332333341351352440$ Removed? x x x x x x x

In-degree: 0 | | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0

Example

Output: 142

Node: $\quad 142143311312331332333341351352440$ Removed? x x x x x x x x $\begin{array}{llllllllllll}\text { In-degree: } & 0 & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1 \\ & & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ & & & 0 & & & 0 & & & 0 & \end{array}$

Example

Output: 142

Node: $\quad 142143311312331332333341351352440$ Removed? x $\mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$ In-degree: $0 \begin{array}{lllllllllll}x & 1 & 1 & 2 & 1 & 1 & 2 & 1 & 1 & 2 & 1\end{array}$

Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```


Running time?

```
labelEachVertexWithItsInDegree();
for(ctr=0; ctr < numVertices; ctr++) {
    v = findNewVertexOfDegreeZero();
    put v next in output
    for each w adjacent to v
    w.indegree--;
}
```

- What is the worst-case running time?
- Initialization $O(|\mathrm{~V}|+|\mathrm{E}|)$ (assuming adjacency list)
- Sum of all find-new-vertex $O\left(|\mathrm{~V}|^{2}\right)$ (because each $O(|\mathrm{~V}|)$)
- Sum of all decrements $O(|E|)$ (assuming adjacency list)
- So total is $O\left(|\mathrm{~V}|^{2}\right)$ - not good for a sparse graph!

Doing better

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0 -degree nodes
2. While queue is not empty
a) $\mathbf{v}=$ dequeue()
b) Output \mathbf{v} and remove it from the graph
c) For each vertex \mathbf{u} adjacent to \mathbf{v} (i.e. \mathbf{u} such that (\mathbf{v}, \mathbf{u}) in \mathbf{E}), decrement the in-degree of \mathbf{u}, if new degree is 0 , enqueue it

Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
    w.indegree--;
    if(w.indegree==0)
        enqueue(v) ;
    }
}
```


Running time?

```
labelAllAndEnqueueZeros();
for(ctr=0; ctr < numVertices; ctr++) {
    v = dequeue();
    put v next in output
    for each w adjacent to v {
    w.indegree--;
        if(w.indegree==0)
                enqueue(v) ;
    }
}
```

- What is the worst-case running time?
- Initialization: $O(|\mathrm{~V}|+|\mathrm{E}|)$ (assuming adjacenty list)
- Sum of all enqueues and dequeues: $O(|\mathrm{~V}|)$
- Sum of all decrements: $O(|E|)$ (assuming adjacency list)
- So total is $O(|\mathrm{E}|+|\mathrm{V}|)$ - much better for sparse graph!

Graph Traversals

Next problem: For an arbitrary graph and a starting node v, find all nodes reachable from \mathbf{v} (i.e., there exists a path)

- Possibly "do something" for each node
- Examples: print to output, set a field, return from iterator, etc.

Related problems:

- Is an undirected graph connected?
- Is a directed graph weakly / strongly connected?
- For strongly, need a cycle back to starting node

Basic idea:

- Keep following nodes
- But "mark" nodes after visiting them, so the traversal terminates and processes each reachable node exactly once

Abstract Idea

```
traverseGraph(Node start) {
    Set pending = emptySet();
    pending.add(start)
    mark start as visited
    while(pending is not empty) {
        next = pending.remove()
        for each node u adjacent to next
        if(u is not marked) {
        mark u
        pending.add(u)
        }
    }
}
```


Running Time and Options

- Assuming add and remove are $O(1)$, entire traversal is $O(|\mathrm{E}|)$
- Use an adjacency list representation
- The order we traverse depends entirely on add and remove
- Popular choice: a stack "depth-first graph search" "DFS"
- Popular choice: a queue "breadth-first graph search" "BFS"
- DFS and BFS are "big ideas" in computer science
- Depth: recursively explore one part before going back to the other parts not yet explored
- Breadth: explore areas closer to the start node first

Example: trees

- A tree is a graph and DFS and BFS are particularly easy to "see"


```
DFS (Node start) {
    mark and process start
    for each node u adjacent to start
    if u is not marked
        DFS (u)
}
```

- A, B, D, E, C, F, G, H
- Exactly what we called a "pre-order traversal" for trees
- The marking is because we support arbitrary graphs and we want to process each node exactly once

Example: trees

- A tree is a graph and DFS and BFS are particularly easy to "see" DFS2 (Node start) \{
 initialize stack s to hold start mark start as visited while(s is not empty) \{
next = s.pop() // and "process" for each node u adjacent to next if (u is not marked) mark u and push onto s
\}
\}
- A, C, F, H, G, B, E, D
- A different but perfectly fine traversal

Example: trees

- A tree is a graph and DFS and BFS are particularly easy to "see" BFS (Node start) \{

initialize queue q to hold start mark start as visited while (q is not empty) \{ next = q.dequeue() // and "process" for each node u adjacent to next if (u is not marked) mark u and enqueue onto q
- A, B, C, D, E, F, G, H
- A "level-order" traversal

Comparison

- Breadth-first always finds shortest paths, i.e., "optimal solutions"
- Better for "what is the shortest path from \mathbf{x} to \mathbf{y} "
- But depth-first can use less space in finding a path
- If longest path in the graph is p and highest out-degree is d then DFS stack never has more than $\mathrm{d} *$ p elements
- But a queue for BFS may hold $O(|\mathrm{~V}|)$ nodes
- A third approach:
- Iterative deepening (IDFS):
- Try DFS but disallow recursion more than K levels deep
- If that fails, increment K and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

Saving the Path

- Our graph traversals can answer the reachability question:
- "Is there a path from node x to node y ?"
- But what if we want to actually output the path?
- Like getting driving directions rather than just knowing it's possible to get there!
- Easy:
- Instead of just "marking" a node, store the previous node along the path (when processing \mathbf{u} causes us to add \mathbf{v} to the search, set \mathbf{v}. path field to be \mathbf{u})
- When you reach the goal, follow path fields back to where you started (and then reverse the answer)
- If just wanted path length, could put the integer distance at each node instead

Example using BFS

What is a path from Seattle to Tyler

- Remember marked nodes are not re-enqueued
- Note shortest paths may not be unique

