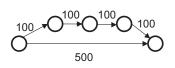
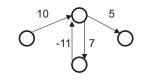


CSE332: Data Abstractions Lecture 17: Shortest Paths

Dan Grossman Spring 2012

Single source shortest paths


- Done: BFS to find the minimum path length from v to u in O(|E|+|V|)
- Actually, can find the minimum path length from v to every node
 - Still O(|E|+|V|)
 - No faster way for a "distinguished" destination in the worst-case
- · Now: Weighted graphs


Given a weighted graph and node **v**, find the minimum-cost path from **v** to every node

- As before, asymptotically no harder than for one destination
- Unlike before, BFS will not work

Spring 2012 CSE332: Data Abstractions

Not as easy

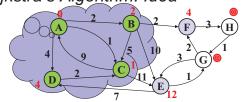
Why BFS won't work: Shortest path may not have the fewest edges

– Annoying when this happens with costs of flights

We will assume there are no negative weights

- · Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
 - See homework

Spring 2012


CSE332: Data Abstractions

Dijkstra's Algorithm

- Named after its inventor Edsger Dijkstra (1930-2002)
 - Truly one of the "founders" of computer science; this is just one of his many contributions
 - Many people have a favorite Dijkstra story, even if they never met him
 - My favorite quotation: "computer science is no more about computers than astronomy is about telescopes"
- · The idea: reminiscent of BFS, but adapted to handle weights
 - Grow the set of nodes whose shortest distance has been computed
 - Nodes not in the set will have a "best distance so far"
 - A priority queue will turn out to be useful for efficiency

Spring 2012 CSE332: Data Abstractions 4

Dijkstra's Algorithm: Idea

- Initially, start node has cost 0 and all other nodes have cost ∞
- · At each step:
 - Pick closest unknown vertex v
 - Add it to the "cloud" of known vertices
 - Update distances for nodes with edges from \boldsymbol{v}
- · That's it! (But we need to prove it produces correct answers)

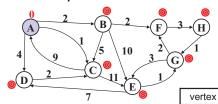
The Algorithm

- 1. For each node v, set v.cost = ∞ and v.known = false
- 2. Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node v with lowest cost
 - b) Mark v as known
 - c) For each edge (v,u) with weight w,

```
c1 = v.cost + w // cost of best path through v to u
c2 = u.cost // cost of best path to u previously known
if(c1 < c2) { // if the path through v is better
    u.cost = c1
    u.path = v // for computing actual paths</pre>
```

Spring 2012 CSE332: Data Abstractions 5 Spring 2012 CSE332: Data Abstractions

Important features


- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Spring 2012

CSE332: Data Abstractions

7

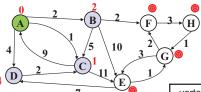
Example #1

A 0
B ??
C ??
D ??
E ??
G ??

cost

??

path

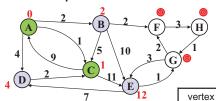

known?

Order Added to Known Set:

Spring 2012 CSE332: Data Abstractions

Н

Example #1



vertex	known?	cost	path
Α	Υ	0	
В		≤ 2	Α
С		≤ 1	Α
D		≤ 4	А
E		??	
F		??	
G		??	
Н		??	

Spring 2012

CSE332: Data Abstractions

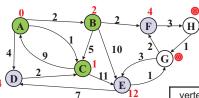
Example #1

known? cost path 0 Α ≤ 2 Α Α D ≤ 4 Α Ε ≤ 12 С F ?? ?? G Н ??

10

Order Added to Known Set:

Example #1


A, C

Spring 2012

CSE332: Data Abstractions

Example #1

Order Added to Known Set:

Order Added to Known Set:

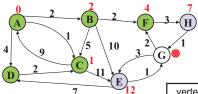
A, C, B

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D		≤ 4	Α
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

Order Added to Known Set:

A, C, B, D

vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Υ	1	Α
D	Υ	4	Α
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	


Spring 2012 CSE332: Data Abstractions

Spring 2012

CSE332: Data Abstractions

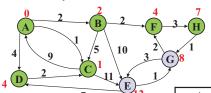
11

Example #1

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E		≤ 12	С
F	Υ	4	В
G		??	
Н		< 7	F

Order Added to Known Set:

A, C, B, D, F


Spring 2012

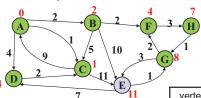
CSE332: Data Abstractions

17

Example #1

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
Е		≤ 12	С
F	Y	4	В
G		≤ 8	Н
Н	Υ	7	F

Spring 2012


A, C, B, D, F, H

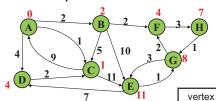
CSE332: Data Abstractions

2: Data Abstractions 14

Example #1

Order Added to Known Set:

vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
Е		≤ 11	G
F	Υ	4	В
G	Υ	8	Н
Н	Y	7	F


Spring 2012

A, C, B, D, F, H, G

CSE332: Data Abstractions

Example #1

Order Added to Known Set:

Order Added to Known Set:

A, C, B, D, F, H, G, E

		1 -	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
Е	Υ	11	G
F	Υ	4	В
G	Υ	8	Н
Н	Υ	7	F

cost

0

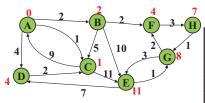
path

known?

Spring 2012

CSE332: Data Abstractions

Features


- When a vertex is marked known, the cost of the shortest path to that node is known
 - The path is also known by following back-pointers
- While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

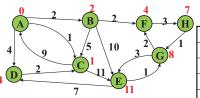
- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way

Interpreting the Results

· Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E


vertex	known?	cost	path
Α	Υ	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	Α
E	Υ	11	G
F	Υ	4	В
G	Υ	8	Н
Н	Υ	7	F

Spring 2012 CSE332: Data Abstractions 18

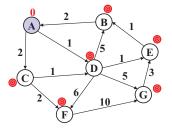
Spring 2012 CSE332: Data Abstractions

Stopping Short

- How would this have worked differently if we were only interested in:
 - The path from A to G?
 - The path from A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E


vertex	known?	cost	path
Α	Y	0	
В	Υ	2	Α
С	Υ	1	Α
D	Υ	4	А
Е	Υ	11	G
F	Y	4	В
G	Υ	8	Н
Н	Y	7	F

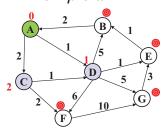
Spring 2012

CSE332: Data Abstractions

19

Example #2

Order Added to Known Set:


vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
Е		??	
F		??	
G		??	

Spring 2012

CSE332: Data Abstractions

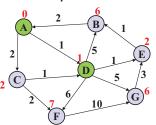
20

Example #2

Order Added	to Known	Set:

Δ

vertex	known?	cost	path
Α	Υ	0	
В		??	
С		≤ 2	Α
D		≤ 1	Α
E		??	
F		??	
G		??	


Spring 2012

CSE332: Data Abstractions

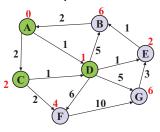
21

23

Example #2

Order Added to Known Set:

A, D

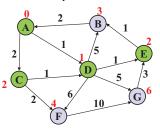

vertex	known?	cost	path
Α	Υ	0	
В		≤ 6	D
С		≤ 2	Α
D	Υ	1	Α
Е		≤ 2	D
F		≤ 7	D
G		≤ 6	D

Spring 2012

CSE332: Data Abstractions

22

Example #2



Order Added to Known Set:

A, D, C

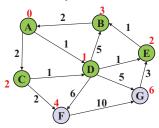
vertex	known?	cost	path
Α	Υ	0	
В		≤ 6	D
С	Υ	2	Α
D	Υ	1	Α
Е		≤ 2	D
F		≤ 4	С
G		≤ 6	D

Example #2

Order Added to Known Set:

A, D, C, E

vertex	known?	cost	path
Α	Υ	0	
В		≤ 3	Е
С	Υ	2	Α
D	Y	1	Α
E	Y	2	D
F		≤ 4	С
G		≤ 6	D


Spring 2012 CSE332: Data Abstractions

Spring 2012

CSE332: Data Abstractions

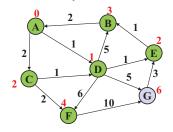
24

Example #2

Order Added to Known Set:

A, D, C, E, B

vertex	known?	cost	path
Α	Υ	0	
В	Υ	3	E
С	Υ	2	Α
D	Υ	1	Α
E	Υ	2	D
F		≤ 4	С
G		≤ 6	D


25

27

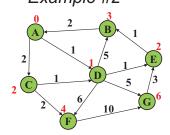
Spring 2012

CSE332: Data Abstractions

Example #2

Order Added to Known Set:

A, D, C, E, B, F


vertex	known?	cost	path
Α	Υ	0	
В	Υ	3	Е
С	Υ	2	Α
D	Υ	1	Α
Е	Υ	2	D
F	Υ	4	С
G		≤ 6	D

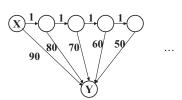
28

Spring 2012

CSE332: Data Abstractions

Example #2

Order Added to Known Set:

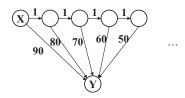

A, D, C, E, B, F, G

vertex	known?	cost	path
Α	Υ	0	
В	Υ	3	Е
С	Υ	2	Α
D	Υ	1	Α
E	Y	2	D
F	Υ	4	С
G	Υ	6	D

Spring 2012

CSE332: Data Abstractions

Example #3



How will the best-cost-so-far for Y proceed?

Is this expensive?

Spring 2012 CSE332: Data Abstractions

Example #3

How will the best-cost-so-far for Y proceed? 90, 81, 72, 63, 54, ...

Is this expensive? No, each edge is processed only once

A Greedy Algorithm

- · Dijkstra's algorithm
 - For single-source shortest paths in a weighted graph (directed or undirected) with no negative-weight edges
- An example of a greedy algorithm:
 - At each step, irrevocably does what seems best at that step
 - · A locally optimal step, not necessarily globally optimal
 - Once a vertex is known, it is not revisited
 - · Turns out to be globally optimal

 Spring 2012
 CSE332: Data Abstractions
 29
 Spring 2012
 CSE332: Data Abstractions
 30

Where are We?

- What should we do after learning an algorithm?
 - Prove it is correct
 - · Not obvious!
 - We will sketch the key ideas
 - Analyze its efficiency
 - · Will do better by using a data structure we learned earlier!

Spring 2012

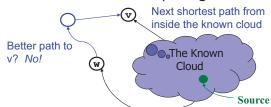
CSE332: Data Abstractions

31

Correctness: Intuition

Rough intuition:

All the "known" vertices have the correct shortest path


- True initially: shortest path to start node has cost 0
- If it stays true every time we mark a node "known", then by induction this holds and eventually everything is "known"

Key fact we need: When we mark a vertex "known" we won't discover a shorter path later!

- This holds only because Dijkstra's algorithm picks the node with the next shortest path-so-far
- The proof is by contradiction...

Spring 2012 CSE332: Data Abstractions 32

Correctness: The Cloud (Rough Sketch)

Suppose v is the next node to be marked known ("added to the cloud")

- The best-known path to v must have only nodes "in the cloud"
 - Else we would have picked a node closer to the cloud than v
- Suppose the actual shortest path to ${\bf v}$ is different
 - It won't use only cloud nodes, or we would know about it
 - So it must use non-cloud nodes. Let w be the first non-cloud node on this path. The part of the path up to w is already known and must be shorter than the best-known path to v. So v would not have been picked. Contradiction.

Spring 2012 CSE332: Data Abstractions

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
    b = find unknown node with smallest cost
    b.known = true
  for each edge (b,a) in G
    if(!a.known)
    if(b.cost + weight((b,a)) < a.cost) {
        a.cost = b.cost + weight((b,a))
        a.path = b
    }
}</pre>
```

Spring 2012 CSE332: Data Abstractions

Efficiency, first approach

Use pseudocode to determine asymptotic run-time

- Notice each edge is processed only once

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  while(not all nodes are known) {
                                                        O(|V|^2)
    b = find unknown node with smallest cost
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
       if(b.cost + weight((b,a)) < a.cost){</pre>
                                                        O(|E|)
          a.cost = b.cost + weight((b,a))
          a.path = b
                                                       O(|V|^2)
 Spring 2012
                      CSE332: Data Abstractions
```

Improving asymptotic running time

- So far: O(|V|²)
- We had a similar "problem" with topological sort being O(|V|²) due to each iteration looking for the node to process next

34

- We solved it with a queue of zero-degree nodes
- But here we need the lowest-cost node and costs can change as we process edges
- · Solution?

Spring 2012 CSE332: Data Abstractions 36

Improving (?) asymptotic running time

- So far: O(|V|²)
- We had a similar "problem" with topological sort being O(|V|²) due to each iteration looking for the node to process next
 - We solved it with a queue of zero-degree nodes
 - But here we need the lowest-cost node and costs can change as we process edges
- Solution?
 - A priority queue holding all unknown nodes, sorted by cost
 - But must support decreaseKey operation
 - Must maintain a reference from each node to its current position in the priority queue
 - · Conceptually simple, but can be a pain to code up

Spring 2012 CSE332: Data Abstractions 37

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity, x.known=false
  start.cost = 0
  build-heap with all nodes
  while(heap is not empty) {
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
    if(!a.known)
    if(b.cost + weight((b,a)) < a.cost) {
        decreaseKey(a,"new cost - old cost")
        a.path = b
    }
}</pre>
```

Spring 2012 CSE332: Data Abstractions 38

Efficiency, second approach

Use pseudocode to determine asymptotic run-time

```
dijkstra(Graph G, Node start) {
  for each node: x.cost=infinity,
  start.cost = 0
  build-heap with all nodes
  while (heap is not empty) {
                                                    O(|V|log|V|)
    b = deleteMin()
    b.known = true
    for each edge (b,a) in G
     if(!a.known)
      if(b.cost + weight((b,a)) < a.cost){</pre>
                                                   O(|E|log|V|)
         decreaseKey(a, "new cost - old cost"
         a.path = b
      }
                                            O(|V|log|V|+|E|log|V|)
 Spring 2012
                       CSE332: Data Abstractions
```

Dense vs. sparse again

- First approach: O(|V|²)
- Second approach: O(|V|log|V|+|E|log|V|)
- · So which is better?
 - Sparse: $O(|V|\log|V|+|E|\log|V|)$ (if |E| > |V|, then $O(|E|\log|V|)$)
 - Dense: O(|V|2)
- · But, remember these are worst-case and asymptotic
 - Priority queue might have slightly worse constant factors
 - On the other hand, for "normal graphs", we might call decreaseKey rarely (or not percolate far), making |E|log|V| more like |E|

Spring 2012 CSE332: Data Abstractions 40

What comes next?

In the logical course progression, we would next study

- 1. All-pairs-shortest paths
- 2. Minimum spanning trees

But to align lectures with projects and homeworks, instead we will

- Start parallelism and concurrency
- Come back to graphs at the end of the course
 - We might skip (1) except to point out where to learn more

Note toward the future:

 We cannot do all of graphs last because of the CSE312 corequisite (needed for study of NP)

Spring 2012 CSE332: Data Abstractions 41