CSE332: Data Abstractions

Lecture 2: Math Review; Algorithm Analysis

Dan Grossman
Spring 2012

Announcements

Project 1 posted

- Section materials on Eclipse will be very useful if you have never used it
- (Could also start in a different environment if necessary)
- Section materials on generics will be very useful for Phase B

Homework 1 posted

Feedback on typos is welcome

- Won't announce every minor fix to posted materials

Section tomorrow

Today

- Finish discussing queues
- Review math essential to algorithm analysis
- Proof by induction
- Powers of 2
- Exponents and logarithms
- Begin analyzing algorithms
- Using asymptotic analysis (continue next time)

Mathematical induction

Suppose $P(n)$ is some predicate (mentioning integer n)

- Example: $n \geq n / 2+1$

To prove $P(n)$ for all integers $n \geq c$, it suffices to prove

1. $P(c)$ - called the "basis" or "base case"
2. If $P(k)$ then $P(k+1)$ - called the "induction step" or "inductive case"

Why we will care:
To show an algorithm is correct or has a certain running time no matter how big a data structure or input value is (Our " n " will be the data structure or input size.)

Example

$P(n)=$ "the sum of the first n powers of 2 (starting at 0) is $2^{n}-1$ "

Theorem: $P(n)$ holds for all $n \geq 1$
Proof: By induction on n

- Base case: $n=1$. Sum of first 1 power of 2 is 2^{0}, which equals 1 . And for $n=1,2^{n}-1$ equals 1 .
- Inductive case:
- Assume the sum of the first k powers of 2 is $2^{k}-1$
- Show the sum of the first $(k+1)$ powers of 2 is $2^{k+1}-1$

Using assumption, sum of the first ($k+1$) powers of 2 is
$\left(2^{\mathrm{k}}-1\right)+2^{(k+1)-1}=\left(2^{\mathrm{k}}-1\right)+2^{\mathrm{k}}=2^{\mathrm{k}+1}-1$

Powers of 2

- A bit is 0 or 1
- A sequence of n bits can represent 2^{n} distinct things
- For example, the numbers 0 through $2^{n}-1$
- 2^{10} is 1024 ("about a thousand", kilo in CSE speak)
- 2^{20} is "about a million", mega in CSE speak
- 2^{30} is "about a billion", giga in CSE speak

Java: an int is 32 bits and signed, so "max int" is "about 2 billion" a long is 64 bits and signed, so "max long" is $2^{63}-1$

Therefore...

Could give a unique id to...

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with 38 bits (estimate)
- Every atom in the universe with $250-300$ bits

So if a password is 128 bits long and randomly generated, do you think you could guess it?

Logarithms and Exponents

- Since so much is binary in CS log almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathbf{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data play with it!

Logarithms and Exponents

- Since so much is binary \log in CS almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data play with it!

Logarithms and Exponents

- Since so much is binary \log in CS almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data play with it!

Logarithms and Exponents

- Since so much is binary \log in CS almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathbf{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20 "
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file for plot data play with it!

Properties of logarithms

- $\log (A * B)=\log A+\log B$
- So $\log \left(\mathbf{N}^{k}\right)=k \log N$
- $\log (A / B)=\log A-\log B$
- $\log (\log \mathbf{x})$ is written $\log \log \mathbf{x}$
- Grows as slowly as $2^{2^{y}}$ grows fast
- $(\log x)(\log x)$ is written $\log ^{2} x$
- It is greater than $\log \mathbf{x}$ for all $\mathbf{x}>2$

Log base doesn't matter much!

"Any base $B \log$ is equivalent to base 2 log within a constant factor"

- And we are about to stop worrying about constant factors!
- In particular, $\log _{2} \mathbf{x}=3.22 \log _{10} \mathbf{x}$
- In general,

$$
\log _{\mathrm{B}} \mathrm{x}=\left(\log _{\mathrm{A}} \mathrm{x}\right) /\left(\log _{\mathrm{A}} \mathrm{~B}\right)
$$

Algorithm Analysis

As the "size" of an algorithm's input grows
(integer, length of array, size of queue, etc.):

- How much longer does the algorithm take (time)
- How much more memory does the algorithm need (space)

Because the curves we saw are so different, often care about only "which curve we are like"

Separate issue: Algorithm correctness - does it produce the right answer for all inputs

- Usually more important, naturally

Example

- What does this pseudocode return?

```
x := 0;
for i=1 to N do
            for j=1 to i do
            x := x + 3;
return x;
```

- Correctness: For any $\mathrm{N} \geq 0$, it returns...

Example

- What does this pseudocode return?

```
x := 0;
for i=1 to N do
    for j=1 to i do
        x := x + 3;
    return x;
```

- Correctness: For any $\mathrm{N} \geq 0$, it returns $3 \mathrm{~N}(\mathrm{~N}+1) / 2$
- Proof: By induction on n
- $P(n)=$ after outer for-loop executes n times, \mathbf{x} holds $3 n(n+1) / 2$
- Base: $\mathrm{n}=0$, returns 0
- Inductive: From $P(k)$, \mathbf{x} holds $3 k(k+1) / 2$ after k iterations. Next iteration adds $3(k+1)$, for total of $3 k(k+1) / 2+3(k+1)$ $=(3 k(k+1)+6(k+1)) / 2=(k+1)(3 k+6) / 2=3(k+1)(k+2) / 2$

Example

- How long does this pseudocode run?

$$
\begin{aligned}
& \mathbf{x}:=0 ; \\
& \text { for } i=1 \text { to } N \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& \text { x }:=\mathbf{x}+3 ; \\
& \text { return } \mathbf{x} ;
\end{aligned}
$$

- Running time: For any $\mathrm{N} \geq 0$,
- Assignments, additions, returns take "1 unit time"
- Loops take the sum of the time for their iterations
- So: $2+2^{*}$ (number of times inner loop runs)
- And how many times is that...

Example

- How long does this pseudocode run?
\mathbf{x} := 0;
for $i=1$ to N do
for $j=1$ to i do $\mathbf{x}:=\mathbf{x}+3$;
return \mathbf{x};
- The total number of loop iterations is $\mathrm{N}^{*}(\mathrm{~N}+1) / 2$
- This is a very common loop structure, worth memorizing
- Proof is by induction on N, known for centuries
- This is proportional to N^{2}, and we say $O\left(\mathrm{~N}^{2}\right)$, "big-Oh of"
- For large enough N , the N and constant terms are irrelevant, as are the first assignment and return
- See plot... $\mathrm{N}^{*}(\mathrm{~N}+1) / 2$ vs. just $\mathrm{N}^{2} / 2$

Lower-order terms don't matter

$N^{*}(N+1) / 2$ vs. just $\mathrm{N}^{2} / 2$

Geometric interpretation

$$
\begin{aligned}
& \sum_{i=1}^{N} i=N^{*} N / 2+N / 2 \\
& \text { for } i=1 \text { to } N \text { do } \\
& \text { for } j=1 \text { to } i \text { do } \\
& / / / \text { small work }
\end{aligned}
$$

- Area of square: $\mathrm{N}^{*} \mathrm{~N}$
- Area of lower triangle of square: $\mathrm{N}^{*} \mathrm{~N} / 2$
- Extra area from squares crossing the diagonal: $\mathrm{N}^{*} 1 / 2$
- As N grows, fraction of "extra area" compared to lower triangle goes to zero (becomes insignificant)

Recurrence Equations

- For running time, what the loops did was irrelevant, it was how many times they executed.
- Running time as a function of input size n (here loop bound):

$$
T(n)=n+T(n-1)
$$

(and $T(0)=2$ ish, but usually implicit that $T(0)$ is some constant)

- Any algorithm with running time described by this formula is $O\left(n^{2}\right)$
- "Big-Oh" notation also ignores the constant factor on the highorder term, so $3 \mathrm{~N}^{2}$ and $17 \mathrm{~N}^{2}$ and $(1 / 1000) \mathrm{N}^{2}$ are all $O\left(\mathrm{~N}^{2}\right)$
- As N grows large enough, no smaller term matters
- Next time: Many more examples + formal definitions

Big-O: Common Names

O(1)
$O(\log n)$
$O(n)$
$\mathrm{O}(\mathrm{n} \log n)$
$O\left(n^{2}\right)$
$O\left(n^{3}\right)$
$O\left(n^{k}\right) \quad$ polynomial (where is k is any constant)
$O\left(k^{n}\right) \quad$ exponential (where k is any constant >1)
Pet peeve: "exponential" does not mean "grows really fast", it means "grows at rate proportional to k^{n} for some $k>1$ "

- A savings account accrues interest exponentially ($k=1.01$?)
- If you don't know k, you probably don't know it's exponential

