
CSE332: Data Abstractions

Lecture 22: Programming with Locks and

Critical Sections

Dan Grossman

Spring 2012

Outline

Done:

– The semantics of locks

– Locks in Java

– Using locks for mutual exclusion: bank-account example

This lecture:

– More bad interleavings (learn to spot these!)

– Guidelines/idioms for shared-memory and using locks correctly

– Coarse-grained vs. fine-grained

Next lecture:

– Readers/writer locks

– Deadlock

– Condition variables

– Data races and memory-consistency models

2 CSE332: Data Abstractions Spring 2012

Races

A race condition occurs when the computation result depends on

scheduling (how threads are interleaved)

Bugs that exist only due to concurrency

– No interleaved scheduling with 1 thread

Typically, problem is some intermediate state that “messes up” a

concurrent thread that “sees” that state

Note: This and the next lecture make a big distinction between data

races and bad interleavings, both kinds of race-condition bugs

– Confusion often results from not distinguishing these or

using the ambiguous “race condition” to mean only one

3 CSE332: Data Abstractions Spring 2012

Example

4 CSE332: Data Abstractions

class Stack<E> {

 … // state used by isEmpty, push, pop

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() {

 if(isEmpty())

 throw new StackEmptyException();

 …

 }

 E peek() { // this is wrong

 E ans = pop();

 push(ans);

 return ans;

 }

}

Spring 2012

peek, sequentially speaking

• In a sequential world, this code is of questionable style, but

unquestionably correct

• The “algorithm” is the only way to write a peek helper method if

all you had was this interface:

5 CSE332: Data Abstractions

interface Stack<E> {

 boolean isEmpty();

 void push(E val);

 E pop();

}

class C {

 static <E> E myPeek(Stack<E> s){ ??? }

}

Spring 2012

peek, concurrently speaking

• peek has no overall effect on the shared data

– It is a “reader” not a “writer”

• But the way it is implemented creates an inconsistent

intermediate state

– Even though calls to push and pop are synchronized so

there are no data races on the underlying array/list/whatever

– (A data race is simultaneous (unsynchronized) read/write or

write/write of the same memory: more on this soon)

• This intermediate state should not be exposed

– Leads to several bad interleavings

6 CSE332: Data Abstractions Spring 2012

peek and isEmpty

• Property we want: If there has been a push and no pop, then

isEmpty returns false

• With peek as written, property can be violated – how?

7 CSE332: Data Abstractions

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

Spring 2012

peek and isEmpty

• Property we want: If there has been a push and no pop, then

isEmpty returns false

• With peek as written, property can be violated – how?

8 CSE332: Data Abstractions

E ans = pop();

push(ans);

return ans;

push(x)

boolean b = isEmpty()

T
im

e

Thread 2 Thread 1 (peek)

Spring 2012

peek and push

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

9 CSE332: Data Abstractions

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

T
im

e

Thread 2 Thread 1 (peek)

Spring 2012

peek and push

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

10 CSE332: Data Abstractions

E ans = pop();

push(ans);

return ans;

push(x)

push(y)

E e = pop()

 T
im

e

Thread 2 Thread 1 (peek)

Spring 2012

peek and pop

• Property we want: Values are returned from pop in LIFO order

• With peek as written, property can be violated – how?

11 CSE332: Data Abstractions

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2 Thread 1 (peek)

push(x)

push(y)

E e = pop()

Spring 2012

peek and peek

• Property we want: peek does not throw an exception if number

of pushes exceeds number of pops

• With peek as written, property can be violated – how?

12 CSE332: Data Abstractions

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

Spring 2012

peek and peek

• Property we want: peek doesn’t throw an exception if number of

pushes exceeds number of pops

• With peek as written, property can be violated – how?

13 CSE332: Data Abstractions

E ans = pop();

push(ans);

return ans;

T
im

e

Thread 2

E ans = pop();

push(ans);

return ans;

Thread 1 (peek)

Spring 2012

The fix

• In short, peek needs synchronization to disallow interleavings

– The key is to make a larger critical section

– Re-entrant locks allow calls to push and pop

14 CSE332: Data Abstractions

class Stack<E> {

 …

 synchronized E peek(){

 E ans = pop();

 push(ans);

 return ans;

 }

}

class C {

 <E> E myPeek(Stack<E> s){

 synchronized (s) {

 E ans = s.pop();

 s.push(ans);

 return ans;

 }

 }

}

Spring 2012

The wrong “fix”

• Focus so far: problems from peek doing writes that lead to an

incorrect intermediate state

• Tempting but wrong: If an implementation of peek (or isEmpty)

does not write anything, then maybe we can skip the

synchronization?

• Does not work due to data races with push and pop…

15 CSE332: Data Abstractions Spring 2012

Example, again (no resizing or checking)

16 CSE332: Data Abstractions

class Stack<E> {

 private E[] array = (E[])new Object[SIZE];

 int index = -1;

 boolean isEmpty() { // unsynchronized: wrong?!

 return index==-1;

 }

 synchronized void push(E val) {

 array[++index] = val;

 }

 synchronized E pop() {

 return array[index--];

 }

 E peek() { // unsynchronized: wrong!

 return array[index];

 }

}

Spring 2012

Why wrong?

• It looks like isEmpty and peek can “get away with this” since

push and pop adjust the state “in one tiny step”

• But this code is still wrong and depends on language-

implementation details you cannot assume

– Even “tiny steps” may require multiple steps in the
implementation: array[++index] = val probably takes

at least two steps

– Code has a data race, allowing very strange behavior

• Important discussion in next lecture

• Moral: Do not introduce a data race, even if every interleaving

you can think of is correct

17 CSE332: Data Abstractions Spring 2012

The distinction

18 CSE332: Data Abstractions

The (poor) term “race condition” can refer to two different things

resulting from lack of synchronization:

1. Data races: Simultaneous read/write or write/write of the same

memory location

– (for mortals) always an error, due to compiler & HW (next lecture)

– Original peek example has no data races

2. Bad interleavings: Despite lack of data races, exposing bad

intermediate state

– “Bad” depends on your specification

– Original peek had several

Spring 2012

Getting it right

Avoiding race conditions on shared resources is difficult

– Decades of bugs have led to some conventional wisdom:

 general techniques that are known to work

Rest of lecture distills key ideas and trade-offs

– Parts paraphrased from “Java Concurrency in Practice”

• Chapter 2 (rest of book more advanced)

– But none of this is specific to Java or a particular book!

– May be hard to appreciate in beginning, but come back to

these guidelines over the years – don’t be fancy!

19 CSE332: Data Abstractions Spring 2012

3 choices

For every memory location (e.g., object field) in your program, you

must obey at least one of the following:

1. Thread-local: Do not use the location in > 1 thread

2. Immutable: Do not write to the memory location

3. Synchronized: Use synchronization to control access to the

location

20 CSE332: Data Abstractions

all memory thread-local

memory
immutable

memory

need

synchronization

Spring 2012

Thread-local

Whenever possible, do not share resources

– Easier to have each thread have its own thread-local copy

of a resource than to have one with shared updates

– This is correct only if threads do not need to communicate

through the resource

• That is, multiple copies are a correct approach

• Example: Random objects

– Note: Because each call-stack is thread-local, never need

to synchronize on local variables

In typical concurrent programs, the vast majority of objects should

be thread-local: shared-memory should be rare – minimize it

21 CSE332: Data Abstractions Spring 2012

Immutable

Whenever possible, do not update objects

– Make new objects instead

• One of the key tenets of functional programming

– See major theme of CSE341

– Generally helpful to avoid side-effects

– Much more helpful in a concurrent setting

• If a location is only read, never written, then no synchronization

is necessary!

– Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation – minimize it

22 CSE332: Data Abstractions Spring 2012

The rest

After minimizing the amount of memory that is (1) thread-shared

and (2) mutable, we need guidelines for how to use locks to

keep other data consistent

Guideline #0: No data races

• Never allow two threads to read/write or write/write the same

location at the same time

Necessary: In Java or C, a program with a data race is almost

always wrong

Not sufficient: Our peek example had no data races

23 CSE332: Data Abstractions Spring 2012

Consistent Locking

Guideline #1: For each location needing synchronization, have a

lock that is always held when reading or writing the location

• We say the lock guards the location

• The same lock can (and often should) guard multiple locations

• Clearly document the guard for each location

• In Java, often the guard is the object containing the location

– this inside the object’s methods

– But also often guard a larger structure with one lock to

ensure mutual exclusion on the structure

24 CSE332: Data Abstractions Spring 2012

Consistent Locking continued

• The mapping from locations to guarding locks is conceptual

– Up to you as the programmer to follow it

• It partitions the shared-and-mutable locations into “which lock”

25 CSE332: Data Abstractions

Consistent locking is:

• Not sufficient: It prevents all data races but still allows bad

interleavings

– Our peek example used consistent locking

• Not necessary: Can change the locking protocol dynamically…

Spring 2012

Beyond consistent locking

• Consistent locking is an excellent guideline

– A “default assumption” about program design

• But it isn’t required for correctness: Can have different program

phases use different invariants

– Provided all threads coordinate moving to the next phase

• Example from Project 3, Version 5:

– A shared grid being updated, so use a lock for each entry

– But after the grid is filled out, all threads except 1 terminate

• So synchronization no longer necessary (thread local)

– And later the grid becomes immutable

• So synchronization is doubly unnecessary

26 CSE332: Data Abstractions Spring 2012

Lock granularity

Coarse-grained: Fewer locks, i.e., more objects per lock

– Example: One lock for entire data structure (e.g., array)

– Example: One lock for all bank accounts

Fine-grained: More locks, i.e., fewer objects per lock

– Example: One lock per data element (e.g., array index)

– Example: One lock per bank account

“Coarse-grained vs. fine-grained” is really a continuum

27 CSE332: Data Abstractions

…

…

Spring 2012

Trade-offs

Coarse-grained advantages

– Simpler to implement

– Faster/easier to implement operations that access multiple

locations (because all guarded by the same lock)

– Much easier: operations that modify data-structure shape

Fine-grained advantages

– More simultaneous access (performance when coarse-

grained would lead to unnecessary blocking)

Guideline #2: Start with coarse-grained (simpler) and move to fine-

grained (performance) only if contention on the coarser locks

becomes an issue. Alas, often leads to bugs.

28 CSE332: Data Abstractions Spring 2012

Example: separate chaining hashtable

• Coarse-grained: One lock for entire hashtable

• Fine-grained: One lock for each bucket

Which supports more concurrency for insert and lookup?

Which makes implementing resize easier?

– How would you do it?

Maintaining a numElements field for the table will destroy the

benefits of using separate locks for each bucket

– Why?

29 CSE332: Data Abstractions Spring 2012

Critical-section granularity

A second, orthogonal granularity issue is critical-section size

– How much work to do while holding lock(s)

If critical sections run for too long:

– Performance loss because other threads are blocked

If critical sections are too short:

– Bugs because you broke up something where other threads

should not be able to see intermediate state

Guideline #3: Do not do expensive computations or I/O in critical

sections, but also don’t introduce race conditions

30 CSE332: Data Abstractions Spring 2012

Example

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

31 CSE332: Data Abstractions

synchronized(lock) {

 v1 = table.lookup(k);

 v2 = expensive(v1);

 table.remove(k);

 table.insert(k,v2);

}

Papa Bear’s

critical section

was too long

(table locked

during

expensive call)

Spring 2012

Example

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

32 CSE332: Data Abstractions

synchronized(lock) {

 v1 = table.lookup(k);

}

v2 = expensive(v1);

synchronized(lock) {

 table.remove(k);

 table.insert(k,v2);

}

Mama Bear’s

critical section

was too short

(if another thread

updated the entry,

we will lose an

update)

Spring 2012

Example

Suppose we want to change the value for a key in a hashtable

without removing it from the table

– Assume lock guards the whole table

33 CSE332: Data Abstractions

done = false;

while(!done) {

 synchronized(lock) {

 v1 = table.lookup(k);

 }

 v2 = expensive(v1);

 synchronized(lock) {

 if(table.lookup(k)==v1) {

 done = true;

 table.remove(k);

 table.insert(k,v2);

}}}

Baby Bear’s

critical section

was just right

(if another update

occurred, try our

update again)

Spring 2012

Atomicity

An operation is atomic if no other thread can see it partly executed

– Atomic as in “appears indivisible”

– Typically want ADT operations atomic, even to other threads

running operations on the same ADT

Guideline #4: Think in terms of what operations need to be atomic

– Make critical sections just long enough to preserve atomicity

– Then design the locking protocol to implement the critical

sections correctly

That is: Think about atomicity first and locks second

34 CSE332: Data Abstractions Spring 2012

Don’t roll your own

• It is rare that you should write your own data structure

– Provided in standard libraries

– Point of CSE332 is to understand the key trade-offs,

abstractions, and analysis of data structures

• Especially true for concurrent data structures

– Far too difficult to provide fine-grained synchronization

without race conditions

– Standard thread-safe libraries like ConcurrentHashMap

written by world experts

Guideline #5: Use built-in libraries whenever they meet your needs

35 CSE332: Data Abstractions Spring 2012

