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Outline 

Done: 

– The semantics of locks 

– Locks in Java 

– Using locks for mutual exclusion: bank-account example 

This lecture: 

– More bad interleavings (learn to spot these!) 

– Guidelines/idioms for shared-memory and using locks correctly 

– Coarse-grained vs. fine-grained 

Next lecture: 

– Readers/writer locks 

– Deadlock 

– Condition variables 

– Data races and memory-consistency models 
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Races 

A race condition occurs when the computation result depends on 

scheduling (how threads are interleaved) 

 

Bugs that exist only due to concurrency 

– No interleaved scheduling with 1 thread 

 

Typically, problem is some intermediate state that “messes up” a 

concurrent thread that “sees” that state 

 

Note: This and the next lecture make a big distinction between data 

races and bad interleavings, both kinds of race-condition bugs 

– Confusion often results from not distinguishing these or 

using the ambiguous “race condition” to mean only one 
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Example 

4 CSE332: Data Abstractions 

class Stack<E> { 

  … // state used by isEmpty, push, pop 

  synchronized boolean isEmpty() { … } 

  synchronized void push(E val) { … } 

  synchronized E pop() {  

   if(isEmpty()) 

      throw new StackEmptyException(); 

    … 

  } 

  E peek() { // this is wrong 

     E ans = pop(); 

     push(ans); 

     return ans; 

  } 

} 
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peek, sequentially speaking 

• In a sequential world, this code is of questionable style, but 

unquestionably correct 
 

• The “algorithm” is the only way to write a peek helper method if 

all you had was this interface: 
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interface Stack<E> { 

  boolean isEmpty(); 

  void push(E val); 

  E pop(); 

} 

 

class C { 

  static <E> E myPeek(Stack<E> s){ ??? } 

} 
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peek, concurrently speaking 

• peek has no overall effect on the shared data 

– It is a “reader” not a “writer” 
 

• But the way it is implemented creates an inconsistent 

intermediate state 

– Even though calls to push and pop are synchronized so  

there are no data races on the underlying array/list/whatever 

– (A data race is simultaneous (unsynchronized) read/write or 

write/write of the same memory: more on this soon) 

 

• This intermediate state should not be exposed 

– Leads to several bad interleavings 
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peek and isEmpty 

• Property we want: If there has been a push and no pop, then 

isEmpty returns false 
 

• With peek as written, property can be violated – how? 
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E ans = pop(); 

 

push(ans); 

 

return ans; 

push(x) 

boolean b = isEmpty() 

T
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e
 

Thread 2 Thread 1 (peek) 
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peek and isEmpty 

• Property we want: If there has been a push and no pop, then 

isEmpty returns false 
 

• With peek as written, property can be violated – how? 
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E ans = pop(); 

 

push(ans); 

 

return ans; 

push(x) 

boolean b = isEmpty() 
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Thread 2 Thread 1 (peek) 
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peek and push 

• Property we want: Values are returned from pop in LIFO order 
 

• With peek as written, property can be violated – how? 
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E ans = pop(); 

 

push(ans); 

 

return ans; 

push(x) 

push(y) 

E e = pop() 
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Thread 2 Thread 1 (peek) 
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peek and push 

• Property we want: Values are returned from pop in LIFO order 
 

• With peek as written, property can be violated – how? 
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E ans = pop(); 

 

push(ans); 

 

return ans; 

push(x) 

push(y) 

E e = pop() 
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Thread 2 Thread 1 (peek) 
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peek and pop 

• Property we want: Values are returned from pop in LIFO order 
 

• With peek as written, property can be violated – how? 
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E ans = pop(); 

 

push(ans); 

 

return ans; 

T
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Thread 2 Thread 1 (peek) 

push(x) 

push(y) 

E e = pop() 
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peek and peek 

• Property we want: peek does not throw an exception if number 

of pushes exceeds number of pops 
 

• With peek as written, property can be violated – how? 
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E ans = pop(); 

 

push(ans); 

 

return ans; 

T
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Thread 2 

E ans = pop(); 

 

push(ans); 

 

return ans; 

 

Thread 1 (peek) 
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peek and peek 

• Property we want: peek doesn’t throw an exception if number of 

pushes exceeds number of pops 
 

• With peek as written, property can be violated – how? 
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E ans = pop(); 

 

push(ans); 

 

return ans; 

T
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Thread 2 

E ans = pop(); 

 

push(ans); 

 

return ans; 

 

Thread 1 (peek) 
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The fix 

• In short, peek needs synchronization to disallow interleavings 

– The key is to make a larger critical section 

– Re-entrant locks allow calls to push and pop 
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class Stack<E> { 

  … 

  synchronized E peek(){ 

     E ans = pop(); 

     push(ans); 

     return ans; 

  } 

} 

 

class C { 

  <E> E myPeek(Stack<E> s){ 

    synchronized (s) { 

      E ans = s.pop(); 

      s.push(ans); 

      return ans; 

    } 

  } 

} 
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The wrong “fix” 

• Focus so far: problems from peek doing writes that lead to an 

incorrect intermediate state 

 

• Tempting but wrong: If an implementation of peek (or isEmpty) 

does not write anything, then maybe we can skip the 

synchronization? 

 

• Does not work due to data races with push and pop… 
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Example, again (no resizing or checking) 
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class Stack<E> { 

  private E[] array = (E[])new Object[SIZE]; 

  int index = -1; 

  boolean isEmpty() { // unsynchronized: wrong?! 

    return index==-1;  

  } 

  synchronized void push(E val) { 

   array[++index] = val; 

  } 

  synchronized E pop() {  

   return array[index--]; 

  } 

  E peek() { // unsynchronized: wrong! 

    return array[index]; 

  } 

} 
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Why wrong? 

• It looks like isEmpty and peek can “get away with this” since 

push and pop adjust the state “in one tiny step” 
 

 

• But this code is still wrong and depends on language-

implementation details you cannot assume 

– Even “tiny steps” may require multiple steps in the 
implementation: array[++index] = val probably takes 

at least two steps 

– Code has a data race, allowing very strange behavior  

• Important discussion in next lecture 
 

• Moral: Do not introduce a data race, even if every interleaving 

you can think of is correct 
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The distinction 
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The (poor) term “race condition” can refer to two different things 

resulting from lack of synchronization: 
 

1. Data races: Simultaneous read/write or write/write of the same 

memory location 

–  (for mortals) always an error, due to compiler & HW (next lecture) 

– Original peek example has no data races 
 

2. Bad interleavings: Despite lack of data races, exposing bad 

intermediate state 

– “Bad” depends on your specification 

– Original peek had several 
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Getting it right 

Avoiding race conditions on shared resources is difficult 

– Decades of bugs have led to some conventional wisdom:  

 general techniques that are known to work 

 

Rest of lecture distills key ideas and trade-offs 

– Parts paraphrased from “Java Concurrency in Practice” 

• Chapter 2 (rest of book more advanced) 

– But none of this is specific to Java or a particular book! 

– May be hard to appreciate in beginning, but come back to 

these guidelines over the years – don’t be fancy! 
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3 choices 

For every memory location (e.g., object field) in your program, you 

must obey at least one of the following: 

1. Thread-local: Do not use the location in > 1 thread 

2. Immutable: Do not write to the memory location 

3. Synchronized: Use synchronization to control access to the 

location 
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all memory thread-local 

memory 
immutable 

memory 

need  

synchronization 
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Thread-local 

Whenever possible, do not share resources 
 

– Easier to have each thread have its own thread-local copy 

of a resource than to have one with shared updates 
 

– This is correct only if threads do not need to communicate 

through the resource 

• That is, multiple copies are a correct approach 

• Example: Random objects 
 

– Note: Because each call-stack is thread-local, never need 

to synchronize on local variables 

 

In typical concurrent programs, the vast majority of objects should 

be thread-local: shared-memory should be rare – minimize it 
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Immutable 

Whenever possible, do not update objects 

– Make new objects instead 

 

• One of the key tenets of functional programming  

– See major theme of CSE341 

– Generally helpful to avoid side-effects 

– Much more helpful in a concurrent setting 

 

• If a location is only read, never written, then no synchronization 

is necessary! 

– Simultaneous reads are not races and not a problem 
 

In practice, programmers usually over-use mutation – minimize it 
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The rest 

After minimizing the amount of memory that is (1) thread-shared 

and (2) mutable, we need guidelines for how to use locks to 

keep other data consistent 

 

Guideline #0: No data races 

• Never allow two threads to read/write or write/write the same 

location at the same time 

 

Necessary: In Java or C, a program with a data race is almost 

always wrong 

 

Not sufficient: Our peek example had no data races 
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Consistent Locking 

Guideline #1: For each location needing synchronization, have a 

lock that is always held when reading or writing the location 

 

• We say the lock guards the location 

 

• The same lock can (and often should) guard multiple locations   

 

• Clearly document the guard for each location 

 

• In Java, often the guard is the object containing the location 

– this inside the object’s methods 

– But also often guard a larger structure with one lock to 

ensure mutual exclusion on the structure 
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Consistent Locking continued 

• The mapping from locations to guarding locks is conceptual 

– Up to you as the programmer to follow it 

• It partitions the shared-and-mutable locations into “which lock” 
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Consistent locking is: 
 

• Not sufficient: It prevents all data races but still allows bad 

interleavings 

– Our peek example used consistent locking 
 

• Not necessary: Can change the locking protocol dynamically… 
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Beyond consistent locking 

• Consistent locking is an excellent guideline 

– A “default assumption” about program design 
 

• But it isn’t required for correctness: Can have different program 

phases use different invariants 

– Provided all threads coordinate moving to the next phase 
 

• Example from Project 3, Version 5: 

– A shared grid being updated, so use a lock for each entry 

– But after the grid is filled out, all threads except 1 terminate 

• So synchronization no longer necessary (thread local) 

– And later the grid becomes immutable 

• So synchronization is doubly unnecessary 
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Lock granularity 

Coarse-grained:  Fewer locks, i.e., more objects per lock 

– Example: One lock for entire data structure (e.g., array) 

– Example: One lock for all bank accounts 

 

 

 

Fine-grained: More locks, i.e., fewer objects per lock 

– Example: One lock per data element (e.g., array index) 

– Example: One lock per bank account 

 

 

 

“Coarse-grained vs. fine-grained” is really a continuum 
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… 

… 
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Trade-offs 

Coarse-grained advantages 

– Simpler to implement 

– Faster/easier to implement operations that access multiple 

locations (because all guarded by the same lock) 

– Much easier: operations that modify data-structure shape 

 

Fine-grained advantages 

– More simultaneous access (performance when coarse-

grained would lead to unnecessary blocking) 

 

Guideline #2: Start with coarse-grained (simpler) and move to fine-

grained (performance) only if contention on the coarser locks 

becomes an issue.  Alas, often leads to bugs. 
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Example: separate chaining hashtable 

• Coarse-grained: One lock for entire hashtable 

• Fine-grained: One lock for each bucket 

 

Which supports more concurrency for insert and lookup? 

 

Which makes implementing resize easier? 

– How would you do it? 

 

Maintaining a numElements field for the table will destroy the 

benefits of using separate locks for each bucket 

– Why? 
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Critical-section granularity 

A second, orthogonal granularity issue is critical-section size 

– How much work to do while holding lock(s) 

 

If critical sections run for too long: 

– Performance loss because other threads are blocked 

 

If critical sections are too short: 

– Bugs because you broke up something where other threads 

should not be able to see intermediate state 

 

Guideline #3: Do not do expensive computations or I/O in critical 

sections, but also don’t introduce race conditions 
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Example 

Suppose we want to change the value for a key in a hashtable 

without removing it from the table 

– Assume lock guards the whole table 

31 CSE332: Data Abstractions 

synchronized(lock) { 

  v1 = table.lookup(k); 

  v2 = expensive(v1); 

  table.remove(k); 

  table.insert(k,v2); 

} 

Papa Bear’s 

critical section 

was too long 

 

(table locked 

during 

expensive call) 
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Example 

Suppose we want to change the value for a key in a hashtable 

without removing it from the table 

– Assume lock guards the whole table 
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synchronized(lock) { 

  v1 = table.lookup(k); 

} 

v2 = expensive(v1); 

synchronized(lock) { 

  table.remove(k); 

  table.insert(k,v2); 

} 

Mama Bear’s 

critical section 

was too short 

 

(if another thread  

updated the entry, 

we will lose an 

update) 
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Example 

Suppose we want to change the value for a key in a hashtable 

without removing it from the table 

– Assume lock guards the whole table 
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done = false; 

while(!done) { 

  synchronized(lock) { 

    v1 = table.lookup(k); 

  }  

  v2 = expensive(v1); 

  synchronized(lock) { 

    if(table.lookup(k)==v1) { 

      done = true; 

      table.remove(k); 

      table.insert(k,v2); 

}}} 

Baby Bear’s 

critical section 

was just right 

 

(if another update 

occurred, try our 

update again) 
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Atomicity 

An operation is atomic if no other thread can see it partly executed 

– Atomic as in “appears indivisible” 

– Typically want ADT operations atomic, even to other threads 

running operations on the same ADT 

 

Guideline #4:  Think in terms of what operations need to be atomic   

– Make critical sections just long enough to preserve atomicity 

– Then design the locking protocol to implement the critical 

sections correctly 

 

That is: Think about atomicity first and locks second 
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Don’t roll your own 

• It is rare that you should write your own data structure 

– Provided in standard libraries 

– Point of CSE332 is to understand the key trade-offs,  

abstractions, and analysis of data structures 

 

• Especially true for concurrent data structures 

– Far too difficult to provide fine-grained synchronization 

without race conditions 

– Standard thread-safe libraries like ConcurrentHashMap 

written by world experts 

 

Guideline #5: Use built-in libraries whenever they meet your needs 
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