"Scheduling note"

- "We now return to our interrupted program" on graphs
- Last "graph lecture" was lecture 17
- Shortest-path problem
- Dijkstra's algorithm for graphs with non-negative weights
- Why this strange schedule?
- Needed to do parallelism and concurrency in time for project 3 and homeworks 6 and 7
- But cannot delay all of graphs because of the CSE312 corequisite
- So: not the most logical order, but hopefully not a big deal

Spanning Trees

- A simple problem: Given a connected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, find a minimal subset of the edges such that the graph is still connected
- A graph $\mathbf{G 2}=(\mathbf{V}, \mathbf{E} 2)$ such that $\mathbf{G} 2$ is connected and removing any edge from E2 makes G2 disconnected

Observations

1. Any solution to this problem is a tree

- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected

2. Solution not unique unless original graph was already a tree
3. Problem ill-defined if original graph not connected
4. A tree with $|\mathbf{V}|$ nodes has $|\mathbf{V}|-1$ edges

- So every solution to the spanning tree problem has |V|-1 edges

Two Approaches

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
2. Iterate through edges; add to output any edge that does not create a cycle

In most compelling uses, we have a weighted undirected graph and we want a tree of least total cost

- Example: Electrical wiring for a house or clock wires on a chip
- Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem

- Will do that next, after intuition from the simpler case

Spanning tree via DFS

```
spanning_tree(Graph G) {
    for each node i: i.marked = false
    for some node i: f(i)
}
f(Node i) {
    i.marked = true
    for each j adjacent to i:
        if(!j.marked) {
            add(i,j) to output
            f(j) // DFS
        }
}
```

Correctness: DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: O(IEl)

Example

Stack
f(1)

Output:

Spring 2012
CSE332: Data Abstractions

Example

Stack
f(1)
f(2)
f(7)

Output: $(1,2),(2,7)$

Example

Stack

f(1)
f(2)
f(7)
f(5)
f(4)

Output: (1,2), (2,7), (7,5), (5,4)

Example

Stack
f(1)
f(2)
f(7)
f(5)
f(4)
$\mathrm{f}(3)$

Output: (1,2), (2,7), (7,5), (5,4),(4,3)

Example

Stack
f(1)
f(2)
f(7)
f(5)
$f(4) f(6)$
f(3)

Output: $(1,2),(2,7),(7,5),(5,4),(4,3),(5,6)$

Spring 2012

Example

Output: $(1,2),(2,7),(7,5),(5,4),(4,3),(5,6)$

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output:

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4)$

Example

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: $(1,2),(3,4),(5,6),(5,7)$

Example

Edges in some arbitrary order:

$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4),(5,6),(5,7),(1,5)$

Example

Edges in some arbitrary order:

$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4),(5,6)$,

Spring 2012
CSE332: Data Abstractions

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4),(5,6),(5,7),(1,5)$

Spring 2012

Example

Edges in some arbitrary order:
$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4),(5,6),(5,7),(1,5)$

Example

Edges in some arbitrary order:

$(1,2),(3,4),(5,6),(5,7),(1,5),(1,6),(2,7),(2,3),(4,5),(4,7)$ 2

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Using Disjoint-Set

Can use a disjoint-set implementation in our spanning-tree algorithm to detect cycles:

Invariant: u and v are connected in output-so-far
iff
u and v in the same set

- Initially, each node is in its own set

Why Do This?

- Using an ADT someone else wrote is easier than writing your own cycle detection
- It is also more efficient
- Chapter 8 of your textbook gives several implementations of different sophistication and asymptotic complexity
- A slightly clever and easy-to-implement one is $O(\log n)$ for find and union (as we defined the operations here)
- Lets our spanning tree algorithm be $O(|E| \log |\mathbf{V}|)$
[We skipped disjoint-sets as an example of "sometimes knowing-an-ADT-exists and you-can-learn-it-on-your-own suffices"]

Spring 2012

Getting to the Point

Algorithm \#1

Shortest-path is to Dijkstra's Algorithm
as
Minimum Spanning Tree is to Prim's Algorithm
(Both based on expanding cloud of known vertices, basically using a priority queue instead of a DFS stack)

Algorithm \#2

> Kruskal's Algorithm for Minimum Spanning Tree
> is
> Exactly our 2 ${ }^{\text {nd }}$ approach to spanning tree but process edges in cost order

Prim's Algorithm Idea

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight that connects "known" to "unknown."

Recall Dijkstra "picked edge with closest known distance to source"

- That is not what we want here
- Otherwise identical
- Compare to slides in lecture 17 if you do not believe me

The Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and \mathbf{v}.known $=$ false
2. Choose any node v
a) Mark vas known
b) For each edge (\mathbf{v}, u) with weight \mathbf{w}, set u . cost=w and u.prev=v
3. While there are unknown nodes in the graph
a) Select the unknown node \mathbf{v} with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (\mathbf{v}, u) with weight w ,
```
if(w < u.cost) {
            u.cost = w;
    u.prev = v;
}
```

Spring 2012

Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C		2	A
D		1	A
E		$? ?$	
F		$? ?$	
G		$? ?$	

Spring 2012

Example

vertex	known?	cost	prev
A	Y	0	
B		2	A
C	Y	1	D
D	Y	1	A
E		1	D
F		2	C
G		5	D

Example

vertex	known?	cost	prev
A	Y	0	
B		1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Spring 2012
CSE332: Data Abstractions

Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F		2	C
G		3	E

Spring 2012
CSE332: Data Abstractions
38

Example

vertex	known?	cost	prev
A	Y	0	
B	Y	1	E
C	Y	1	D
D	Y	1	A
E	Y	1	D
F	Y	2	C
G	Y	3	E

Spring 2012

Kruskal's Algorithm

Idea: Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.

- But now consider the edges in order by weight

So:

- Sort edges: $\mathrm{O}^{(|E| l|l o g| E \mid)}$
- Iterate through edges using union-find for cycle detection O(|티 $\log |\mathrm{V}|)$

Somewhat better:

- Floyd's algorithm to build min-heap with edges $O(|E|$ |)
- Iterate through edges using union-find for cycle detection and deleteMin to get next edge $O(|\underline{E}| \log |\mathbf{V}|)$
- Not better worst-case asymptotically, but often stop long before considering all edges

Pseudocode

1. Sort edges by weight (better: put in min-heap)
2. Each node in its own set
3. While output size $<|\mathbf{V}|-1$

- Consider next smallest edge (u,v)
- if f ind (u, v) indicates u and v are in different sets
- output (u,v)
- union (u,v)

Recall invariant:
u and v in same set if and only if connected in output-so-far

Example

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E, G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: $(D, G),(B, D)$
6: ($D, F)$
10: (F, G)

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: $(A, B),(C, F),(A, C)$
3: (E,G)
5: $(D, G),(B, D)$
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

Example

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F, G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

Correctness

Kruskal's algorithm is clever, simple, and efficient

- But does it generate a minimum spanning tree?
- How can we prove it?

First: it generates a spanning tree

- Intuition: Graph started connected and we added every edge that did not create a cycle
- Proof by contradiction: Suppose u and v are disconnected in Kruskal's result. Then there's a path from u to v in the initial graph with an edge we could add without creating a cycle. But Kruskal would have added that edge. Contradiction.

Second: There is no spanning tree with lower total cost...

Staying a subset of some MST

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $\quad \mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}$:

Two disjoint cases:

- If $\{\mathrm{e}\} \subseteq \mathrm{T}$: Then $\mathrm{F} \subseteq \mathrm{T}$ and we're done
- Else \mathbf{e} forms a cycle with some simple path (call it \mathbf{p}) in \mathbf{T}
- Must be since T is a spanning tree

Staying a subset of some MST

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $F-\{e\} \subseteq T$ and e forms a cycle with $\mathbf{p} \subseteq T$

- There must be an edge $\mathbf{e 2}$ on \mathbf{p} such that $\mathbf{e 2}$ is not in \mathbf{F}
- Else Kruskal would not have added e
- Claim: e2.weight $==$ e.weight

Staying a subset of some MST

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $\quad \mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}$ e forms a cycle with $\mathbf{p} \subseteq \mathbf{T}$ e2 on p is not in F

- Claim: e2.weight == e.weight
- If e2.weight > e.weight, then T is not an MST because
$\mathrm{T}-\{\mathrm{e} 2\}+\{\mathrm{e}\}$ is a spanning tree with lower cost: contradiction
- If e2.weight < e.weight, then Kruskal would have already considered e2. It would have added it since T has no cycles and $\mathrm{F}-\{\mathrm{e}\} \subseteq \mathrm{T}$. But e 2 is not in F : contradiction

Staying a subset of some MST

Claim: \mathbf{F} is a subset of one or more MSTs for the graph

So far: $F-\{e\} \subseteq T$
e forms a cycle with $\mathbf{p} \subseteq T$
e2 on \boldsymbol{p} is not in \mathbf{F}
e2.weight $==$ e.weight

- Claim: T-\{e2\}+\{e\} is an MST
- It is a spanning tree because $\mathrm{p}-\{\mathrm{e} 2\}+\{\mathrm{e}\}$ connects the same nodes as \mathbf{p}
- It is minimal because its cost equals cost of T, an MST
- Since $F \subseteq T-\{e 2\}+\{e\}, \quad F$ is a subset of one or more MSTs Done
Done

