

CSE332: Data Abstractions Lecture 24.5: Interlude on Intractability

Dan Grossman Spring 2012 No, the material in lecture 24.5 (this one) won't be on the final - But it's still an important high-level idea

Intractable Graph Problems

- Graph problems we studied all had efficient solutions (*roughly* O(|V|²) or better)
 - Topological sort
 - Traversals/connectedness
 - Shortest paths
 - Minimum Spanning Tree
- But there are plenty of *intractable* graph problems
 - Worst-case exponential in some aspect of the problem as far as we know
 - Topic studied in CSE312 and CSE421, but do not want to give false impression that there is always an efficient solution to everything
 - Common instances or approximate solutions can be better

 $O(2^{|V|})$ algorithm: Try every subset of vertices; pick smallest one $O(N^{k})$ algorithm: Unknown, probably does not exist

Vertex Cover: Decision Problem

Input: A graph (V,E) and a number m

Output: A subset **S** of **V** such that for every edge (**u**,**v**) in **E**, at least one of **u** or **v** is in **S** and **|S|=m** (if such an **S** exists)

 $O(2^{\mathbf{m}})$ algorithm: Try every subset of vertices of size \mathbf{m} $O(m^{\mathbf{k}})$ algorithm: Unknown, probably does not exist

Good enough: Binary search on **m** can solve the original problem

Easy to *verify* a solution: See if **S** has size **m** and covers edges

Traveling Salesman

[Like vertex cover, usually interested in the optimal solution, but we can ask a yes/no question and rely on binary search for optimal]

Input: A complete directed graph (V,E) and a number **m** Output: A path that visits each vertex exactly once and has total cost < **m** if one exists

O(**//!**) algorithm: Try every path, stop if find cheap enough one

Verifying a solution: Easy

Input: An undirected graph (**V**,**E**) and a number **m** Output: Is there a *subgraph* of **m** nodes such that every edge in the subgraph is present?

Naïve algorithm: Try all subsets of **m** nodes

Verifying a solution: Easy

Not Just Graph Problems

- Every problem studied in CSE332 has an efficient solution
 - Correct cause and effect: Chose to study problems for which we know efficient solutions!
- There are plenty of intractable problems...

Subset Sum

Input: An *array* of *n* numbers and a target-sum *sum* Output: A subset of the numbers that add up to *sum* if one exists

 $O(2^{n})$ algorithm: Try every subset of array $O(n^{k})$ algorithm: Unknown, probably does not exist

Satisfiability

 $(\neg x_1 \lor x_2 \lor x_4) \land (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor \neg x_5)$

Input: a logic formula of size **m** containing **n** variables Output: An assignment of Boolean values to the variables in the formula such that the formula is true

O(**m***2^{**n**}) algorithm: Try every variable assignment O(**m**^k**n**^k) algorithm: Unknown, probably does not exist

So... what to do?

- Given a problem, how can you:
 - Find an efficient solution...
 - ... or prove that one (probably) does not exist?
- See CSE312, CSE421, CSE431