CSE332: Data Abstractions

Lecture 24.5: Interlude on Intractability

Dan Grossman
Spring 2012

No, the material in lecture 24.5 (this one) won't be on the final - But it's still an important high-level idea

Intractable Graph Problems

- Graph problems we studied all had efficient solutions (roughly $O\left(|\mathrm{~V}|^{2}\right)$ or better)
- Topological sort
- Traversals/connectedness
- Shortest paths
- Minimum Spanning Tree
- But there are plenty of intractable graph problems
- Worst-case exponential in some aspect of the problem as far as we know
- Topic studied in CSE312 and CSE421, but do not want to give false impression that there is always an efficient solution to everything
- Common instances or approximate solutions can be better

Vertex Cover: Optimal

Input: A graph (V,E)

Output: A minimum size subset \mathbf{S} of \mathbf{V} such that for every edge (\mathbf{u}, \mathbf{v}) in \mathbf{E}, at least one of \mathbf{u} or \mathbf{v} is in \mathbf{S}
$O\left(2^{|\mathrm{V}|}\right)$ algorithm: Try every subset of vertices; pick smallest one $\mathrm{O}\left(N /^{\mathbf{k}}\right)$ algorithm: Unknown, probably does not exist

Vertex Cover: Decision Problem

Input: A graph (V,E) and a number m

Output: A subset \mathbf{S} of \mathbf{V} such that for every edge (u,v) in \mathbf{E}, at least one of u or v is in \mathbf{S} and $|\mathbf{S}|=\mathbf{m}$ (if such an \mathbf{S} exists)
$O\left(2^{m}\right)$ algorithm: Try every subset of vertices of size m
$\mathrm{O}\left(m^{\mathbf{k}}\right)$ algorithm: Unknown, probably does not exist
Good enough: Binary search on \mathbf{m} can solve the original problem

Easy to verify a solution: See if \mathbf{S} has size \mathbf{m} and covers edges

Traveling Salesman

[Like vertex cover, usually interested in the optimal solution, but we can ask a yes/no question and rely on binary search for optimal]

Input: A complete directed graph (V,E) and a number \mathbf{m}
Output: A path that visits each vertex exactly once and has total cost < \mathbf{m} if one exists
$O(N /!)$ algorithm: Try every path, stop if find cheap enough one

Verifying a solution: Easy

Clique

Input: An undirected graph (V,E) and a number \mathbf{m}
Output: Is there a subgraph of \mathbf{m} nodes such that every edge in the subgraph is present?

Naïve algorithm: Try all subsets of \mathbf{m} nodes

Verifying a solution: Easy

Not Just Graph Problems

- Every problem studied in CSE332 has an efficient solution
- Correct cause and effect: Chose to study problems for which we know efficient solutions!
- There are plenty of intractable problems...

Subset Sum

14	17	5	2	3	2	6	7	6	17

Input: An array of n numbers and a target-sum sum
Output: A subset of the numbers that add up to sum if one exists
$O\left(2^{n}\right)$ algorithm: Try every subset of array
$\mathrm{O}\left(n^{\mathbf{k}}\right)$ algorithm: Unknown, probably does not exist

Satisfiability

$$
\left(\neg x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee x_{4}\right) \wedge\left(x_{2} \vee \neg x_{4} \vee \neg x_{5}\right)
$$

Input: a logic formula of size \mathbf{m} containing \mathbf{n} variables
Output: An assignment of Boolean values to the variables in the formula such that the formula is true
$O\left(\mathbf{m}^{*} \mathbf{2}^{\mathbf{n}}\right)$ algorithm: Try every variable assignment $\mathrm{O}\left(\mathbf{m}^{\mathbf{k}} \mathbf{n}^{\mathbf{k}}\right)$ algorithm: Unknown, probably does not exist

So... what to do?

- Given a problem, how can you:
- Find an efficient solution...
- ... or prove that one (probably) does not exist?
- See CSE312, CSE421, CSE431

