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Announcements 

Project 1 posted 
– Section materials on Eclipse will be very useful if you have 

never used it 
– (Could also start in a different environment if necessary) 
– Section materials on generics will be very useful for Phase B 

 
Homework 1 posted 
 
Feedback on typos is welcome 

– Won’t announce every minor fix to posted materials 
 

Section tomorrow 
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Today 

• Finish discussing queues 
 

• Review math essential to algorithm analysis 
– Proof by induction 
– Powers of 2 
– Exponents and logarithms 

 
• Begin analyzing algorithms 

– Using asymptotic analysis (continue next time) 
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Mathematical induction 

Suppose P(n) is some predicate (mentioning integer n) 

– Example: n ≥ n/2 + 1 
 

To prove P(n) for all integers n ≥ c, it suffices to prove 
1. P(c) – called the “basis” or “base case” 
2. If P(k) then P(k+1) – called the “induction step” or “inductive case” 

 
Why we will care:  
 To show an algorithm is correct or has a certain running time     

no matter how big a data structure or input value is 
 (Our “n” will be the data structure or input size.) 
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Example 

P(n) = “the sum of the first n powers of 2 (starting at 0) is 2n-1” 
 
Theorem:  P(n) holds for all n ≥ 1 
Proof:  By induction on n 
• Base case: n=1.  Sum of first 1 power of 2 is 20 , which equals 1. 
          And for n=1, 2n-1 equals 1. 
• Inductive case: 

– Assume the sum of the first k powers of 2 is 2k-1 
– Show the sum of the first (k+1) powers of 2 is 2k+1-1 
Using assumption, sum of the first (k+1) powers of 2 is 
(2k-1) + 2(k+1)-1 = (2k-1) + 2k = 2k+1-1 
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Powers of 2 

• A bit is 0 or 1 
• A sequence of n bits can represent 2n distinct things 

– For example, the numbers 0 through 2n-1 
• 210 is 1024 (“about a thousand”, kilo in CSE speak) 
• 220 is “about a million”, mega in CSE speak 
• 230 is “about a billion”, giga in CSE speak 
 
Java: an int is 32 bits and signed, so “max int” is “about 2 billion” 
          a long is 64 bits and signed, so “max long” is 263-1 
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Therefore… 

Could give a unique id to… 
 

• Every person in the U.S. with 29 bits 
 

• Every person in the world with 33 bits 
 

• Every person to have ever lived with 38 bits (estimate) 
 

• Every atom in the universe with 250-300 bits 
 

So if a password is 128 bits long and randomly generated,  
 do you think you could guess it? 
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Logarithms and Exponents 

• Since so much is binary in CS log almost always means log2   
• Definition: log2 x = y if  x = 2y 
• So, log2 1,000,000 = “a little under 20” 
• Just as exponents grow very quickly, logarithms grow very slowly 
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See Excel file 
for plot data – 
play with it! 
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Properties of logarithms 

• log(A*B) = log A + log B 
– So log(Nk)= k log N 
 

• log(A/B) = log A – log B 
 

• log(log x) is written log log x 
– Grows as slowly as 22  grows fast 

 
• (log x)(log x) is written log2x 

– It is greater than log x for all x > 2 
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y 



Log base doesn’t matter much! 

“Any base B log is equivalent to base 2 log within a constant factor” 
– And we are about to stop worrying about constant factors! 
– In particular, log2 x = 3.22 log10 x 
– In general,  

   logB x = (logA x) / (logA B) 
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Algorithm Analysis 

As the “size” of an algorithm’s input grows 
 (integer, length of array, size of queue, etc.): 

– How much longer does the algorithm take (time) 
– How much more memory does the algorithm need (space) 

 
Because the curves we saw are so different, often care about only 

“which curve we are like” 
 

Separate issue: Algorithm correctness – does it produce the right 
answer for all inputs 
– Usually more important, naturally 
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Example 

• What does this pseudocode return? 
     x := 0; 
     for i=1 to N do 
       for j=1 to i do 
          x := x + 3; 
     return x; 

 
• Correctness: For any N ≥ 0, it returns… 
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Example 

• What does this pseudocode return? 
     x := 0; 
     for i=1 to N do 
       for j=1 to i do 
          x := x + 3; 
     return x; 

 

• Correctness: For any N ≥ 0, it returns 3N(N+1)/2 
• Proof: By induction on n 

– P(n) = after outer for-loop executes n times, x holds     
  3n(n+1)/2 

– Base: n=0, returns 0 
– Inductive: From P(k), x holds 3k(k+1)/2 after k iterations. 

Next iteration adds 3(k+1), for total of 3k(k+1)/2 + 3(k+1)  
 = (3k(k+1) + 6(k+1))/2 = (k+1)(3k+6)/2 = 3(k+1)(k+2)/2 
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Example 

• How long does this pseudocode run? 
     x := 0; 
     for i=1 to N do 
       for j=1 to i do 
          x := x + 3; 
     return x; 

 

• Running time: For any N ≥ 0,  
– Assignments, additions, returns take “1 unit time” 
– Loops take the sum of the time for their iterations 

 
• So: 2 + 2*(number of times inner loop runs) 

– And how many times is that… 
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Example 

• How long does this pseudocode run? 
     x := 0; 
     for i=1 to N do 
       for j=1 to i do 
          x := x + 3; 
     return x; 

 

• The total number of loop iterations is N*(N+1)/2 
– This is a very common loop structure, worth memorizing 
– Proof is by induction on N, known for centuries 
– This is proportional to N2 , and we say O(N2), “big-Oh of” 

• For large enough N, the N and constant terms are 
irrelevant, as are the first assignment and return 

• See plot… N*(N+1)/2 vs. just N2/2 
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Lower-order terms don’t matter 

N*(N+1)/2 vs. just N2/2 
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Geometric interpretation 
 

∑ i  = N*N/2+N/2 
 
for i=1 to N do 
  for j=1 to i do 
     // small work 
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N 

i=1 

• Area of square: N*N 
• Area of lower triangle of square: N*N/2 
• Extra area from squares crossing the diagonal: N*1/2 
• As N grows, fraction of “extra area” compared to lower triangle 

goes to zero (becomes insignificant) 

Recurrence Equations  

• For running time, what the loops did was irrelevant, it was how 
many times they executed. 
 

• Running time as a function of input size n (here loop bound): 
  T(n) = n + T(n-1)     
 (and T(0) = 2ish, but usually implicit that T(0) is some constant) 
 

• Any algorithm with running time described by this formula is O(n2) 
 

• “Big-Oh” notation also ignores the constant factor on the high-
order term, so 3N2 and 17N2 and (1/1000) N2  are all O(N2) 
– As N grows large enough, no smaller term matters 
– Next time: Many more examples + formal definitions 
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Big-O: Common Names 

O(1)  constant (same as O(k) for constant k) 
O(log n) logarithmic 
O(n)  linear 
O(n log n)         “n log n” 
O(n2)  quadratic 
O(n3)  cubic 
O(nk)  polynomial (where is k is any constant) 
O(kn)  exponential (where k is any constant > 1) 
 

Pet peeve: “exponential” does not mean “grows really fast”, it 
means “grows at rate proportional to kn for some k>1” 
– A savings account accrues interest exponentially (k=1.01?) 
– If you don’t know k, you probably don’t know it’s exponential 
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