
CSE332: Data Abstractions

Lecture 3: Asymptotic Analysis

Dan Grossman

Spring 2012

Gauging performance

• Uh, why not just run the program and time it

– Too much variability, not reliable or portable:

• Hardware: processor(s), memory, etc.

• OS, Java version, libraries, drivers

• Other programs running

• Implementation dependent

– Choice of input

• Testing (inexhaustive) may miss worst-case input

• Timing does not explain relative timing among inputs

(what happens when n doubles in size)

• Often want to evaluate an algorithm, not an implementation

– Even before creating the implementation (“coding it up”)

Spring 2012 2 CSE332: Data Abstractions

Comparing algorithms

When is one algorithm (not implementation) better than another?

– Various possible answers (clarity, security, …)

– But a big one is performance: for sufficiently large inputs,

runs in less time (our focus) or less space

Large inputs because probably any algorithm is “plenty good” for

small inputs (if n is 10, probably anything is fast)

Answer will be independent of CPU speed, programming language,

coding tricks, etc.

Answer is general and rigorous, complementary to “coding it up

and timing it on some test cases”

Spring 2012 3 CSE332: Data Abstractions

Analyzing code (“worst case”)

Basic operations take “some amount of” constant time

– Arithmetic (fixed-width)

– Assignment

– Access one Java field or array index

– Etc.

(This is an approximation of reality: a very useful “lie”.)

Consecutive statements Sum of times

Conditionals Time of test plus slower branch

Loops Sum of iterations

Calls Time of call’s body

Recursion Solve recurrence equation

Spring 2012 4 CSE332: Data Abstractions

Example

Find an integer in a sorted array

Spring 2012 5 CSE332: Data Abstractions

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

 ???

}

Linear search

Find an integer in a sorted array

Spring 2012 6 CSE332: Data Abstractions

2 3 5 16 37 50 73 75 126

// requires array is sorted

// returns whether k is in array

boolean find(int[]arr, int k){

 for(int i=0; i < arr.length; ++i)

 if(arr[i] == k)

 return true;

 return false;

}

Best case: 6ish steps = O(1)

Worst case: 6ish*(arr.length)

 = O(arr.length)

Binary search

Find an integer in a sorted array

– Can also be done non-recursively but “doesn’t matter” here

Spring 2012 7 CSE332: Data Abstractions

2 3 5 16 37 50 73 75 126

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2; // i.e., lo+(hi-lo)/2
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Binary search

Spring 2012 8 CSE332: Data Abstractions

// requires array is sorted
// returns whether k is in array
boolean find(int[]arr, int k){
 return help(arr,k,0,arr.length);
}
boolean help(int[]arr, int k, int lo, int hi) {
 int mid = (hi+lo)/2;
 if(lo==hi) return false;
 if(arr[mid]==k) return true;
 if(arr[mid]< k) return help(arr,k,mid+1,hi);
 else return help(arr,k,lo,mid);
}

Best case: 8ish steps = O(1)

Worst case: T(n) = 10ish + T(n/2) where n is hi-lo

• O(log n) where n is array.length

• Solve recurrence equation to know that…

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case?

– T(n) = 10 + T(n/2) T(1) = 8

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

– T(n) = 10 + 10 + T(n/4)

 = 10 + 10 + 10 + T(n/8)

 = …

 = 10k + T(n/(2k))

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

– n/(2k) = 1 means n = 2k means k = log2 n

– So T(n) = 10 log2 n + 8 (get to base case and do it)

– So T(n) is O(log n)

Spring 2012 9 CSE332: Data Abstractions

Ignoring constant factors

• So binary search is O(log n) and linear is O(n)

– But which is faster

• Could depend on constant factors

– How many assignments, additions, etc. for each n

– And could depend on size of n

• But there exists some n0 such that for all n > n0 binary search wins

• Let’s play with a couple plots to get some intuition…

Spring 2012 10 CSE332: Data Abstractions

Example

• Let’s try to “help” linear search

– Run it on a computer 100x as fast (say 2010 model vs. 1990)

– Use a new compiler/language that is 3x as fast

– Be a clever programmer to eliminate half the work

– So doing each iteration is 600x as fast as in binary search

• Note: 600x still helpful for problems without logarithmic algorithms!

Spring 2012 11 CSE332: Data Abstractions

Another example: sum array

Two “obviously” linear algorithms: T(n) = O(1) + T(n-1)

Spring 2012 12 CSE332: Data Abstractions

int sum(int[] arr){
 int ans = 0;
 for(int i=0; i<arr.length; ++i)
 ans += arr[i];
 return ans;
}

int sum(int[] arr){
 return help(arr,0);
}
int help(int[]arr,int i) {
 if(i==arr.length)
 return 0;
 return arr[i] + help(arr,i+1);
}

Recursive:

– Recurrence is

 k + k + … + k

 for n times

Iterative:

What about a binary version?

Spring 2012 13 CSE332: Data Abstractions

Recurrence is T(n) = O(1) + 2T(n/2)

– 1 + 2 + 4 + 8 + … for log n times

– 2(log n) – 1 which is proportional to n (definition of logarithm)

Easier explanation: it adds each number once while doing little else

“Obvious”: You can’t do better than O(n) – have to read whole array

int sum(int[] arr){
 return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid) + help(arr,mid,hi);
}

Parallelism teaser

• But suppose we could do two recursive calls at the same time

– Like having a friend do half the work for you!

Spring 2012 14 CSE332: Data Abstractions

int sum(int[]arr){
 return help(arr,0,arr.length);
}
int help(int[]arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid) + help(arr,mid,hi);
}

 • If you have as many “friends of friends” as needed the recurrence

is now T(n) = O(1) + 1T(n/2)

– O(log n) : same recurrence as for find

Really common recurrences

Should know how to solve recurrences but also recognize some

really common ones:

 T(n) = O(1) + T(n-1) linear

 T(n) = O(1) + 2T(n/2) linear

 T(n) = O(1) + T(n/2) logarithmic

 T(n) = O(1) + 2T(n-1) exponential

 T(n) = O(n) + T(n-1) quadratic (see previous lecture)

 T(n) = O(n) + T(n/2) linear

 T(n) = O(n) + 2T(n/2) O(n log n)

Note big-Oh can also use more than one variable

• Example: can sum all elements of an n-by-m matrix in O(nm)

Spring 2012 15 CSE332: Data Abstractions

Asymptotic notation

About to show formal definition, which amounts to saying:

1. Eliminate low-order terms

2. Eliminate coefficients

Examples:

– 4n + 5

– 0.5n log n + 2n + 7

– n3 + 2n + 3n

– n log (10n2)

Spring 2012 16 CSE332: Data Abstractions

Big-Oh relates functions

We use O on a function f(n) (for example n2) to mean the set of

functions with asymptotic behavior less than or equal to f(n)

So (3n2+17) is in O(n2)

– 3n2+17 and n2 have the same asymptotic behavior

Confusingly, we also say/write:

– (3n2+17) is O(n2)

– (3n2+17) = O(n2)

But we would never say O(n2) = (3n2+17)

Spring 2012 17 CSE332: Data Abstractions

Formally Big-Oh (Dr? Ms? Mr? )

Definition:

 g(n) is in O(f(n)) if there exist constants

 c and n0 such that g(n)  c f(n) for all n  n0

• To show g(n) is in O(f(n)), pick a c large enough to “cover the

constant factors” and n0 large enough to “cover the lower-order

terms”

– Example: Let g(n) = 3n2+17 and f(n) = n2

 c=5 and n0 =10 is more than good enough

• This is “less than or equal to”

– So 3n2+17 is also O(n5) and O(2n) etc.

Spring 2012 18 CSE332: Data Abstractions

More examples, using formal definition

• Let g(n) = 4n and f(n) = n2

– A valid proof is to find valid c and n0

– The “cross-over point” is n=4

– So we can choose n0=4 and c=1

• Many other possible choices, e.g., larger n0 and/or c

Spring 2012 19 CSE332: Data Abstractions

Definition:

 g(n) is in O(f(n)) if there exist constants

 c and n0 such that g(n)  c f(n) for all n  n0

More examples, using formal definition

• Let g(n) = n4 and f(n) = 2n

– A valid proof is to find valid c and n0

– We can choose n0=20 and c=1

Spring 2012 20 CSE332: Data Abstractions

Definition:

 g(n) is in O(f(n)) if there exist constants

 c and n0 such that g(n)  c f(n) for all n  n0

What’s with the c

• The constant multiplier c is what allows functions that differ only

in their largest coefficient to have the same asymptotic

complexity

• Example: g(n) = 7n+5 and f(n) = n

− For any choice of n0, need a c > 7 (or more) to show g(n) is

in O(f(n))

Spring 2012 21 CSE332: Data Abstractions

Definition:

 g(n) is in O(f(n)) if there exist constants

 c and n0 such that g(n)  c f(n) for all n  n0

What you can drop

• Eliminate coefficients because we don’t have units anyway

– 3n2 versus 5n2 doesn’t mean anything when we have not

specified the cost of constant-time operations (can re-scale)

• Eliminate low-order terms because they have vanishingly small

impact as n grows

• Do NOT ignore constants that are not multipliers

– n3 is not O(n2)

– 3n is not O(2n)

(This all follows from the formal definition)

Spring 2012 22 CSE332: Data Abstractions

More Asymptotic Notation

• Upper bound: O(f(n)) is the set of all functions asymptotically

less than or equal to f(n)

– g(n) is in O(f(n)) if there exist constants c and n0 such that

 g(n)  c f(n) for all n  n0

• Lower bound: (f(n)) is the set of all functions asymptotically

greater than or equal to f(n)

– g(n) is in (f(n)) if there exist constants c and n0 such that

 g(n)  c f(n) for all n  n0

• Tight bound: (f(n)) is the set of all functions asymptotically

equal to f(n)

– Intersection of O(f(n)) and (f(n)) (use different c values)

Spring 2012 23 CSE332: Data Abstractions

Correct terms, in theory

A common error is to say O(f(n)) when you mean (f(n))

– Since a linear algorithm is also O(n5), it’s tempting to say “this

algorithm is exactly O(n)”

– That doesn’t mean anything, say it is (n)

– That means that it is not, for example O(log n)

Less common notation:

– “little-oh”: intersection of “big-Oh” and not “big-Theta”

• For all c, there exists an n0 such that… 

• Example: array sum is o(n2) but not o(n)

– “little-omega”: intersection of “big-Omega” and not “big-Theta”

• For all c, there exists an n0 such that… 

• Example: array sum is (log n) but not (n)

Spring 2012 24 CSE332: Data Abstractions

What we are analyzing

• The most common thing to do is give an O or  bound to the

worst-case running time of an algorithm

• Example: binary-search algorithm

– Common: (log n) running-time in the worst-case

– Less common: (1) in the best-case (item is in the middle)

– Less common: Algorithm is (log log n) in the worst-case

(it is not really, really, really fast asymptotically)

– Less common (but very good to know): the find-in-sorted-
array problem is (log n) in the worst-case

• No algorithm can do better (without parallelism)

• A problem cannot be O(f(n)) since you can always find a

slower algorithm, but can mean there exists an algorithm

Spring 2012 25 CSE332: Data Abstractions

Other things to analyze

• Space instead of time

– Remember we can often use space to gain time

• Average case

– Sometimes only if you assume something about the

distribution of inputs

• See CSE312 and STAT391

– Sometimes uses randomization in the algorithm

• Will see an example with sorting; also see CSE312

– Sometimes an amortized guarantee

• Will discuss in a later lecture

Spring 2012 26 CSE332: Data Abstractions

Summary

Analysis can be about:

• The problem or the algorithm (usually algorithm)

• Time or space (usually time)

– Or power or dollars or …

• Best-, worst-, or average-case (usually worst)

• Upper-, lower-, or tight-bound (usually upper or tight)

Spring 2012 27 CSE332: Data Abstractions

Usually asymptotic is valuable

• Asymptotic complexity focuses on behavior for large n and is

independent of any computer / coding trick

• But you can “abuse” it to be misled about trade-offs

• Example: n1/10 vs. log n

– Asymptotically n1/10 grows more quickly

– But the “cross-over” point is around 5 * 1017

– So if you have input size less than 258, prefer n1/10

• For small n, an algorithm with worse asymptotic complexity

might be faster

– Here the constant factors can matter, if you care about

performance for small n

Spring 2012 28 CSE332: Data Abstractions

Timing vs. Big-Oh Summary

• Big-oh is an essential part of computer science’s mathematical

foundation

– Examine the algorithm itself, not the implementation

– Reason about (even prove) performance as a function of n

• Timing also has its place

– Compare implementations

– Focus on data sets you care about (versus worst case)

– Determine what the constant factors “really are”

– Will do some timing on the projects too

Spring 2012 29 CSE332: Data Abstractions

