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A new ADT: Priority Queue 

• Textbook Chapter 6 
– Will go back to binary search trees and hash tables 
– Nice to see a new and surprising data structure first 

 
• A priority queue holds compare-able data 

– Unlike stacks and queues need to compare items 
• Given x and y, is x less than, equal to, or greater than y 
• Meaning of the ordering can depend on your data 
• Many data structures require this: dictionaries, sorting 

– Integers are comparable, so will use them in examples 
• But the priority queue ADT is much more general 
• Typically two fields, the priority and the data 
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Priorities 
• Each item has a “priority” 

– The lesser item is the one with the greater priority 
– So “priority 1” is more important than “priority 4” 
– (Just a convention) 

 
 
 

• Operations:  
– insert 
– deleteMin 
– is_empty 

 
• Key property: deleteMin  returns and deletes the item with 

greatest priority (lowest priority value) 
– Can resolve ties arbitrarily 
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insert deleteMin 

        6        2 
  15        23 
          12   18 
45   3    7 

Example 

 insert x1 with priority 5 
 insert x2 with priority 3 
 insert x3 with priority 4 
 a = deleteMin // x2 
 b = deleteMin // x3 
 insert x4 with priority 2 
 insert x5 with priority 6 
 c = deleteMin // x4 
 d = deleteMin  // x1 
 
• Analogy: insert is like enqueue, deleteMin is like dequeue 

– But the whole point is to use priorities instead of FIFO 
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Applications 

Like all good ADTs, the priority queue arises often 
– Sometimes blatant, sometimes less obvious 

 
• Run multiple programs in the operating system 

– “critical” before “interactive” before “compute-intensive” 
– Maybe let users set priority level 

• Treat hospital patients in order of severity (or triage) 
• Select print jobs in order of decreasing length? 
• Forward network packets in order of urgency 
• Select most frequent symbols for data compression (cf. CSE143) 
• Sort (first insert all, then repeatedly deleteMin) 

– Much like Project 1 uses a stack to implement reverse 
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More applications 

• “Greedy” algorithms 
– Will see an example when we study graphs in a few weeks 

 

• Discrete event simulation (system simulation, virtual worlds, …) 
– Each event e happens at some time t, updating system state 

and generating new events e1, …, en at times t+t1, …, t+tn 
– Naïve approach: advance “clock” by 1 unit at a time and 

process any events that happen then 
– Better: 

• Pending events in a priority queue (priority = event time) 
• Repeatedly: deleteMin and then insert new events 
• Effectively “set clock ahead to next event” 
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Finding a good data structure 

• Will show an efficient, non-obvious data structure 
– But first let’s analyze some “obvious” ideas for n data items 
– All times worst-case; assume arrays “have room” 

 
data         insert algorithm / time      deleteMin algorithm / time 
unsorted array      
unsorted linked list 
sorted circular array 
sorted linked list 
binary search tree 
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Need a good data structure! 

• Will show an efficient, non-obvious data structure for this ADT 
– But first let’s analyze some “obvious” ideas for n data items 
– All times worst-case; assume arrays “have room” 

 
data         insert algorithm / time      deleteMin algorithm / time 
unsorted array          add at end          O(1)      search                O(n) 
unsorted linked list     add at front         O(1)      search                O(n) 
sorted circular array   search / shift       O(n)         move front          O(1) 
sorted linked list          put in right place O(n)         remove at front   O(1) 
binary search tree      put in right place O(n) leftmost               O(n) 
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More on possibilities 

• If priorities are random, binary search tree will likely do better 
– O(log n) insert and O(log n) deleteMin on average 

 

• One more idea: if priorities are 0, 1, …, k can use array of  lists 
– insert: add to front of list at arr[priority], O(1) 
– deleteMin: remove from lowest non-empty list O(k) 

 

• We are about to see a data structure called a “binary heap” 
– O(log n) insert and O(log n) deleteMin worst-case 

• Possible because we don’t support unneeded 
operations; no need to maintain a full sort 

– Very good constant factors 
– If items arrive in random order, then insert is O(1) on 

average 
 Spring 2012 9 CSE332: Data Abstractions 

Tree terms (review?) 

The binary heap data structure 
implementing the priority queue ADT will 
be a tree, so worth establishing some 
terminology 
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root(tree) 
leaves(tree) 
children(node) 
parent(node) 
siblings(node) 
ancestors(node) 
descendents(node) 
subtree(node) 

depth(node) 
height(tree) 
degree(node) 
branching factor(tree) 

Kinds of trees 

Certain terms define trees with specific structure 
 

• Binary tree:  Each node has at most 2 children (branching factor 2) 
• n-ary tree:    Each node has at most n children (branching factor n) 
• Perfect tree: Each row completely full 
• Complete tree:  Each row completely full except maybe the bottom 

row, which is filled from left to right 
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What is the height of a perfect tree with n nodes?  A complete tree? 

Our data structure 
Finally, then, a binary min-heap (or just binary heap or just heap) is: 
• Structure property: A complete binary tree  
• Heap property: The priority of every (non-root) node is greater 

than the priority of its parent 
– Not a binary search tree 
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not a heap a heap 

So: 
• Where is the highest-priority item? 
• What is the height of a heap with n items? 



Operations: basic idea 

• findMin: return root.data 
• deleteMin:  

1. answer = root.data 
2. Move right-most node in last 

row to root to restore 
structure property 

3. “Percolate down” to restore 
heap property 

• insert: 
1. Put new node in next position 

on bottom row to restore 
structure property 

2. “Percolate up” to restore 
heap property 
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Overall strategy: 
• Preserve structure property 
• Break and restore heap 

property 

14 

DeleteMin 
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1. Delete (and later return) value at 
root node 
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15 

2. Restore the Structure Property 

• We now have a “hole” at the root 
– Need to fill the hole with another 

value 
 

• When we are done, the tree will have 
one less node and must still be complete 
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3. Restore the Heap Property 

Percolate down:  
•  Keep comparing with both children  
•  Swap with lesser child and go down one level 
•  Done if both children are � item or reached a leaf node 
 
Why is this correct?  What is the run time? 
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DeleteMin: Run Time Analysis 

• Run time is O(height of heap) 
 

• A heap is a complete binary tree 
 

• Height of a complete binary tree of n nodes? 
– height = �� log2(n) � 

 
• Run time of deleteMin is O(log n) 

Spring 2012 CSE332: Data Abstractions 18 

Insert 

• Add a value to the tree 
 

• Afterwards, structure and heap 
properties must still be correct 
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Insert: Maintain the Structure Property 

• There is only one valid tree shape after 
we add one more node 
 

• So put our new data there and then 
focus on restoring the heap property 
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Maintain the heap property 
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Percolate up: 
•  Put new data in new location 
•  If parent larger, swap with parent, and continue 
•  Done if parent � item or reached root 
 
Why is this correct?  What is the run time? 
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Insert: Run Time Analysis 

• Like deleteMin, worst-case time proportional to tree height 
– O(log n) 

 

• But… deleteMin needs the “last used” complete-tree position 
and insert needs the “next to use” complete-tree position 
– If “keep a reference to there” then insert and deleteMin 

have to adjust that reference: O(log n) in worst case 
– Could calculate how to find it in O(log n) from the root given 

the size of the heap 
• But it’s not easy 
• And then insert is always O(log n), promised O(1) on 

average (assuming random arrival of items) 
 

• There’s a “trick”: don’t represent complete trees with explicit edges! 
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