
CSE332: Data Abstractions

Lecture 4: Priority Queues

Dan Grossman
Spring 2012

A new ADT: Priority Queue

• Textbook Chapter 6
– Will go back to binary search trees and hash tables
– Nice to see a new and surprising data structure first

• A priority queue holds compare-able data

– Unlike stacks and queues need to compare items
• Given x and y, is x less than, equal to, or greater than y
• Meaning of the ordering can depend on your data
• Many data structures require this: dictionaries, sorting

– Integers are comparable, so will use them in examples
• But the priority queue ADT is much more general
• Typically two fields, the priority and the data

Spring 2012 2 CSE332: Data Abstractions

Priorities
• Each item has a “priority”

– The lesser item is the one with the greater priority
– So “priority 1” is more important than “priority 4”
– (Just a convention)

• Operations:
– insert
– deleteMin
– is_empty

• Key property: deleteMin returns and deletes the item with

greatest priority (lowest priority value)
– Can resolve ties arbitrarily

Spring 2012 3 CSE332: Data Abstractions

insert deleteMin

 6 2
 15 23
 12 18
45 3 7

Example

 insert x1 with priority 5
 insert x2 with priority 3
 insert x3 with priority 4
 a = deleteMin // x2
 b = deleteMin // x3
 insert x4 with priority 2
 insert x5 with priority 6
 c = deleteMin // x4
 d = deleteMin // x1

• Analogy: insert is like enqueue, deleteMin is like dequeue

– But the whole point is to use priorities instead of FIFO

Spring 2012 4 CSE332: Data Abstractions

Applications

Like all good ADTs, the priority queue arises often
– Sometimes blatant, sometimes less obvious

• Run multiple programs in the operating system

– “critical” before “interactive” before “compute-intensive”
– Maybe let users set priority level

• Treat hospital patients in order of severity (or triage)
• Select print jobs in order of decreasing length?
• Forward network packets in order of urgency
• Select most frequent symbols for data compression (cf. CSE143)
• Sort (first insert all, then repeatedly deleteMin)

– Much like Project 1 uses a stack to implement reverse

Spring 2012 5 CSE332: Data Abstractions

More applications

• “Greedy” algorithms
– Will see an example when we study graphs in a few weeks

• Discrete event simulation (system simulation, virtual worlds, …)
– Each event e happens at some time t, updating system state

and generating new events e1, …, en at times t+t1, …, t+tn
– Naïve approach: advance “clock” by 1 unit at a time and

process any events that happen then
– Better:

• Pending events in a priority queue (priority = event time)
• Repeatedly: deleteMin and then insert new events
• Effectively “set clock ahead to next event”

Spring 2012 6 CSE332: Data Abstractions

Finding a good data structure

• Will show an efficient, non-obvious data structure
– But first let’s analyze some “obvious” ideas for n data items
– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array
unsorted linked list
sorted circular array
sorted linked list
binary search tree

Spring 2012 7 CSE332: Data Abstractions

Need a good data structure!

• Will show an efficient, non-obvious data structure for this ADT
– But first let’s analyze some “obvious” ideas for n data items
– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array add at end O(1) search O(n)
unsorted linked list add at front O(1) search O(n)
sorted circular array search / shift O(n) move front O(1)
sorted linked list put in right place O(n) remove at front O(1)
binary search tree put in right place O(n) leftmost O(n)

Spring 2012 8 CSE332: Data Abstractions

More on possibilities

• If priorities are random, binary search tree will likely do better
– O(log n) insert and O(log n) deleteMin on average

• One more idea: if priorities are 0, 1, …, k can use array of lists
– insert: add to front of list at arr[priority], O(1)
– deleteMin: remove from lowest non-empty list O(k)

• We are about to see a data structure called a “binary heap”
– O(log n) insert and O(log n) deleteMin worst-case

• Possible because we don’t support unneeded
operations; no need to maintain a full sort

– Very good constant factors
– If items arrive in random order, then insert is O(1) on

average
 Spring 2012 9 CSE332: Data Abstractions

Tree terms (review?)

The binary heap data structure
implementing the priority queue ADT will
be a tree, so worth establishing some
terminology

Spring 2012 10 CSE332: Data Abstractions

A

E

B

D F

C

G

I H

L J M K N

Tree T

root(tree)
leaves(tree)
children(node)
parent(node)
siblings(node)
ancestors(node)
descendents(node)
subtree(node)

depth(node)
height(tree)
degree(node)
branching factor(tree)

Kinds of trees

Certain terms define trees with specific structure

• Binary tree: Each node has at most 2 children (branching factor 2)
• n-ary tree: Each node has at most n children (branching factor n)
• Perfect tree: Each row completely full
• Complete tree: Each row completely full except maybe the bottom

row, which is filled from left to right

Spring 2012 11 CSE332: Data Abstractions

What is the height of a perfect tree with n nodes? A complete tree?

Our data structure
Finally, then, a binary min-heap (or just binary heap or just heap) is:
• Structure property: A complete binary tree
• Heap property: The priority of every (non-root) node is greater

than the priority of its parent
– Not a binary search tree

Spring 2012 12 CSE332: Data Abstractions

15 30

80 20

10

99 60 40

80 20

10

50 700

85

not a heap a heap

So:
• Where is the highest-priority item?
• What is the height of a heap with n items?

Operations: basic idea

• findMin: return root.data
• deleteMin:

1. answer = root.data
2. Move right-most node in last

row to root to restore
structure property

3. “Percolate down” to restore
heap property

• insert:
1. Put new node in next position

on bottom row to restore
structure property

2. “Percolate up” to restore
heap property
 Spring 2012 13 CSE332: Data Abstractions

99 60 40

80 20

10

50 700

85

Overall strategy:
• Preserve structure property
• Break and restore heap

property

14

DeleteMin

3 4

9 8 5 7

10 6 9 11

1. Delete (and later return) value at
root node

Spring 2012 CSE332: Data Abstractions

15

2. Restore the Structure Property

• We now have a “hole” at the root
– Need to fill the hole with another

value

• When we are done, the tree will have
one less node and must still be complete

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11
Spring 2012 CSE332: Data Abstractions 16

3. Restore the Heap Property

Percolate down:
• Keep comparing with both children
• Swap with lesser child and go down one level
• Done if both children are � item or reached a leaf node

Why is this correct? What is the run time?

3 4

9 8 5 7

10

6 9 11

4

9 8 5 7

10

6 9 11

3

8 4

9 10 5 7

6 9 11

3
?

?

Spring 2012 CSE332: Data Abstractions

17

DeleteMin: Run Time Analysis

• Run time is O(height of heap)

• A heap is a complete binary tree

• Height of a complete binary tree of n nodes?
– height = �� log2(n) �

• Run time of deleteMin is O(log n)

Spring 2012 CSE332: Data Abstractions 18

Insert

• Add a value to the tree

• Afterwards, structure and heap
properties must still be correct

 8 4

9 10 5 7

6 9 11

1

2

Spring 2012
CSE332: Data Abstractions

19

Insert: Maintain the Structure Property

• There is only one valid tree shape after
we add one more node

• So put our new data there and then
focus on restoring the heap property

8 4

9 10 5 7

6 9 11

1

2

Spring 2012 CSE332: Data Abstractions 20

Maintain the heap property

2

8 4

9 10 5 7

6 9 11

1

Percolate up:
• Put new data in new location
• If parent larger, swap with parent, and continue
• Done if parent � item or reached root

Why is this correct? What is the run time?

?

2
5

8 4

9 10 7

6 9 11

1

?

2

5

8

9 10 4 7

6 9 11

1 ?

Spring 2012 CSE332: Data Abstractions

21

Insert: Run Time Analysis

• Like deleteMin, worst-case time proportional to tree height
– O(log n)

• But… deleteMin needs the “last used” complete-tree position
and insert needs the “next to use” complete-tree position
– If “keep a reference to there” then insert and deleteMin

have to adjust that reference: O(log n) in worst case
– Could calculate how to find it in O(log n) from the root given

the size of the heap
• But it’s not easy
• And then insert is always O(log n), promised O(1) on

average (assuming random arrival of items)

• There’s a “trick”: don’t represent complete trees with explicit edges!

Spring 2012 CSE332: Data Abstractions

