
CSE332: Data Abstractions

Lecture 7: AVL Trees

Dan Grossman
Spring 2012

2

The AVL Tree Data Structure

4

13 10 6 2

11 5

8

14 12 7 9

Structural properties
1. Binary tree property
2. Balance property:

balance of every node is
between -1 and 1

Result:
Worst-case depth is

O(log n)

Ordering property
– Same as for BST

15

Spring 2012 CSE332: Data Abstractions

11 1

8 4

6

10 12

7 0

0 0

0

1

1

2

3

An AVL tree?

Spring 2012 CSE332: Data Abstractions 3

3

11 7 1

8 4

6

2

5

0

0 0 0

1

1

2

3

4

An AVL tree?

Spring 2012 CSE332: Data Abstractions 4

5

The shallowness bound

Let S(h) = the minimum number of nodes in an AVL tree of height h
– If we can prove that S(h) grows exponentially in h, then a tree

with n nodes has a logarithmic height

• Step 1: Define S(h) inductively using AVL property
– S(-1)=0, S(0)=1, S(1)=2
– For h�� 1, S(h) = 1+S(h-1)+S(h-2)

• Step 2: Show this recurrence grows really fast

– Similar to Fibonacci numbers
– Can prove for all h, S(h) > �h – 1 where
 � is the golden ratio, (1+�5)/2, about 1.62
– Growing faster than 1.6h is “plenty exponential”

h-1 h-2

h

Spring 2012 CSE332: Data Abstractions

Before we prove it

• Good intuition from plots comparing:
– S(h) computed directly from the definition
– ((1+�5)/2) h

• S(h) is always bigger, up to trees with huge numbers of nodes
– Graphs aren’t proofs, so let’s prove it

Spring 2012 6 CSE332: Data Abstractions

7

The Golden Ratio

62.1
2

51
�

�
��

This is a special number

• Aside: Since the Renaissance, many artists and architects have
proportioned their work (e.g., length:height) to approximate the
golden ratio: If (a+b)/a = a/b, then a = ��b

• We will need one special arithmetic fact about � :
 �2 = ((1+51/2)/2)2

 = (1 + 2*51/2 + 5)/4
 = (6 + 2*51/2)/4
 = (3 + 51/2)/2
 = 1 + (1 + 51/2)/2
 = 1 + �

Spring 2012 CSE332: Data Abstractions

The proof

Theorem: For all h � 0, S(h) > �h – 1
Proof: By induction on h
Base cases:

S(0) = 1 > �0 – 1 = 0 S(1) = 2 > �1 – 1 � 0.62
Inductive case (k > 1):
 Show S(k+1) > �k+1 – 1 assuming S(k) > �k – 1 and S(k-1) > �k-1 – 1

 S(k+1) = 1 + S(k) + S(k-1) by definition of S
 > 1 + �k – 1 + �k-1 – 1 by induction
 = �k + �k-1 – 1 by arithmetic (1-1=0)
 = �k-1 (� + 1) – 1 by arithmetic (factor �k-1)
 = �k-1 �2 – 1 by special property of �
 = ��k+1 – 1 by arithmetic (add exponents)

Spring 2012 8 CSE332: Data Abstractions

S(-1)=0, S(0)=1, S(1)=2
For h�� 1, S(h) = 1+S(h-1)+S(h-2)

Good news

Proof means that if we have an AVL tree, then find is O(log n)
– Recall logarithms of different bases > 1 differ by only a

constant factor

But as we insert and delete elements, we need to:
1. Track balance
2. Detect imbalance
3. Restore balance

Spring 2012 9 CSE332: Data Abstractions

9 2

5

10

7

Is this AVL tree balanced?
How about after insert(30)?

15

20

An AVL Tree

20

9 2 15

5

10

30

17 7

0

0 0

0 1 1

2 2

3 …
3

value

height

children

Track height at all times!

10 key

Spring 2012 CSE332: Data Abstractions 10

AVL tree operations
• AVL find:

– Same as BST find

• AVL insert:
– First BST insert, then check balance and potentially “fix”

the AVL tree
– Four different imbalance cases

• AVL delete:

– The “easy way” is lazy deletion
– Otherwise, do the deletion and then have several imbalance

cases (next lecture)

Spring 2012 CSE332: Data Abstractions 11

Insert: detect potential imbalance

1. Insert the new node as in a BST (a new leaf)
2. For each node on the path from the root to the new leaf, the

insertion may (or may not) have changed the node’s height
3. So after recursive insertion in a subtree, detect height imbalance

and perform a rotation to restore balance at that node

All the action is in defining the correct rotations to restore balance

Fact that an implementation can ignore:
– There must be a deepest element that is imbalanced after the

insert (all descendants still balanced)
– After rebalancing this deepest node, every node is balanced
– So at most one node needs to be rebalanced

Spring 2012 12 CSE332: Data Abstractions

Case #1: Example

Spring 2012 13 CSE332: Data Abstractions

Insert(6)
Insert(3)
Insert(1)

Third insertion violates

balance property
• happens to be at

the root

What is the only way to
fix this?

6

3

1

2

1

0

6

3

1

0

6
0

Fix: Apply “Single Rotation”
• Single rotation: The basic operation we’ll use to rebalance

– Move child of unbalanced node into parent position
– Parent becomes the “other” child (always okay in a BST!)
– Other subtrees move in only way BST allows (next slide)

Spring 2012 14 CSE332: Data Abstractions

3

1 6
0 0

1
6

3

0

1

2

AVL Property violated here

Intuition: 3 must become root
new-parent-height = old-parent-height-before-insert

1

The example generalized
• Node imbalanced due to insertion somewhere in
 left-left grandchild increasing height

– 1 of 4 possible imbalance causes (other three coming)
• First we did the insertion, which would make a imbalanced

Spring 2012 15 CSE332: Data Abstractions

a

Z
Y

b

X

h h
h

h+1
h+2 a

Z
Y

b

X

h+1 h
h

h+2
h+3

The general left-left case
• Node imbalanced due to insertion somewhere in
 left-left grandchild

– 1 of 4 possible imbalance causes (other three coming)
• So we rotate at a, using BST facts: X < b < Y < a < Z

Spring 2012 16 CSE332: Data Abstractions

• A single rotation restores balance at the node
– To same height as before insertion, so ancestors now balanced

a

Z
Y

b

X

h+1 h
h

h+2
h+3 b

Z Y

a
h+1 h h

h+1

h+2

X

Another example: insert(16)

Spring 2012 17 CSE332: Data Abstractions

10 4

22 8

15

 3 6

19

17 20

24

16

Another example: insert(16)

Spring 2012 18 CSE332: Data Abstractions

10 4

22 8

15

 3 6

19

17 20

24

16

10 4

 8

15

 3 6

19

17

20 16

22

24

The general right-right case

• Mirror image to left-left case, so you rotate the other way
– Exact same concept, but need different code

Spring 2012 19 CSE332: Data Abstractions

a

Z Y

X

h

h
h+1

h+3

b
h+2 b

Z
Y

a

X

h h
h+1

h+1
h+2

Two cases to go

Unfortunately, single rotations are not enough for insertions in the
left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

– First wrong idea: single rotation like we did for left-left

Spring 2012 20 CSE332: Data Abstractions

3

6

1

0

1

 2

6

1 3

1

0 0

Two cases to go

Unfortunately, single rotations are not enough for insertions in the
left-right subtree or the right-left subtree

Simple example: insert(1), insert(6), insert(3)

– Second wrong idea: single rotation on the child of the
unbalanced node

Spring 2012 21 CSE332: Data Abstractions

3

6

1

0

1

 2

6

3

1

0

 1

 2

Sometimes two wrongs make a right �
• First idea violated the BST property
• Second idea didn’t fix balance
• But if we do both single rotations, starting with the second, it

works! (And not just for this example.)
• Double rotation:

1. Rotate problematic child and grandchild
2. Then rotate between self and new child

Spring 2012 22 CSE332: Data Abstractions

3

6

1

0

1

 2

6

3

1

0

 1

 2

0 0

1

1

3

6

Intuition: 3 must become root

The general right-left case

Spring 2012 23 CSE332: Data Abstractions

a

X

b
c

h-1

h
h

h

V U

h+1
h+2

h+3

Z

a

X

c

h-1
h+1 h

h

V
U

h+2

h+3

Z

b
h

c

X
h-1

h+1
h

h+1

V U

h+2

Z

b
h

a
h

Comments
• Like in the left-left and right-right cases, the height of the subtree

after rebalancing is the same as before the insert
– So no ancestor in the tree will need rebalancing

• Does not have to be implemented as two rotations; can just do:

Spring 2012 24 CSE332: Data Abstractions

a

X

b
c

h-1

h
h

h

V U

h+1
h+2

h+3

Z

c

X
h-1

h+1
h

h+1

V U

h+2

Z

b
h

a
h

Easier to remember than you may think:
 Move c to grandparent’s position
 Put a, b, X, U, V, and Z in the only legal positions for a BST

The last case: left-right

• Mirror image of right-left
– Again, no new concepts, only new code to write

Spring 2012 25 CSE332: Data Abstractions

a

h-1

h

h h

V U

h+1

h+2

h+3

Z

X

b
c

c

X
h-1

h+1
h

h+1

V U

h+2

Z

a
h

b
h

Insert, summarized

• Insert as in a BST

• Check back up path for imbalance, which will be 1 of 4 cases:
– Node’s left-left grandchild is too tall
– Node’s left-right grandchild is too tall
– Node’s right-left grandchild is too tall
– Node’s right-right grandchild is too tall

• Only one case occurs because tree was balanced before insert

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion
– So all ancestors are now balanced

Spring 2012 26 CSE332: Data Abstractions

Now efficiency

• Worst-case complexity of find: O(log n)

– Tree is balanced

• Worst-case complexity of insert: O(log n)
– Tree starts balanced
– A rotation is O(1) and there’s an O(log n) path to root
– (Same complexity even without one-rotation-is-enough fact)
– Tree ends balanced

• Worst-case complexity of buildTree: O(n log n)

Will take some more rotation action to handle delete…

Spring 2012 27 CSE332: Data Abstractions

