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The AVL Tree Data Structure 
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Structural properties 
1. Binary tree property 
2. Balance property: 

balance of every node is 
between -1 and 1 

Result: 
Worst-case depth is 

O(log n)  
 

Ordering property 
– Same as for BST 
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An AVL tree? 
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An AVL tree? 
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The shallowness bound 

Let S(h) = the minimum number of nodes in an AVL tree of height h 
– If we can prove that S(h) grows exponentially in h, then a tree 

with n nodes has a logarithmic height 
 

• Step 1: Define S(h) inductively using AVL property 
– S(-1)=0, S(0)=1, S(1)=2 
– For h�� 1, S(h) = 1+S(h-1)+S(h-2) 

 
• Step 2: Show this recurrence grows really fast 

– Similar to Fibonacci numbers 
– Can prove for all h,  S(h) > �h – 1 where 
 � is the golden ratio, (1+�5)/2, about 1.62 
– Growing faster than 1.6h is “plenty exponential” 

h-1 h-2 

h 
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Before we prove it 

• Good intuition from plots comparing: 
– S(h) computed directly from the definition 
– ((1+�5)/2) h 

• S(h) is always bigger, up to trees with huge numbers of nodes 
– Graphs aren’t proofs, so let’s prove it 

Spring 2012 6 CSE332: Data Abstractions 



7 

The Golden Ratio 
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This is a special number 
 

• Aside: Since the Renaissance, many artists and architects have 
proportioned their work (e.g., length:height) to approximate the 
golden ratio: If (a+b)/a = a/b, then a = ��b 
 

• We will need one special arithmetic fact about � : 
            �2     = ((1+51/2)/2)2   

  = (1 + 2*51/2 + 5)/4  
  = (6 + 2*51/2)/4  
 = (3 + 51/2)/2  
  = 1 + (1 + 51/2)/2 
  = 1 + � 
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The proof 

Theorem: For all h � 0, S(h) > �h – 1  
Proof: By induction on h 
Base cases: 

S(0) = 1 > �0 – 1 = 0   S(1) = 2 > �1 – 1 � 0.62 
Inductive case (k > 1):  
 Show S(k+1) > �k+1 – 1 assuming S(k) > �k – 1 and S(k-1) > �k-1 – 1 
 

 S(k+1) = 1 + S(k) + S(k-1) by definition of S 
      > 1 + �k – 1 + �k-1 – 1 by induction 
                 = �k + �k-1 – 1              by arithmetic (1-1=0) 
                 = �k-1 (� + 1) – 1 by arithmetic (factor �k-1 ) 
             = �k-1 �2 – 1                 by special property of � 
                 = ��k+1 – 1                    by arithmetic (add exponents) 
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S(-1)=0, S(0)=1, S(1)=2 
For h�� 1, S(h) = 1+S(h-1)+S(h-2) 

 

Good news 

Proof means that if we have an AVL tree, then find is O(log n) 
– Recall logarithms of different bases > 1 differ by only a 

constant factor 
 

But as we insert and delete elements, we need to: 
1. Track balance 
2. Detect imbalance 
3. Restore balance 
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Is this AVL tree balanced? 
How about after insert(30)? 
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An AVL Tree 
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Track height at all times! 

10  key  
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AVL tree operations 
• AVL find:  

– Same as BST find 
 

• AVL insert:  
– First BST insert, then check balance and potentially “fix” 

the AVL tree 
– Four different imbalance cases 

 
• AVL delete:  

– The “easy way” is lazy deletion 
– Otherwise, do the deletion and then have several imbalance 

cases (next lecture) 
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Insert: detect potential imbalance 

1. Insert the new node as in a BST (a new leaf) 
2. For each node on the path from the root to the new leaf, the 

insertion may (or may not) have changed the node’s height 
3. So after recursive insertion in a subtree, detect height imbalance 

and perform a rotation to restore balance at that node 
 

All the action is in defining the correct rotations to restore balance 
 

Fact that an implementation can ignore: 
– There must be a deepest element that is imbalanced after the 

insert (all descendants still balanced) 
– After rebalancing this deepest node, every node is balanced 
– So at most one node needs to be rebalanced 
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Case #1: Example 
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Insert(6) 
Insert(3) 
Insert(1) 
 
Third insertion violates 

balance property 
• happens to be at 

the root 
 

What is the only way to 
fix this?  
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Fix: Apply “Single Rotation” 
• Single rotation: The basic operation we’ll use to rebalance 

– Move child of unbalanced node into parent position 
– Parent becomes the “other” child (always okay in a BST!) 
– Other subtrees move in only way BST allows (next slide) 
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AVL Property violated here 

Intuition: 3 must become root 
new-parent-height = old-parent-height-before-insert 

1 

The example generalized 
• Node imbalanced due to insertion somewhere in  
 left-left grandchild increasing height 

– 1 of 4 possible imbalance causes (other three coming) 
• First we did the insertion, which would make a  imbalanced 
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The general left-left case 
• Node imbalanced due to insertion somewhere in  
 left-left grandchild 

– 1 of 4 possible imbalance causes (other three coming) 
• So we rotate at a, using BST facts: X < b < Y < a < Z 
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• A single rotation restores balance at the node 
– To same height as before insertion, so ancestors now balanced 
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Another example: insert(16) 

Spring 2012 17 CSE332: Data Abstractions 

10  4 

22  8 

15 

 3  6 

19 

17 20 

24 

16 

Another example: insert(16) 
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The general right-right case 

• Mirror image to left-left case, so you rotate the other way 
– Exact same concept, but need different code 
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Two cases to go 

Unfortunately, single rotations are not enough for insertions in the 
left-right subtree or the right-left subtree 

 
Simple example:  insert(1), insert(6), insert(3) 

– First wrong idea: single rotation like we did for left-left 
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Two cases to go 

Unfortunately, single rotations are not enough for insertions in the 
left-right subtree or the right-left subtree 

 
Simple example: insert(1), insert(6), insert(3) 

– Second wrong idea: single rotation on the child of the 
unbalanced node 
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Sometimes two wrongs make a right � 
• First idea violated the BST property 
• Second idea didn’t fix balance 
• But if we do both single rotations, starting with the second, it 

works!  (And not just for this example.) 
• Double rotation:  

1. Rotate problematic child and grandchild 
2. Then rotate between self and new child 
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Intuition: 3 must become root 

The general right-left case 
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Comments 
• Like in the left-left and right-right cases, the height of the subtree 

after rebalancing is the same as before the insert 
– So no ancestor in the tree will need rebalancing 

• Does not have to be implemented as two rotations; can just do: 
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Easier to remember than you may think: 
 Move c to grandparent’s position 
     Put a, b, X, U, V, and Z in the only legal positions for a BST 



The last case: left-right 

• Mirror image of right-left 
– Again, no new concepts, only new code to write 
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Insert, summarized 

• Insert as in a BST 
 

• Check back up path for imbalance, which will be 1 of 4 cases: 
– Node’s left-left grandchild is too tall 
– Node’s left-right grandchild is too tall 
– Node’s right-left grandchild is too tall 
– Node’s right-right grandchild is too tall 

 

• Only one case occurs because tree was balanced before insert 
 

• After the appropriate single or double rotation, the smallest-
unbalanced subtree has the same height as before the insertion 
– So all ancestors are now balanced 
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Now efficiency 
 
• Worst-case complexity of find: O(log n) 

– Tree is balanced 
 

• Worst-case complexity of insert: O(log n) 
– Tree starts balanced 
– A rotation is O(1) and there’s an O(log n) path to root 
– (Same complexity even without one-rotation-is-enough fact) 
– Tree ends balanced 

 
• Worst-case complexity of buildTree: O(n log n) 
 
Will take some more rotation action to handle delete… 
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