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The AVL Tree Data Structure 
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Structural properties 

1. Binary tree property 

2. Balance property: 

balance of every node is 

between -1 and 1 

Result: 

Worst-case depth is 
O(log n)  

 

Ordering property 

– Same as for BST 
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AVL Tree Deletion 

• Similar to insertion: do the delete and then rebalance 

– Rotations and double rotations  

– Imbalance may propagate upward so rotations at multiple nodes 

along path to root may be needed (unlike with insert) 
 

• Simple example: a deletion on the right causes the left-left grandchild 

to be too tall 

– Call this the left-left case, despite deletion on the right 

– insert(6) insert(3) insert(7) insert(1) delete(7) 
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Properties of BST delete 

We first do the normal BST deletion: 

– 0 children: just delete it 

– 1 child: delete it, connect child to parent 

– 2 children: put successor in your place,  

 delete successor leaf 

 

Which nodes’ heights may have changed: 

– 0 children: path from deleted node to root 

– 1 child: path from deleted node to root 

– 2 children: path from deleted successor leaf  to root 

 

Will rebalance as we return along the “path in question” to the root 
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Case #1 Left-left due to right deletion 
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• Start with some subtree where if right child becomes shorter we are 
unbalanced due to height of left-left grandchild 

• A delete in the right child could cause this right-side shortening 
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Case #1: Left-left due to right deletion 
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• Same single rotation as when an insert in the left-left grandchild 

caused imbalance due to X becoming taller 
 

• But here the “height” at the top decreases, so more rebalancing farther 

up the tree might still be necessary 

 



Case #2: Left-right due to right deletion 
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• Same double rotation when an insert in the left-right grandchild 

caused imbalance due to c becoming taller 
 

• But here the “height” at the top decreases, so more rebalancing farther 

up the tree might still be necessary 
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No third right-deletion case needed 

So far we have handled these two cases: 

left-left    left-right 
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But what if the two left grandchildren are now both too tall (h+1)? 

• Then it turns out left-left solution still works 

• The children of the “new top node” will have heights differing by 

1 instead of 0, but that’s fine 



And the other half 

• Naturally two more mirror-image cases (not shown here) 

– Deletion in left causes right-right grandchild to be too tall 

– Deletion in left causes right-left grandchild to be too tall 

– (Deletion in left causes both right grandchildren to be too tall, 

in which case the right-right solution still works) 

 

• And, remember, “lazy deletion” is a lot simpler and might suffice 

for your needs 
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Pros and Cons of AVL Trees 
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Arguments for AVL trees: 

 

1. All operations logarithmic worst-case because trees are always  

balanced 

2. Height balancing adds no more than a constant factor to the speed 
of insert and delete 

 

Arguments against AVL trees: 

 

1. Difficult to program & debug 

2. More space for height field 

3. Asymptotically faster but rebalancing takes a little time 

4. Most large searches are done in database-like systems on disk and 

use other structures (e.g., B-trees, our next data structure) 

5. If amortized (later, I promise) logarithmic time is enough, use splay 

trees (skipping, see text) 



Now what? 

• Have a data structure for the dictionary ADT that has worst-case 
O(log n) behavior 

– One of several interesting/fantastic balanced-tree 

approaches 
 

• About to learn another balanced-tree approach: B Trees 
 

• First, to motivate why B trees are better for really large 

dictionaries (say, over 1GB = 230 bytes), need to understand 

some memory-hierarchy basics 

– Don’t always assume “every memory access has an 

unimportant O(1) cost” 

– Learn more in CSE351/333/471, focus here on relevance to 

data structures and efficiency 
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A typical hierarchy 
     Every desktop/laptop/server is 

different but here is a plausible 

configuration these days 
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       CPU 

Disk: 1TB = 240 

Main memory: 2GB = 231 

L2 Cache: 2MB = 221 

L1 Cache: 128KB = 217 

instructions (e.g., addition): 230/sec 
 

get data in L1: 229/sec = 2 insns 

 

 get data in L2: 225/sec = 30 insns  

 

      get data in main memory: 

    222/sec = 250 insns  

 

         get data from “new            

        place” on disk: 

         27/sec =8,000,000 insns 

 

         “streamed”: 218/sec 



Morals 

It is much faster to do:   Than: 

  5 million arithmetic ops  1 disk access 

  2500 L2 cache accesses 1 disk access 

  400 main memory accesses 1 disk access 
 

Why are computers built this way? 

– Physical realities (speed of light, closeness to CPU) 

– Cost (price per byte of different technologies) 

– Disks get much bigger not much faster 

• Spinning at 7200 RPM accounts for much of the slowness 

and unlikely to spin faster in the future 

– Speedup at higher levels makes lower levels relatively slower 
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“Fuggedaboutit”, usually 

The hardware automatically moves data into the caches from main 

memory for you 

– Replacing items already there 

– So algorithms much faster if “data fits in cache” (often does) 

 

Disk accesses are done by software (e.g., ask operating system to 

open a file or database to access some data) 

 

So most code “just runs” but sometimes it’s worth designing 

algorithms / data structures with knowledge of memory hierarchy 

– And when you do, you often need to know one more thing… 
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Block/line size 

• Moving data up the memory hierarchy is slow because of latency 

(think distance-to-travel) 

– May as well send more than just the one int/reference asked for 

(think “giving friends a car ride doesn’t slow you down”) 

– Sends nearby memory because: 

• It is easy 

• Likely to be used soon (think fields/arrays)  
 

 

• Amount of data moved from disk into memory called the “block” size 

or the “page” size 

– Not under program control 
 

• Amount of data moved from memory into cache called the “line” size 

– Not under program control 
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Principle of Locality 



Connection to data structures 

• An array benefits more than a linked list from block moves 

– Language (e.g., Java) implementation can put the list nodes 

anywhere, whereas array is typically contiguous memory 
 

• Suppose you have a queue to process with 223 items of 27 bytes 

each on disk and the block size is 210 bytes 

– An array implementation needs 220 disk accesses 

– If “perfectly streamed”, > 4 seconds 

– If “random places on disk”, 8000 seconds (> 2 hours) 

– A list implementation in the worst case needs 223  “random” 

disk accesses (>  16 hours) – probably not that bad 
 

• Note: “array” doesn’t mean “good” 

– Binary heaps “make big jumps” to percolate (different block) 
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BSTs? 

• Looking things up in balanced binary search trees is O(log n), 

so even for n = 239 (512GB) we need not worry about minutes or 

hours 
 

• Still, number of disk accesses matters 

– AVL tree could have height of 55 (see lecture7.xlsx) 

– So each find could take about 0.5 seconds or about 100 

finds a minute 

– Most of the nodes will be on disk: the tree is shallow, but it is 

still many gigabytes big so the tree cannot fit in memory 

• Even if memory holds the first 25 nodes on our path, we 

still need 30 disk accesses 
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Note about numbers; moral 

• All the numbers in this lecture are “ballpark” “back of the 

envelope” figures 

 

• Even if they are off by, say, a factor of 5, the moral is the same: 

If your data structure is mostly on disk, you want to minimize 

disk accesses 

 

• A better data structure in this setting would exploit the block size 

and relatively fast memory access to avoid disk accesses… 
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