
CSE332: Data Abstractions

Lecture 8: AVL Delete; Memory Hierarchy

Dan Grossman

Spring 2012

2

The AVL Tree Data Structure

4

13 10 6 2

11 5

8

14 12 7 9

Structural properties

1. Binary tree property

2. Balance property:

balance of every node is

between -1 and 1

Result:

Worst-case depth is
O(log n)

Ordering property

– Same as for BST

15

Spring 2012 CSE332: Data Abstractions

Spring 2012 CSE332: Data Abstractions 3

AVL Tree Deletion

• Similar to insertion: do the delete and then rebalance

– Rotations and double rotations

– Imbalance may propagate upward so rotations at multiple nodes

along path to root may be needed (unlike with insert)

• Simple example: a deletion on the right causes the left-left grandchild

to be too tall

– Call this the left-left case, despite deletion on the right

– insert(6) insert(3) insert(7) insert(1) delete(7)

6

3

0

1

2

1

7
1

3

1 6
0 0

1

Properties of BST delete

We first do the normal BST deletion:

– 0 children: just delete it

– 1 child: delete it, connect child to parent

– 2 children: put successor in your place,

 delete successor leaf

Which nodes’ heights may have changed:

– 0 children: path from deleted node to root

– 1 child: path from deleted node to root

– 2 children: path from deleted successor leaf to root

Will rebalance as we return along the “path in question” to the root

 Spring 2012 4 CSE332: Data Abstractions

20 9 2

15 5

12

7 10

Case #1 Left-left due to right deletion

Spring 2012 CSE332: Data Abstractions 5

• Start with some subtree where if right child becomes shorter we are
unbalanced due to height of left-left grandchild

• A delete in the right child could cause this right-side shortening

h

a

Z

Y

b

X

h+1 h

h+1

h+2

h+3

Case #1: Left-left due to right deletion

Spring 2012 CSE332: Data Abstractions 6

h

a

Z

Y

b

X

h+1 h

h+1

h+2

h+3 b

Z Y

a
h+1

h

h+1

h+2

X

h
h+1

• Same single rotation as when an insert in the left-left grandchild

caused imbalance due to X becoming taller

• But here the “height” at the top decreases, so more rebalancing farther

up the tree might still be necessary

Case #2: Left-right due to right deletion

Spring 2012

a

h-1
h

h

V U

h+1

h+2

h+3

Z

X

b

c

h+1

h

c

X

h-1

h+1

h

h+1

V U

h+2

Z

a b

h h+1

h

• Same double rotation when an insert in the left-right grandchild

caused imbalance due to c becoming taller

• But here the “height” at the top decreases, so more rebalancing farther

up the tree might still be necessary

CSE332: Data Abstractions 7

No third right-deletion case needed

So far we have handled these two cases:

left-left left-right

Spring 2012 8 CSE332: Data Abstractions

h

a

Z

Y

b

X

h+1 h

h+1

h+2

h+3
a

h-1
h

h

V U

h+1

h+2

h+3

Z

X

b

c

h+1

h

But what if the two left grandchildren are now both too tall (h+1)?

• Then it turns out left-left solution still works

• The children of the “new top node” will have heights differing by

1 instead of 0, but that’s fine

And the other half

• Naturally two more mirror-image cases (not shown here)

– Deletion in left causes right-right grandchild to be too tall

– Deletion in left causes right-left grandchild to be too tall

– (Deletion in left causes both right grandchildren to be too tall,

in which case the right-right solution still works)

• And, remember, “lazy deletion” is a lot simpler and might suffice

for your needs

Spring 2012 9 CSE332: Data Abstractions

Pros and Cons of AVL Trees

Spring 2012 CSE332: Data Abstractions 10

Arguments for AVL trees:

1. All operations logarithmic worst-case because trees are always

balanced

2. Height balancing adds no more than a constant factor to the speed
of insert and delete

Arguments against AVL trees:

1. Difficult to program & debug

2. More space for height field

3. Asymptotically faster but rebalancing takes a little time

4. Most large searches are done in database-like systems on disk and

use other structures (e.g., B-trees, our next data structure)

5. If amortized (later, I promise) logarithmic time is enough, use splay

trees (skipping, see text)

Now what?

• Have a data structure for the dictionary ADT that has worst-case
O(log n) behavior

– One of several interesting/fantastic balanced-tree

approaches

• About to learn another balanced-tree approach: B Trees

• First, to motivate why B trees are better for really large

dictionaries (say, over 1GB = 230 bytes), need to understand

some memory-hierarchy basics

– Don’t always assume “every memory access has an

unimportant O(1) cost”

– Learn more in CSE351/333/471, focus here on relevance to

data structures and efficiency

Spring 2012 11 CSE332: Data Abstractions

A typical hierarchy
 Every desktop/laptop/server is

different but here is a plausible

configuration these days

Spring 2012 12 CSE332: Data Abstractions

 CPU

Disk: 1TB = 240

Main memory: 2GB = 231

L2 Cache: 2MB = 221

L1 Cache: 128KB = 217

instructions (e.g., addition): 230/sec

get data in L1: 229/sec = 2 insns

 get data in L2: 225/sec = 30 insns

 get data in main memory:

 222/sec = 250 insns

 get data from “new

 place” on disk:

 27/sec =8,000,000 insns

 “streamed”: 218/sec

Morals

It is much faster to do: Than:

 5 million arithmetic ops 1 disk access

 2500 L2 cache accesses 1 disk access

 400 main memory accesses 1 disk access

Why are computers built this way?

– Physical realities (speed of light, closeness to CPU)

– Cost (price per byte of different technologies)

– Disks get much bigger not much faster

• Spinning at 7200 RPM accounts for much of the slowness

and unlikely to spin faster in the future

– Speedup at higher levels makes lower levels relatively slower

Spring 2012 13 CSE332: Data Abstractions

“Fuggedaboutit”, usually

The hardware automatically moves data into the caches from main

memory for you

– Replacing items already there

– So algorithms much faster if “data fits in cache” (often does)

Disk accesses are done by software (e.g., ask operating system to

open a file or database to access some data)

So most code “just runs” but sometimes it’s worth designing

algorithms / data structures with knowledge of memory hierarchy

– And when you do, you often need to know one more thing…

Spring 2012 14 CSE332: Data Abstractions

Block/line size

• Moving data up the memory hierarchy is slow because of latency

(think distance-to-travel)

– May as well send more than just the one int/reference asked for

(think “giving friends a car ride doesn’t slow you down”)

– Sends nearby memory because:

• It is easy

• Likely to be used soon (think fields/arrays)

• Amount of data moved from disk into memory called the “block” size

or the “page” size

– Not under program control

• Amount of data moved from memory into cache called the “line” size

– Not under program control

Spring 2012 15 CSE332: Data Abstractions

Principle of Locality

Connection to data structures

• An array benefits more than a linked list from block moves

– Language (e.g., Java) implementation can put the list nodes

anywhere, whereas array is typically contiguous memory

• Suppose you have a queue to process with 223 items of 27 bytes

each on disk and the block size is 210 bytes

– An array implementation needs 220 disk accesses

– If “perfectly streamed”, > 4 seconds

– If “random places on disk”, 8000 seconds (> 2 hours)

– A list implementation in the worst case needs 223 “random”

disk accesses (> 16 hours) – probably not that bad

• Note: “array” doesn’t mean “good”

– Binary heaps “make big jumps” to percolate (different block)

Spring 2012 16 CSE332: Data Abstractions

BSTs?

• Looking things up in balanced binary search trees is O(log n),

so even for n = 239 (512GB) we need not worry about minutes or

hours

• Still, number of disk accesses matters

– AVL tree could have height of 55 (see lecture7.xlsx)

– So each find could take about 0.5 seconds or about 100

finds a minute

– Most of the nodes will be on disk: the tree is shallow, but it is

still many gigabytes big so the tree cannot fit in memory

• Even if memory holds the first 25 nodes on our path, we

still need 30 disk accesses

Spring 2012 17 CSE332: Data Abstractions

Note about numbers; moral

• All the numbers in this lecture are “ballpark” “back of the

envelope” figures

• Even if they are off by, say, a factor of 5, the moral is the same:

If your data structure is mostly on disk, you want to minimize

disk accesses

• A better data structure in this setting would exploit the block size

and relatively fast memory access to avoid disk accesses…

Spring 2012 18 CSE332: Data Abstractions

