CSE332: Data Abstractions

Lecture 9: B Trees

Dan Grossman

Spring 2012

- Problem: A dictionary with so much data most of it is on disk
- Desire: A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size
- Key idea: Increase the branching factor of our tree

M-ary Search Tree

- Build some sort of search tree with branching factor M :
- Have an array of sorted children (Node[])
- Choose M to fit snugly into a disk block (1 access for array)

Perfect tree of height h has $\left(M^{h+1}-1\right) /(M-1)$ nodes (textbook, page 4)
\# hops for find: If balanced, then $\log _{M} n$ instead of $\log _{2} n$

- If $M=256$, that's an $8 x$ improvement
- Example: $M=256$ and $n=2^{40}$ that's 5 instead of 40

Runtime of find if balanced: $O\left(\log _{M} n \log _{2} M\right)$ (binary search children)

Problems with M-ary search trees

- What should the order property be?
- How would you rebalance (ideally without more disk accesses)?
- Any "useful" data at the internal nodes takes up disk-block space without being used by finds moving past it

So let's use the branching-factor idea, but for a different kind of balanced tree

- Not a binary search tree
- But still logarithmic height for any $M>2$

B+ Trees (we and the book say "B Trees")

- Each internal node has room for up to $M-1$ keys and M children
- No other data: all data at leaves!
- Order property:

Subtree between keys x and y contains data with keys $\geq \boldsymbol{x}$ and $<\boldsymbol{y}$

- Leaf nodes have up to L sorted data $x<3 \quad 3 \leq x<7 \quad 7 \leq x<1212 \leq x<2121 \leq x$ items

As usual, we wont show the "along for the ride" data in our examples

- Remember no data at non-leaves

Find

- This is a new kind of tree
- We are used to data at internal nodes
- find is still an easy root-to-leaf recursive algorithm
- At each internal node, do binary search on the $\leq \mathrm{M}-1$ keys
- At the leaf, do binary search on the $\leq L$ data items
- To get logarithmic running time, we need a balance condition...

Structure Properties

- Root (special case)
- If tree has $\leq L$ items, root is a leaf (very strange case)
- Else has between 2 and M children
- Internal nodes
- Have between $\lceil M / 2\rceil$ and M children, i.e., at least half full
- Leaf nodes
- All leaves at the same depth
- Have between $\lceil L / 2\rceil$ and L data items, i.e., at least half full
(Any $M>2$ and L will work; picked based on disk-block size)

Example

Suppose $M=4$ (max \# children) and $L=5$ (max \# at leaf)

- All internal nodes have at least 2 children
- All leaves have at least 3 data items (only showing keys)
- All leaves at same depth

Balanced enough

Not hard to show height h is logarithmic in number of data items n

- Recall $M>2$ (if $M=2$, then a list tree is legal - no good!)
- Because all nodes are at least half full (except root may have only 2 children) and all leaves are at the same level, the minimum number of data items n for a height $h>0$ tree is...

Exponential in height because $\lceil M / 2\rceil>1$
minimum number minimum data of leaves per leaf

B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

- Maximum height of AVL tree?
- Maximum height of B tree with $M=128$ and $L=64$?

B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

- Maximum height of AVL tree?
- Recall $\mathrm{S}(\mathrm{h})=1+\mathrm{S}(\mathrm{h}-1)+\mathrm{S}(\mathrm{h}-2)$
- lecture7.xlsx reports: 37
- Maximum height of B tree with $M=128$ and $L=64$?
- Recall ($2\lceil M / 2\rceil^{n-1}$) $\lceil L / 2\rceil$
- lecture9.xlsx reports: 5 (and 4 is more likely)
- Also not difficult to compute via algebra

Disk Friendliness

Why are B trees so disk friendly?

- Many keys stored in one internal node
- All brought into memory in one disk access
- Pick M wisely. Example: block=1KB, then $M=128$
- Makes the binary search over $M-1$ keys totally worth it (insignificant compared to disk access times)
- Internal nodes contain only keys
- Any find wants only one data item
- So bring only one leaf of data items into memory
- Data-item size does not affect value for M

Maintaining balance

- So this seems like a great data structure (and it is)
- But still need to implement the other dictionary operations
- insert
- delete
- As with AVL trees, hard part is maintaining structure properties
- Example: for insert, there might not be room at the correct leaf

Building a B-Tree (insertions)

The empty
B-Tree (1
empty leaf)
$M=3 L=3$

Notice 18 is the smallest key in the right child
$M=3 L=3$

$$
M=3 L=3
$$

Insertion Algorithm, part 1

1. Insert the data in its leaf in sorted order
2. If the leaf now has $L+1$ items, overflow!

- Split the leaf into two nodes:
- Original leaf with「(L+1)/2† smaller items
- New leaf with $\lfloor(L+1) / 2\rfloor=\lceil L / 2\rceil$ larger items
- Attach the new child to the parent
- Adding new key to parent in sorted order

3. If step (2) caused the parent to have $M+1$ children, overflow!

Insertion Algorithm, continued

3. If an internal node has $M+1$ children

- Split the node into two nodes
- Original node with $\lceil(M+1) / 2\rceil$ smaller items
- New node with $\lfloor(M+1) / 2\rfloor=\lceil M / 2\rceil$ larger items
- Attach the new child to the parent
- Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too

- So repeat step 3 up the tree until a node does not overflow
- If the root overflows, make a new root with two children
- This is the only case that increases the tree height

Worst-Case Efficiency of Insert

- Find correct leaf: $O\left(\log _{2} M \log _{M} n\right)$
- Insert in leaf:
$O(L)$
- Split leaf: $O(L)$
- Split parents up to root: $\mathrm{O}\left(M \log _{M} n\right)$

Total: $O\left(L+M \log _{M} n\right)$

But it's not that bad:

- Splits are uncommon (only required when a node is FULL, M and L can be fairly large, and new leaves/nodes after split are half-empty)
- Disk accesses are the name of the game: $O\left(\log _{M} n\right)$

