

CSE332: Data Abstractions Lecture 9: B Trees

Dan Grossman Spring 2012

- Problem: A dictionary with so much data most of it is on disk
- Desire: A balanced tree (logarithmic height) that is even shallower than AVL trees so that we can minimize disk accesses and exploit disk-block size
- Key idea: Increase the branching factor of our tree

M-ary Search Tree

- Build some sort of search tree with branching factor *M*:
 - Have an array of sorted children (Node [])
 - Choose *M* to fit snugly into a disk block (1 access for array)

Perfect tree of height h has $(M^{h+1}-1)/(M-1)$ nodes (textbook, page 4)

hops for find: If balanced, then $\log_M n$ instead of $\log_2 n$

- If *M*=256, that's an 8x improvement
- Example: M = 256 and $n = 2^{40}$ that's 5 instead of 40

Runtime of find if balanced: $O(\log_M n \log_2 M)$ (binary search children)

Problems with M-ary search trees

- What should the order property be?
- How would you rebalance (ideally without more disk accesses)?
- Any "useful" data at the internal nodes takes up disk-block space without being used by finds moving past it

So let's use the branching-factor idea, but for a *different kind of balanced tree*

- Not a binary search tree
- But still logarithmic height for any M > 2

B+ Trees (we and the book say "B Trees")

- Each internal node has room for up to M-1 keys and M children
 - No other data: all data at leaves!
- Order property:

Subtree **between** keys x and y contains data with keys $\ge x$ and < y

Leaf nodes have up to L sorted data x<3 3≤x<7 7≤x<12 12≤x<21 21≤x
items

As usual, we wont show the "along for the ride" data in our examples

Remember no data at non-leaves

Spring 2012

- This is a new kind of tree
 - We are used to data at internal nodes
- find is still an easy root-to-leaf recursive algorithm
 - At each internal node, do binary search on the \leq M-1 keys
 - At the leaf, do binary search on the \leq L data items
- To get logarithmic running time, we need a balance condition...

Spring 2012

Structure Properties

- Root (special case)
 - If tree has $\leq L$ items, root is a leaf (very strange case)
 - Else has between 2 and M children
- Internal nodes
 - Have between $\lceil M/2 \rceil$ and M children, i.e., at least half full
- Leaf nodes
 - All leaves at the same depth
 - Have between $\lceil L/2 \rceil$ and L data items, i.e., at least half full

(Any *M* > 2 and *L* will work; picked based on disk-block size)

Spring 2012

Example

Suppose *M*=4 (max # children) and *L*=5 (max # at leaf)

- All internal nodes have at least 2 children
- All leaves have at least 3 data items (only showing keys)
- All leaves at same depth

Spring 2012

Balanced enough

Not hard to show height *h* is logarithmic in number of data items *n*

- Recall M > 2 (if M = 2, then a list tree is legal no good!)
- Because all nodes are at least half full (except root may have only 2 children) and all leaves are at the same level, the minimum number of data items *n* for a height *h>0* tree is...

B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?

• Maximum height of B tree with *M*=128 and *L*=64?

B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

- Maximum height of AVL tree?
 - Recall S(h) = 1 + S(h-1) + S(h-2)
 - lecture7.xlsx reports: 37

- Maximum height of B tree with *M*=128 and *L*=64?
 - Recall $(2 \lceil M/2 \rceil h-1) \lceil L/2 \rceil$
 - lecture9.xlsx reports: 5 (and 4 is more likely)
 - Also not difficult to compute via algebra

Disk Friendliness

Why are B trees so disk friendly?

- Many keys stored in one internal node
 - All brought into memory in one disk access
 - Pick *M* wisely. Example: block=1KB, then *M*=128
 - Makes the binary search over *M*-1 keys totally worth it (insignificant compared to disk access times)
- Internal nodes contain only keys
 - Any find wants only one data item
 - So bring only one leaf of data items into memory
 - Data-item size does not affect value for *M*

Maintaining balance

- So this seems like a great data structure (and it is)
- But still need to implement the other dictionary operations
 - insert
 - delete
- As with AVL trees, hard part is maintaining structure properties
 - Example: for insert, there might not be room at the correct leaf

Building a B-Tree (insertions)

The empty B-Tree (1 empty leaf)

M = 3 L = 3

Notice 18 is the smallest key in the right child

M = 3 L = 3

M = 3 L = 3

Spring 2012

M = 3 L = 3

Insertion Algorithm, part 1

- 1. Insert the data in its leaf in sorted order
- 2. If the leaf now has *L*+1 items, *overflow!*
 - Split the leaf into two nodes:
 - Original leaf with [(L+1)/2] smaller items
 - New leaf with $\lfloor (L+1)/2 \rfloor = \lceil L/2 \rceil$ larger items
 - Attach the new child to the parent
 - Adding new key to parent in sorted order
- 3. If step (2) caused the parent to have *M*+1 children, *overflow*!

. . .

Insertion Algorithm, continued

- 3. If an internal node has *M*+1 children
 - Split the node into two nodes
 - Original node with [(M+1)/2] smaller items
 - New node with $\lfloor (M+1)/2 \rfloor = \lceil M/2 \rceil$ larger items
 - Attach the new child to the parent
 - Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too

- So repeat step 3 up the tree until a node does not overflow
- If the root overflows, make a new root with two children
 - This is the only case that increases the tree height

Worst-Case Efficiency of Insert

- Find correct leaf: $O(\log_2 M \log_M n)$
- Insert in leaf: O(L)
- Split leaf: O(L)
- Split parents up to root: $O(M \log_M n)$

Total: $O(L + M \log_M n)$

But it's not that bad:

- Splits are uncommon (only required when a node is FULL, M and L can be fairly large, and new leaves/nodes after split are half-empty)
- Disk accesses are the name of the game: $O(\log_M n)$