
CSE332: Data Abstractions

Lecture 9: B Trees

Dan Grossman
Spring 2012

• Problem: A dictionary with so much data most of it is on disk

• Desire: A balanced tree (logarithmic height) that is even

shallower than AVL trees so that we can minimize disk
accesses and exploit disk-block size

• Key idea: Increase the branching factor of our tree

Spring 2012 2 CSE332: Data Abstractions

M-ary Search Tree

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4)

hops for find: If balanced, then logM n instead of log2 n
– If M=256, that’s an 8x improvement
– Example: M = 256 and n = 240 that’s 5 instead of 40

Runtime of find if balanced: O(logM n log2 M) (binary search children)

• Build some sort of search tree with branching factor M:
– Have an array of sorted children (Node[])
– Choose M to fit snugly into a disk block (1 access for array)

Spring 2012 3 CSE332: Data Abstractions

Problems with M-ary search trees

• What should the order property be?

• How would you rebalance (ideally without more disk accesses)?

• Any “useful” data at the internal nodes takes up disk-block

space without being used by finds moving past it

So let’s use the branching-factor idea, but for a different kind of
balanced tree
– Not a binary search tree
– But still logarithmic height for any M > 2

Spring 2012 4 CSE332: Data Abstractions

B+ Trees (we and the book say “B Trees”)

• Each internal node has room for up to
M-1 keys and M children
– No other data: all data at leaves!

• Order property:
Subtree between keys x and y
contains data with keys �� x and < y

• Leaf nodes have up to L sorted data
items

As usual, we wont show the “along for
the ride” data in our examples

– Remember no data at non-leaves

Spring 2012 5 CSE332: Data Abstractions

3 7 12 21

21�x 12�x<21 7�x<12 3�x<7 x<3

Find

• This is a new kind of tree
– We are used to data at internal nodes

• find is still an easy root-to-leaf recursive algorithm

– At each internal node, do binary search on the �� M-1 keys
– At the leaf, do binary search on the � L data items

• To get logarithmic running time, we need a balance condition…

Spring 2012 6 CSE332: Data Abstractions

3 7 12 21

21�x 12�x<21 7�x<12 3�x<7 x<3

Structure Properties

• Root (special case)
– If tree has � L items, root is a leaf (very strange case)
– Else has between 2 and M children

• Internal nodes

– Have between �M/2� and M children, i.e., at least half full

• Leaf nodes
– All leaves at the same depth
– Have between �L/2� and L data items, i.e., at least half full

(Any M > 2 and L will work; picked based on disk-block size)

Spring 2012 7 CSE332: Data Abstractions

Example
Suppose M=4 (max # children) and L=5 (max # at leaf)

– All internal nodes have at least 2 children
– All leaves have at least 3 data items (only showing keys)
– All leaves at same depth

Spring 2012 8 CSE332: Data Abstractions

6
8
9
10

12
14
16
17

20
22

27
28
32

34
38
39
41

44
47
49

50
60
70

12 44

6 20 27 34 50

19

24

1
2
4

Balanced enough

Not hard to show height h is logarithmic in number of data items n

• Recall M > 2 (if M = 2, then a list tree is legal – no good!)

• Because all nodes are at least half full (except root may have

only 2 children) and all leaves are at the same level, the
minimum number of data items n for a height h>0 tree is…

 n �� 2 �M/2� h-1 �L/2�

Spring 2012 9 CSE332: Data Abstractions

minimum number
 of leaves

minimum data
per leaf

Exponential in height
because �M/2� > 1

B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?

• Maximum height of B tree with M=128 and L=64?

Spring 2012 10 CSE332: Data Abstractions

B-Tree vs. AVL Tree

Suppose we have 100,000,000 items

• Maximum height of AVL tree?

– Recall S(h) = 1 + S(h-1) + S(h-2)
– lecture7.xlsx reports: 37

• Maximum height of B tree with M=128 and L=64?

– Recall (2 �M/2� h-1) �L/2�
– lecture9.xlsx reports: 5 (and 4 is more likely)
– Also not difficult to compute via algebra

Spring 2012 11 CSE332: Data Abstractions

Disk Friendliness

Why are B trees so disk friendly?

• Many keys stored in one internal node

– All brought into memory in one disk access
– Pick M wisely. Example: block=1KB, then M=128
– Makes the binary search over M-1 keys totally worth it
 (insignificant compared to disk access times)

• Internal nodes contain only keys

– Any find wants only one data item
– So bring only one leaf of data items into memory
– Data-item size does not affect value for M

Spring 2012 12 CSE332: Data Abstractions

Maintaining balance

• So this seems like a great data structure (and it is)

• But still need to implement the other dictionary operations
– insert
– delete

• As with AVL trees, hard part is maintaining structure properties

– Example: for insert, there might not be room at the correct
leaf

Spring 2012 13 CSE332: Data Abstractions

Building a B-Tree (insertions)

Spring 2012 14 CSE332: Data Abstractions

The empty
B-Tree (1
empty leaf)

M = 3 L = 3

Insert(3) Insert(18)

Insert(14)

 3 3

14

18

3

18

Insert(30)
3

14

18

3

14

18

M = 3 L = 3

30

3

14

18

30

Spring 2012 15 CSE332: Data Abstractions

18

Notice 18 is the
smallest key in the
right child

Insert(32)
3

14

18

30

18

3

14

18

30

18

3

14

18

30

18

Insert(36)

3

14

18

30

18
Insert(15)

M = 3 L = 3

32

32

36

32

32

36

32

15
Spring 2012 16 CSE332: Data Abstractions

Insert(16)
3

14

15

18

30

18 32

32

36

3

14

15

18

30

18 32

32

36

18

30

18 32

32

36

M = 3 L = 3

16

3

14

15

16

15

15 32

18

Spring 2012 17 CSE332: Data Abstractions

Insert(12,40,45,38)

3

14

15

16

15

18

30

32

32

36

18

3

12

14

15

16

15

18

30

32 40

32

36

38

18

40

45

M = 3 L = 3

Spring 2012 18 CSE332: Data Abstractions

Insertion Algorithm, part 1

1. Insert the data in its leaf in sorted order

2. If the leaf now has L+1 items, overflow!
– Split the leaf into two nodes:

• Original leaf with ���(L+1)/2� smaller items
• New leaf with �(L+1)/2� = �L/2� larger items

– Attach the new child to the parent
• Adding new key to parent in sorted order

3. If step (2) caused the parent to have M+1 children, overflow!

– …

Spring 2012 19 CSE332: Data Abstractions

Insertion Algorithm, continued

3. If an internal node has M+1 children
– Split the node into two nodes

• Original node with ���(M+1)/2� smaller items
• New node with �(M+1)/2� = �M/2� larger items

– Attach the new child to the parent
• Adding new key to parent in sorted order

Splitting at a node (step 3) could make the parent overflow too

– So repeat step 3 up the tree until a node does not overflow
– If the root overflows, make a new root with two children

• This is the only case that increases the tree height

Spring 2012 20 CSE332: Data Abstractions

Worst-Case Efficiency of Insert

• Find correct leaf: O(log2 M logM n)
• Insert in leaf: O(L)
• Split leaf: O(L)
• Split parents up to root: O(M logM n)

Total: O(L + M logM n)

But it’s not that bad:

– Splits are uncommon (only required when a node is FULL, M
and L can be fairly large, and new leaves/nodes after split
are half-empty)

– Disk accesses are the name of the game: O(logM n)

Spring 2012 21 CSE332: Data Abstractions

