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• Problem: A dictionary with so much data most of it is on disk 

 
• Desire: A balanced tree (logarithmic height) that is even 

shallower than AVL trees so that we can minimize disk 
accesses and exploit disk-block size 
 

• Key idea: Increase the branching factor of our tree 
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M-ary Search Tree 

 

Perfect tree of height h has (Mh+1-1)/(M-1) nodes (textbook, page 4) 
 

# hops for find: If balanced, then logM n instead of log2 n 
– If M=256, that’s an 8x improvement 
– Example: M = 256 and n = 240 that’s 5 instead of 40 

 

Runtime of find if balanced: O(logM n log2 M)  (binary search children) 

• Build some sort of search tree with branching factor M: 
– Have an array of sorted children (Node[]) 
– Choose M to fit snugly into a disk block (1 access for array) 

 

Spring 2012 3 CSE332: Data Abstractions 

Problems with M-ary search trees 
 
• What should the order property be? 

 
• How would you rebalance (ideally without more disk accesses)? 

 
• Any “useful” data at the internal nodes takes up disk-block 

space without being used by finds moving past it 
 

So let’s use the branching-factor idea, but for a different kind of 
balanced tree 
– Not a binary search tree 
– But still logarithmic height for any M > 2 

 

Spring 2012 4 CSE332: Data Abstractions 

B+ Trees (we and the book say “B Trees”) 

• Each internal node has room for up to 
M-1 keys and M children 
– No other data: all data at leaves! 

• Order property: 
Subtree between keys x and y  
contains data with keys �� x and < y 

• Leaf nodes have up to L sorted data 
items 
 

 
As usual, we wont show the “along for 
the ride” data in our examples 

– Remember no data at non-leaves 
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3 7  12  21     

 
 

              

21�x 12�x<21 7�x<12 3�x<7 x<3 

Find 

• This is a new kind of tree 
– We are used to data at internal nodes 

 
• find is still an easy root-to-leaf recursive algorithm 

– At each internal node, do binary search on the �� M-1 keys 
– At the leaf, do binary search on the � L data items 

 
• To get logarithmic running time, we need a balance condition… 
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Structure Properties 

• Root (special case) 
– If tree has � L items, root is a leaf (very strange case) 
– Else has between 2 and M children 

 
• Internal nodes 

– Have between �M/2� and M children, i.e., at least half full 
 

• Leaf nodes 
– All leaves at the same depth 
– Have between �L/2� and L data items, i.e., at least half full 

 
(Any M > 2 and L will work; picked based on disk-block size) 
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Example 
Suppose M=4 (max # children) and L=5 (max # at leaf) 

– All internal nodes have at least 2 children 
– All leaves have at least 3 data items (only showing keys) 
– All leaves at same depth 
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Balanced enough 

Not hard to show height h is logarithmic in number of data items n 
 
• Recall M > 2 (if M = 2, then a list tree is legal – no good!) 

 
• Because all nodes are at least half full (except root may have 

only 2 children) and all leaves are at the same level, the 
minimum number of data items n for a height h>0 tree is… 

   
                 n  ��   2  �M/2� h-1  �L/2� 

 
 

Spring 2012 9 CSE332: Data Abstractions 

minimum number 
 of leaves 

minimum data  
per leaf 

Exponential in height  
because �M/2� > 1 

B-Tree vs. AVL Tree 

Suppose we have 100,000,000 items 
 

 
• Maximum height of AVL tree? 

 
 
 

• Maximum height of B tree with M=128 and L=64? 
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B-Tree vs. AVL Tree 

Suppose we have 100,000,000 items 
 

 
• Maximum height of AVL tree? 

– Recall S(h) = 1 + S(h-1) + S(h-2) 
– lecture7.xlsx reports: 37 

 
 
• Maximum height of B tree with M=128 and L=64? 

– Recall (2  �M/2� h-1) �L/2� 
– lecture9.xlsx reports: 5 (and 4 is more likely) 
– Also not difficult to compute via algebra 
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Disk Friendliness 

Why are B trees so disk friendly? 
 
• Many keys stored in one internal node 

– All brought into memory in one disk access 
– Pick M wisely. Example: block=1KB, then M=128 
– Makes the binary search over M-1 keys totally worth it 
    (insignificant compared to disk access times) 

 
• Internal nodes contain only keys 

– Any find wants only one data item 
– So bring only one leaf of data items into memory 
– Data-item size does not affect value for M 
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Maintaining balance 

• So this seems like a great data structure (and it is) 
 

• But still need to implement the other dictionary operations 
– insert 
– delete 

 
• As with AVL trees, hard part is maintaining structure properties 

– Example: for insert, there might not be room at the correct 
leaf 
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Building a B-Tree (insertions) 
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The empty 
B-Tree (1 
empty leaf) 
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18 

Notice 18 is the 
smallest key in the 
right child 
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Insert(12,40,45,38) 

3 

14 

15 

16 

15 

18 

30 

32 

32 

36 

18 

3 

12 

14 

15 

16 

15 

18 

30 

32 40 

32 

36 

38 

18 

40 

45 

M = 3 L = 3 

Spring 2012 18 CSE332: Data Abstractions 



Insertion Algorithm, part 1 

1. Insert the data in its leaf in sorted order 
 

2. If the leaf now has L+1 items, overflow! 
– Split the leaf into two nodes: 

• Original leaf with ���(L+1)/2�  smaller items 
• New leaf with �(L+1)/2� = �L/2� larger items 

– Attach the new child to the parent 
• Adding new key to parent in sorted order 

 
3. If step (2) caused the parent to have M+1 children, overflow! 

– … 
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Insertion Algorithm, continued 

3. If an internal node has M+1 children 
– Split the node into two nodes 

• Original node with ���(M+1)/2�  smaller items 
• New node with �(M+1)/2� = �M/2� larger items 

– Attach the new child to the parent 
• Adding new key to parent in sorted order 

 
Splitting at a node (step 3) could make the parent overflow too 

– So repeat step 3 up the tree until a node does not overflow 
– If the root overflows, make a new root with two children 

• This is the only case that increases the tree height 
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Worst-Case Efficiency of Insert 

• Find correct leaf:  O(log2 M logM n) 
• Insert in leaf:   O(L) 
• Split leaf:   O(L) 
• Split parents up to root: O(M logM n) 

 
Total: O(L + M logM n) 
 
But it’s not that bad: 

– Splits are uncommon (only required when a node is FULL, M 
and L can be fairly large, and new leaves/nodes after split 
are half-empty) 

– Disk accesses are the name of the game: O(logM n) 
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