CSE332 Week 1 Section Worksheet

1. Find values for c and n 0 (according to the definition of O()) for $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n})$), where a.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=7 \mathrm{n} \\
& \mathrm{~g}(\mathrm{n})=\mathrm{n}^{2} / 10
\end{aligned}
$$

b.
$\mathrm{f}(\mathrm{n})=1000$
$\mathrm{g}(\mathrm{n})=3 \mathrm{n}^{3}$
c.
$\mathrm{f}(\mathrm{n})=7 \mathrm{n}^{2}+3 \mathrm{n}$
$\mathrm{g}(\mathrm{n})=\mathrm{n}^{4}$
d.
$\mathrm{f}(\mathrm{n})=\mathrm{n}+\mathrm{n} \log \mathrm{n}$
$\mathrm{g}(\mathrm{n})=2 \mathrm{n} \log \mathrm{n}$
2. True or false?
a. $f(n)$ is $\Theta(g(n))$ implies $f(n)$ is $O(g(n))$
b. $f(n)$ is $\Theta(g(n))$ implies $g(n)$ is $\Theta(f(n))$
c. $f(n)$ is $O(g(n))$ implies $g(n)$ is $O(f(n))$
3. Find functions $f(n)$ and $g(n)$ such that $f(n)$ is $O(g(n))$ and the constant c for the definition of O() must be >1. That is, find $\mathrm{f} \& \mathrm{~g}$ such that c must be greater than 1 , as there is no sufficient n 0 when $\mathrm{c}=1$.
4. What's the O () run-time of this code fragment in terms of n . Why?
sum $=0$;
for ($\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)
\{
for ($k=1 ; \mathrm{k}<=\mathrm{i}^{*} \mathrm{i}$ * $\mathrm{i} ; \mathrm{k}++$)
\{
if $(k \% 10==0)$
\{

```
                for( }\textrm{x}=1;\textrm{x}<=\textrm{n};\textrm{x++}\mathrm{ )
```

 \{
 sum++;
 \}
 \}
\}
\}

