
2012-06-18

1

CSE 332 Data Abstractions:

Introduction and ADTs

Kate Deibel

Summer 2012

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 1

Welcome!

We have 9 weeks to learn fundamental
data structures and algorithms for
organizing and processing information

 Classic data structures and algorithms:
queues, trees, graphs, sorting, etc.

 Rigorously analyze their efficiency

 Determine when to use them

 Parallelism and concurrency (!)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 2

Today in Class

 Course mechanics

 What this course is about

 And how it fits into the CSE curriculum

 What is an ADT?

 Review of Stacks and Queues

 Mystery Topics!?

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 3

Concise to-do list

In next 48 hours, you should:

 Adjust class email-list settings

 Do homework 0 (worth 5 bonus pts)

 Read all course policies

 Read/skim Chapters 1 & 3 of Weiss book

 Relevant to Project 1, due next week

 Will start Chapter 2 on Wednesday

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 4

COURSE MECHANICS

Socket wrench… scalpel… snarky comments…

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 5

Instructor: Kate Deibel

 PhD in CSE (2011),
University of Washington

 Research:
Digital literacies
Educational Technologies
Assistive technologies
Disability and education

 Office: CSE 210

 Hours: TBD or drop-by

 E-mail: deibel@cs or @uw

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 6

Not me but my
cute calico Susie

2012-06-18

2

Teaching Assistant: David Swanson

 Let's let him introduce
himself…

 E-mail: swansond@cs

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 7

Not David but
Susie again. Isn't

she cute?

D-E-I-B-E-L

 Pronunciation:

DIE-BULL

 Spelling:

Decibel minus the ‘c’

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 8

When in doubt…

 Consult the course webpage

http://www.cs.washington.edu/education/
courses/cse332/12su/

Or, if you want the quicker URL:

http://www.cs.washington.edu/332

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 9

Communication

 Course email list: cse332a_su12@u

 You are already subscribed (your @uw e-mail)

 You must get announcements sent there

 Fairly low traffic

 Course staff: cse332-staff@cs or Kate's

and David's individual emails

 Discussion board

 For appropriate discussions; TAs will monitor

 Optional but can be enlightening

 Anonymous feedback link

 If you don’t tell me (good or bad), I don’t know

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 10

Course meetings

 Lecture (Kate)

 Materials posted usually before class (95%
guarantee) to aid your note-taking

 Lectures focus on key ideas & proofs

 Some interactive problem-solving

 Section (David)

 Often focus on software (Java features,
programming tools, project/HW issues)

 Reinforce key issues from lecture

 Answer homework questions, etc.

 An important part of the course (not optional)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 11

NOTICE!!!

 Locations for one or more quiz sections
will likely change

 Goal is to have both in the same room or at
least the same building

 Will announce over course e-mail list before
Thursday

 Website will update when we know

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 12

2012-06-18

3

Office Hours

 David's Office Hours

 TBD but will students for time

 Kate's Office Hours

 TBD after David's are set

 I frequently hold open-door hours:

If my door is open, come on in!

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 13

Course materials
 Textbook: Weiss 3rd Edition in Java

 Good read, but only responsible for
lecture/section/hw topics

 Will assign homework problems from it
 3rd edition improves on 2nd, but we’ll

support the 2nd

 Core Java book: A good Java reference
(there may be others)
 Don’t struggle Googling for features you

don’t understand
 Same book recommended for CSE331

 Parallelism / concurrency units use a
free notes written by Dan Grossman
(linked on website)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 14

Course Work

 8 written/typed homeworks (25%)

 Due at end of lecture the day it is due

 No late homeworks accepted

 3 programming projects (25%)

 Projects have phases (parts)

 First phase of Project 1 due next week (TBD)

 Use Java (see this week’s section)

 Two 24-hour late-days for the quarter

 Midterm Exam (20%)

 Final Exam (30%)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 15

Collaboration & Academic Integrity

 Read the course policy very carefully to
understand how you can and cannot
get/provide help to/from others

 Be proactive and always explain (when
you submit) any unconventional action
on your part when it happens

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 16

Respect Policy

 If you respect me, I will respect you

 I am here to teach you and help you
learn about data abstractions

 I make a promise to have good lectures,
polished assignments, etc. on time and
in good humor

 In return, you should be

 Respectful in lab and lecture

 Do not cheat

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 17

Academic Accommodations (formal)

To request personal academic
accommodations due to a disability, please
contact Disability Resources for Students:
448 Schmitz, 206-543-8924 (or 206-543-
8925 for TTY).

If you have a letter from DRS indicating
that you have a disability which requires
academic accommodations, please present
the letter to me so we can discuss how to
meet your needs for this course.

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 18

2012-06-18

4

Academic Accommodations (proper)

 My goal is for you to learn productively

 If you have problems, ask me or a TA

 Accommodations:

 We are not mean

 We understand that life happens beyond this
class, this major, this university, …

 We can make reasonable accommodations
for individual students

 This offer is open for everyone

 Just talk to us…

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 19

Unsolicited Advice

 Get to class on time!

 Learn this stuff

 You need it for so many later classes/jobs

 Falling behind only makes more work for you

 Have fun

 So much easier to be motivated and learn

 Get used to my bad jokes

 Yes, they really are that bad

 If you don't laugh, they just get worse

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 20

WHAT THIS CLASS IS
ABOUT?

It's not about teaching penguins to limbo…

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 21

Data Structures + Threads

 About 70% of the course is a “classic
data-structures course”

 Timeless, essential stuff

 Core data structures and algorithms that
underlie most software

 How to analyze algorithms

 Plus a serious first treatment of
programming with multiple threads

 Parallelism: Use multiple processors

 Concurrency: Access to shared resources

 Connections to the classic material

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 22

Where 332 fits

 Most common pre-req for 400-level courses

 Essential stuff for many internships too!

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 23

312

Foundations

II

332

Data

Abstractions

311

Foundations

I

351

Hw/Sw

Interface

352

Hw Design /

Impl

EE205

Signal

Conditioning

(or EE215)

344

Data

Management

341

Programming

Languages

STAT391

331

Sw Design /

Impl

333

Systems

Programming

390A

Tools

required

CS required

CompE required

not required

pre-req

co-req or pre-req

What 332 is about

 Deeply understand the basic structures
used in all software

 Understand the data structures and trade-offs

 Analyze the algorithms that use them (math!)

 Learn how to pick “the right thing for the job”

 Experience the purposes and headaches of
multithreading

 Practice design, analysis, and
implementation

 The elegant interplay of “theory” and
“engineering” at the core of computer science

 June 18, 2012 CSE 332 Data Abstractions, Summer 2012 24

2012-06-18

5

Goals

 Be able to make good design choices as
a developer, project manager, etc.

 Reason in terms of the general abstractions
that come up in all non-trivial software (and
many non-software) systems

 Be able to justify and communicate your
design decisions

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 25

Views on this course

 Prof. Steve Seitz (graphics):
 100-level and some 300-level courses teach

how to do stuff

 332 teaches really cool ways to do stuff

 400 level courses teach how to do really cool
stuff

 Prof. James Fogarty (HCI):
 Computers are fricking insane

 Raw power can enable bad solutions to many
problems

 This course is about how to attack non-trivial
problems where it actually matters how you
solve them

 June 18, 2012 CSE 332 Data Abstractions, Summer 2012 26

Views on this course

 Prof. Dan Grossman (prog. langs.):
Three years from now this course will
seem like it was a waste of your time
because you can’t imagine not “just
knowing” every main concept in it

 Key abstractions computer scientists and
engineers use almost every day

 A big piece of what separates us from others

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 27

My View on the Course

 This is the class where you begin to
think like a computer scientist

 You stop thinking in Java or C++ code

 You start thinking that this is a hashtable
problem, a linked list problem, etc.

 You realize that little assumptions make big
differences in performance

 You realize there is no absolutely best
solution for a problem

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 28

TERMINOLOGY

Data structures, ADTs, etc. (sorry, no weird joke here)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 29

Data structures
[Often highly non-obvious] ways to organize
information to enable efficient computation
over that information

 Key goal of the next lecture is introducing
asymptotic analysis to precisely and generally
describe efficient use of time and space

A data structure supports certain operations,
each with a:

 Meaning: what does the operation do/return
 Performance: how efficient is the operation

Examples:
 List with operations insert and delete
 Stack with operations push and pop

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 30

2012-06-18

6

Trade-offs
 A data structure strives to provide many

useful, efficient operations

 But there are unavoidable trade-offs:
 Time performance vs. space usage
 Getting one operation to be more efficient

makes others less efficient
 Generality vs. simplicity vs. performance

 That is why there are many data structures
and educated CSEers internalize their main
trade-offs and techniques
 And recognize logarithmic < linear < quadratic

< exponential

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 31

Terminology

 Algorithm

 A high level, language-independent description
of a step-by-step process

 Abstract Data Type (ADT)

 Mathematical description of a “thing” with set of
operations

 Data structure

 A specific family of algorithms for implementing
an ADT

 Implementation of a data structure

 A specific implementation in a specific language
on a specific machine (both matter!)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 32

Example: Stacks
 The Stack ADT supports operations:

 isEmpty: have there been same number of pops
as pushes

 push: takes an item
 pop: raises an error if isEmpty, else returns

most-recently pushed item not yet returned by a
pop

 … (possibly more operations)

 A Stack data structure could use a linked-
list or an array or something else, and
associated algorithms for the operations

 One implementation is in the library
java.util.Stack

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 33

The Stack is a Useful Abstraction

 It arises all the time in programming
(e.g., see Weiss 3.6.3)
 Recursive function calls

 Balancing symbols (parentheses)

 Evaluating postfix notation: 3 4 + 5 *

 Clever: Infix ((3+4) * 5) to postfix
conversion

 We can code up a reusable library

 We can communicate in high-level terms
“Use a stack and push numbers, popping for
 operators…” rather than, “create a linked list
 and add a node when…”

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 34

The Queue ADT

 Operations

 create

 destroy

 enqueue

 dequeue

 is_empty

 Just like a stack except:
 Stack: LIFO (last-in-first-out)

 Queue: FIFO (first-in-first-out)

 Just as useful and ubiquitous

F E D C B enqueue dequeue
G A

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 35

LET'S MAKE A QUEUE
DATA STRUCTURE!

Get in line right now for the best offers!

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 36

2012-06-18

7

Circular Array Queue Data Structure

 What if queue is empty?

 Enqueue?

 Dequeue?

 What if array is full?

 How to test for empty?

 What is the complexity of
the operations?

 Can you find the kth
element in the queue?

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 37

// Basic idea only!

enqueue(x) {

 Q[back] = x;

 back = (back + 1) % size

}

// Basic idea only!

dequeue() {

 x = Q[front];

 front = (front + 1) % size;

 return x;

}

b c d e f

Q: 0 size - 1

front back

Linked List Queue Data Structure

b c d e f

front back

// Basic idea only!

enqueue(x) {

 back.next = new Node(x);

 back = back.next;

}

// Basic idea only!

dequeue() {

 x = front.item;

 front = front.next;

 return x;

}

 What if queue is
empty?

 Enqueue?

 Dequeue?

 Can list be full?

 How to test for empty?

 What is the complexity
of the operations?

 Can you find the kth
element in the queue?

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 38

Circular Array vs. Linked List

Array:

 May waste unneeded
space or run out of
space

 Space per element
excellent

 Operations very
simple / fast

 Constant-time access
to kth element

 For operation
insertAtPosition, must
shift all later elements
 Not in Queue ADT

List:

 Always just enough
space

 But more space per
element

 Operations very
simple / fast

 No constant-time
access to kth element

 For operation
insertAtPosition must
traverse all earlier
elements
 Not in Queue ADT

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 39

The Stack ADT
Operations:

 create

 destroy

 push

 pop

 top

 is_empty

Can also be implemented with an array or a
linked list

 This is Project 1!

 Like queues, type of elements is irrelevant

 Ideal for Java’s generic types (section and Project 1B)

A

B
C
D
E
F

E D C B A

F

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 40

Conclusions

 Welcome again!

 This will be a fun class.

 Read Chapter 1-3 for Wednesday

 Chapter 1 is about Java

 Chapter 3 is what we talked about today

 Chapter 2 is discussed on Wednesday

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 41

