
CSE 332 Data Abstractions:

Introduction and ADTs

Kate Deibel

Summer 2012

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 1

Welcome!

We have 9 weeks to learn fundamental
data structures and algorithms for
organizing and processing information

 Classic data structures and algorithms:
queues, trees, graphs, sorting, etc.

 Rigorously analyze their efficiency

 Determine when to use them

 Parallelism and concurrency (!)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 2

Today in Class

 Course mechanics

 What this course is about

 And how it fits into the CSE curriculum

 What is an ADT?

 Review of Stacks and Queues

 Mystery Topics!?

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 3

Concise to-do list

In next 48 hours, you should:

 Adjust class email-list settings

 Do homework 0 (worth 5 bonus pts)

 Read all course policies

 Read/skim Chapters 1 & 3 of Weiss book

 Relevant to Project 1, due next week

 Will start Chapter 2 on Wednesday

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 4

COURSE MECHANICS

Socket wrench… scalpel… snarky comments…

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 5

Instructor: Kate Deibel

 PhD in CSE (2011),
University of Washington

 Research:
Digital literacies
Educational Technologies
Assistive technologies
Disability and education

 Office: CSE 210

 Hours: TBD or drop-by

 E-mail: deibel@cs or @uw

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 6

Not me but my
cute calico Susie

Teaching Assistant: David Swanson

 Let's let him introduce
himself…

 E-mail: swansond@cs

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 7

Not David but
Susie again. Isn't

she cute?

D-E-I-B-E-L

 Pronunciation:

DIE-BULL

 Spelling:

Decibel minus the ‘c’

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 8

When in doubt…

 Consult the course webpage

http://www.cs.washington.edu/education/
courses/cse332/12su/

Or, if you want the quicker URL:

http://www.cs.washington.edu/332

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 9

Communication

 Course email list: cse332a_su12@u

 You are already subscribed (your @uw e-mail)

 You must get announcements sent there

 Fairly low traffic

 Course staff: cse332-staff@cs or Kate's

and David's individual emails

 Discussion board

 For appropriate discussions; TAs will monitor

 Optional but can be enlightening

 Anonymous feedback link

 If you don’t tell me (good or bad), I don’t know

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 10

Course meetings

 Lecture (Kate)

 Materials posted usually before class (95%
guarantee) to aid your note-taking

 Lectures focus on key ideas & proofs

 Some interactive problem-solving

 Section (David)

 Often focus on software (Java features,
programming tools, project/HW issues)

 Reinforce key issues from lecture

 Answer homework questions, etc.

 An important part of the course (not optional)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 11

NOTICE!!!

 Locations for one or more quiz sections
will likely change

 Goal is to have both in the same room or at
least the same building

 Will announce over course e-mail list before
Thursday

 Website will update when we know

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 12

Office Hours

 David's Office Hours

 TBD but will students for time

 Kate's Office Hours

 TBD after David's are set

 I frequently hold open-door hours:

If my door is open, come on in!

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 13

Course materials
 Textbook: Weiss 3rd Edition in Java

 Good read, but only responsible for
lecture/section/hw topics

 Will assign homework problems from it
 3rd edition improves on 2nd, but we’ll

support the 2nd

 Core Java book: A good Java reference
(there may be others)
 Don’t struggle Googling for features you

don’t understand
 Same book recommended for CSE331

 Parallelism / concurrency units use a
free notes written by Dan Grossman
(linked on website)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 14

Course Work

 8 written/typed homeworks (25%)

 Due at end of lecture the day it is due

 No late homeworks accepted

 3 programming projects (25%)

 Projects have phases (parts)

 First phase of Project 1 due next week (TBD)

 Use Java (see this week’s section)

 Two 24-hour late-days for the quarter

 Midterm Exam (20%)

 Final Exam (30%)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 15

Collaboration & Academic Integrity

 Read the course policy very carefully to
understand how you can and cannot
get/provide help to/from others

 Be proactive and always explain (when
you submit) any unconventional action
on your part when it happens

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 16

Respect Policy

 If you respect me, I will respect you

 I am here to teach you and help you
learn about data abstractions

 I make a promise to have good lectures,
polished assignments, etc. on time and
in good humor

 In return, you should be

 Respectful in lab and lecture

 Do not cheat

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 17

Academic Accommodations (formal)

To request personal academic
accommodations due to a disability, please
contact Disability Resources for Students:
448 Schmitz, 206-543-8924 (or 206-543-
8925 for TTY).

If you have a letter from DRS indicating
that you have a disability which requires
academic accommodations, please present
the letter to me so we can discuss how to
meet your needs for this course.

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 18

Academic Accommodations (proper)

 My goal is for you to learn productively

 If you have problems, ask me or a TA

 Accommodations:

 We are not mean

 We understand that life happens beyond this
class, this major, this university, …

 We can make reasonable accommodations
for individual students

 This offer is open for everyone

 Just talk to us…

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 19

Unsolicited Advice

 Get to class on time!

 Learn this stuff

 You need it for so many later classes/jobs

 Falling behind only makes more work for you

 Have fun

 So much easier to be motivated and learn

 Get used to my bad jokes

 Yes, they really are that bad

 If you don't laugh, they just get worse

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 20

WHAT THIS CLASS IS
ABOUT?

It's not about teaching penguins to limbo…

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 21

Data Structures + Threads

 About 70% of the course is a “classic
data-structures course”

 Timeless, essential stuff

 Core data structures and algorithms that
underlie most software

 How to analyze algorithms

 Plus a serious first treatment of
programming with multiple threads

 Parallelism: Use multiple processors

 Concurrency: Access to shared resources

 Connections to the classic material

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 22

Where 332 fits

 Most common pre-req for 400-level courses

 Essential stuff for many internships too!

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 23

312

Foundations

II

332

Data

Abstractions

311

Foundations

I

351

Hw/Sw

Interface

352

Hw Design /

Impl

EE205

Signal

Conditioning

(or EE215)

344

Data

Management

341

Programming

Languages

STAT391

331

Sw Design /

Impl

333

Systems

Programming

390A

Tools

required

CS required

CompE required

not required

pre-req

co-req or pre-req

What 332 is about

 Deeply understand the basic structures
used in all software

 Understand the data structures and trade-offs

 Analyze the algorithms that use them (math!)

 Learn how to pick “the right thing for the job”

 Experience the purposes and headaches of
multithreading

 Practice design, analysis, and
implementation

 The elegant interplay of “theory” and
“engineering” at the core of computer science

 June 18, 2012 CSE 332 Data Abstractions, Summer 2012 24

Goals

 Be able to make good design choices as
a developer, project manager, etc.

 Reason in terms of the general abstractions
that come up in all non-trivial software (and
many non-software) systems

 Be able to justify and communicate your
design decisions

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 25

Views on this course

 Prof. Steve Seitz (graphics):
 100-level and some 300-level courses teach

how to do stuff

 332 teaches really cool ways to do stuff

 400 level courses teach how to do really cool
stuff

 Prof. James Fogarty (HCI):
 Computers are fricking insane

 Raw power can enable bad solutions to many
problems

 This course is about how to attack non-trivial
problems where it actually matters how you
solve them

 June 18, 2012 CSE 332 Data Abstractions, Summer 2012 26

Views on this course

 Prof. Dan Grossman (prog. langs.):
Three years from now this course will
seem like it was a waste of your time
because you can’t imagine not “just
knowing” every main concept in it

 Key abstractions computer scientists and
engineers use almost every day

 A big piece of what separates us from others

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 27

My View on the Course

 This is the class where you begin to
think like a computer scientist

 You stop thinking in Java or C++ code

 You start thinking that this is a hashtable
problem, a linked list problem, etc.

 You realize that little assumptions make big
differences in performance

 You realize there is no absolutely best
solution for a problem

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 28

TERMINOLOGY

Data structures, ADTs, etc. (sorry, no weird joke here)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 29

Data structures
[Often highly non-obvious] ways to organize
information to enable efficient computation
over that information

 Key goal of the next lecture is introducing
asymptotic analysis to precisely and generally
describe efficient use of time and space

A data structure supports certain operations,
each with a:

 Meaning: what does the operation do/return
 Performance: how efficient is the operation

Examples:
 List with operations insert and delete
 Stack with operations push and pop

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 30

Trade-offs
 A data structure strives to provide many

useful, efficient operations

 But there are unavoidable trade-offs:
 Time performance vs. space usage
 Getting one operation to be more efficient

makes others less efficient
 Generality vs. simplicity vs. performance

 That is why there are many data structures
and educated CSEers internalize their main
trade-offs and techniques
 And recognize logarithmic < linear < quadratic

< exponential

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 31

Terminology

 Algorithm

 A high level, language-independent description
of a step-by-step process

 Abstract Data Type (ADT)

 Mathematical description of a “thing” with set of
operations

 Data structure

 A specific family of algorithms for implementing
an ADT

 Implementation of a data structure

 A specific implementation in a specific language
on a specific machine (both matter!)

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 32

Example: Stacks
 The Stack ADT supports operations:

 isEmpty: have there been same number of pops
as pushes

 push: takes an item
 pop: raises an error if isEmpty, else returns

most-recently pushed item not yet returned by a
pop

 … (possibly more operations)

 A Stack data structure could use a linked-
list or an array or something else, and
associated algorithms for the operations

 One implementation is in the library
java.util.Stack

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 33

The Stack is a Useful Abstraction

 It arises all the time in programming
(e.g., see Weiss 3.6.3)
 Recursive function calls

 Balancing symbols (parentheses)

 Evaluating postfix notation: 3 4 + 5 *

 Clever: Infix ((3+4) * 5) to postfix
conversion

 We can code up a reusable library

 We can communicate in high-level terms
“Use a stack and push numbers, popping for
 operators…” rather than, “create a linked list
 and add a node when…”

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 34

The Queue ADT

 Operations

 create

 destroy

 enqueue

 dequeue

 is_empty

 Just like a stack except:
 Stack: LIFO (last-in-first-out)

 Queue: FIFO (first-in-first-out)

 Just as useful and ubiquitous

F E D C B
enqueue dequeue

G A

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 35

LET'S MAKE A QUEUE
DATA STRUCTURE!

Get in line right now for the best offers!

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 36

Circular Array Queue Data Structure

 What if queue is empty?

 Enqueue?

 Dequeue?

 What if array is full?

 How to test for empty?

 What is the complexity of
the operations?

 Can you find the kth
element in the queue?

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 37

// Basic idea only!

enqueue(x) {

 Q[back] = x;

 back = (back + 1) % size

}

// Basic idea only!

dequeue() {

 x = Q[front];

 front = (front + 1) % size;

 return x;

}

b c d e f
Q: 0 size - 1

front back

Linked List Queue Data Structure

b c d e f

front back

// Basic idea only!

enqueue(x) {

 back.next = new Node(x);

 back = back.next;

}

// Basic idea only!

dequeue() {

 x = front.item;

 front = front.next;

 return x;

}

 What if queue is
empty?

 Enqueue?

 Dequeue?

 Can list be full?

 How to test for empty?

 What is the complexity
of the operations?

 Can you find the kth
element in the queue?

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 38

Circular Array vs. Linked List

Array:

 May waste unneeded
space or run out of
space

 Space per element
excellent

 Operations very
simple / fast

 Constant-time access
to kth element

 For operation
insertAtPosition, must
shift all later elements
 Not in Queue ADT

List:

 Always just enough
space

 But more space per
element

 Operations very
simple / fast

 No constant-time
access to kth element

 For operation
insertAtPosition must
traverse all earlier
elements
 Not in Queue ADT

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 39

The Stack ADT
Operations:

 create

 destroy

 push

 pop

 top

 is_empty

Can also be implemented with an array or a
linked list

 This is Project 1!

 Like queues, type of elements is irrelevant

 Ideal for Java’s generic types (section and Project 1B)

A

B
C
D
E
F

E D C B A

F

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 40

Conclusions

 Welcome again!

 This will be a fun class.

 Read Chapter 1-3 for Wednesday

 Chapter 1 is about Java

 Chapter 3 is what we talked about today

 Chapter 2 is discussed on Wednesday

June 18, 2012 CSE 332 Data Abstractions, Summer 2012 41

