

# CSE 332 Data Abstractions: 

# Algorithmic, Asymptotic, and Amortized Analysis 

Kate Deibel

Summer 2012

June 20, 2012
CSE332: Data Abstractions

## Today

- Briefly review math essential to algorithm analysis
- Proof by induction
- Powers of 2
- Exponents and logarithms
- Begin analyzing algorithms
- Big-O, Big- $\Omega$, and Big- - notations
- Using asymptotic analysis
- Best-case, worst-case, average case analysis
- Using amortized analysis


## Recurrence Relations

Functions that are defined using themselves (think recursion but mathematically):

- $F(n)=n \cdot F(n-1), F(0)=1$
- $G(n)=G(n-1)+G(n-2), G(1)=G(2)=1$
- $H(n)=1+H(\lfloor n / 2\rfloor), H(1)=1$

Some recurrence relations can be written more simply in closed form (non-recursive)
$\lfloor x\rfloor$ is the floor function (first integer $\leq x$ )
$\lceil x\rceil$ is the ceiling function (first integer $\geq x$ )

## Mathematical Induction

Suppose $P(n)$ is some predicate (with integer $n$ )

- Example: $\mathrm{n} \geq \mathrm{n} / 2+1$

To prove $P(n)$ for all $n \geq c$, it suffices to prove

1. $P(c)$ - called the "basis" or "base case"
2. If $P(k)$ then $P(k+1)$ - called the "induction step" or "inductive case"

When we will use induction:

- To show an algorithm is correct or has a certain running time no matter how big a data structure or input value is
" Our " $n$ " will be the data structure or input size.


## June 20, 2012

## Induction Example

The sum of the first n powers of 2 (starting with zero) is given the by formula:

$$
P(n)=2^{n}-1
$$

Inductive case:

- Assume: sum of the first $k$ powers of 2 is $2^{k}-1$
- Show: sum of the first $(k+1)$ powers is $2^{k+1}-1$
- $P(k+1)=2^{0}+2^{1}+\ldots+2^{k+1-2}+2^{k+1-1}$

$$
=\left(2^{0}+2^{1}+\ldots+2^{\mathrm{k}-1}\right)+2^{\mathrm{k}}
$$

$$
=\left(2^{\mathrm{k}-1}\right)+2^{\mathrm{k}} \text { since } P(k)=2^{0}+2^{1}+\ldots+2^{\mathrm{k}-1}=2^{\mathrm{k}}-1
$$

$$
=2 \cdot 2^{\mathrm{k}}-1
$$

$$
=2^{\mathrm{k}+1}-1
$$

## June 20, 2012

CSE332: Data Abstractions

## Therefore...

One can give a unique id to:

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with $\approx 38$ bits
- Every atom in the universe with 250-300 bits
- So if a password is 128 bits long and randomly generated, do you think you could guess it?


## Logarithms and Exponents

- Since so much in CS is in binary,
$\log$ almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file on course page to play with plot data!

June 20, 2012
CSE332: Data Abstractions
13

## Logarithms and Exponents

- Since so much in CS is in binary,
$\log$ almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathbf{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

> See Excel file on course page to play with plot data!


June 20, 2012
CSE332: Data Abstractions

## Logarithms and Exponents

Any base $B \log$ is equivalent to base $2 \log$ within a constant factor

In particular,

$$
\log _{2} x=3.22 \log _{10} x
$$

In general,

$$
\log _{\mathrm{B}} \mathrm{x}=\left(\log _{\mathrm{A}} \mathrm{x}\right) /\left(\log _{\mathrm{A}} \mathrm{~B}\right)
$$

This matters in doing math but not CS!
In algorithm analysis, we tend to not care much about constant factors

## Logarithms and Exponents

- Since so much in CS is in binary, $\log$ almost always means $\log _{2}$
- Definition: $\log _{2} \mathbf{x}=\mathrm{y}$ if $\mathrm{x}=2^{\mathrm{y}}$
- So, $\log _{2} 1,000,000=$ "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file on course page to play with plot data!


June 20, 2012
CSE332: Data Abstractions

## Logarithms and Exponents

- $\log (A * B)=\log A+\log B$
- $\log \left(N^{k}\right)=k \log N$
- $\log (A / B)=\log A-\log B$
- $\log (\log x)$ is written $\log \log x$
- Grows as slowly as $2^{2^{x}}$ grows fast
- $(\log x)(\log x)$ is written $\log ^{2} x$
- It is greater than $\log x$ for all $x>2$


## Get out your stopwatches... or not

ALGORITHM ANALYSIS

## Algorithm Analysis

As the "size" of an algorithm's input grows (array length, size of queue, etc.):

- Time: How much longer does it run?
- Space: How much memory does it use?

How do we answer these questions?
For now, we will focus on time only.

June 20, 2012

## The Problem with Timing

- Timing doesn't really evaluate the algorithm but merely evaluates a specific implementation
- At the core of CS is a backbone of theory \& mathematics
- Examine the algorithm itself, not the implementation
- Reason about performance as a function of $n$
- Mathematically prove things about performance
- Yet, timing has its place
- In the real world, we do want to know whether implementation A runs faster than implementation $B$ on data set C
- Ex: Benchmarking graphics cards


## Goals of Comparing Algorithms

Many measures for comparing algorithms

- Security
- Clarity/ Obfuscation
- Performance


## When comparing performance

- Use large inputs because probably any algorithm is "plenty good" for small inputs ( $\mathrm{n}<10$ always fast)
- Answer should be independent of CPU speed, programming language, coding tricks, etc.
- Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"


## One Approach to Algorithm Analysis

Why not just code the algorithm and time it?

- Hardware: processor(s), memory, etc.
- OS, version of Java, libraries, drivers
- Programs running in the background
- Implementation dependent
- Choice of input
- Number of inputs to test


## Assumptions in Analyzing Code

Basic operations take constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Comparing two simple values (is $x<3$ )

Other operations are summations or products

- Consecutive statements are summed
- Loops are (cost of loop body) $\times$ (number of loops)

What about conditionals?

## Worst-Case Analysis

- In general, we are interested in three types of performance
- Best-case / Fastest
- Average-case
- Worst-case / Slowest
- When determining worst-case, we tend to be pessimistic
- If there is a conditional, count the branch that will run the slowest
- This will give a loose bound on how slow the algorithm may run


## No Need To Be So Exact

Constants do not matter

- Consider $6 \mathrm{~N}^{2}$ and $20 \mathrm{~N}^{2}$
- When $N$ >> 20, the $\mathrm{N}^{2}$ is what is driving the function's increase
Lower-order terms are also less important
- $\mathrm{N}^{*}(\mathrm{~N}+1) / 2 \mathrm{vs}$. just $N^{2} / 2$
- The linear term is inconsequential


We need a better notation for performance that focuses on the dominant terms only

## The Gist of Big-Oh

Take functions $f(n) \& g(n)$, consider only the most significant term and remove constant multipliers:

- $5 \mathrm{n}+3 \rightarrow \mathrm{n}$
- $7 \mathrm{n}+.5 \mathrm{n}^{2}+2000 \rightarrow \mathrm{n}^{2}$
- 300n+12+nlogn $\rightarrow n \log n$
- $-\mathrm{n} \rightarrow$ ??? A negative run-time?

Then compare the functions; if $f(n) \leq g(n)$, then $f(n)$ is in $O(g(n))$

## Analyzing Code

What are the run-times for the Answers are following code?

1. for(int $\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++) \quad \approx 1+4 \mathrm{n}$
$x=x+1$;
2. for (int $i=0 ; i<n ; i++$ ) for(int $j=0 ; j<n ; j++$ ) $x=x+1$
3. for(int $i=0 ; i<n ; i++) \quad \approx 4(1+2+\ldots+n)$ for(int $j=0 ; j<=i) ; j++) \quad \approx 4 n(n+1) / 2$ $x=x+1$
$\approx 2 n^{2}+2 n+2$

## Big-Oh Notation

- Given two functions $f(n) \& g(n)$ for input $n$, we say $f(n)$ is in $O(g(n))$ iff there exist positive constants c and $\mathrm{n}_{0}$ such that

$$
f(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

- Basically, we want to find a function $g(n)$ that is eventually always bigger than $f(n)$



## A Big Warning

Do NOT ignore constants that are not multipliers:
$n^{3}$ is $O\left(n^{2}\right)$ is FALSE
$3^{n}$ is $O\left(2^{n}\right)$ is FALSE

When in doubt, refer to the rigorous definition of Big-Oh

## Examples

- True or false?

1. $4+3 n$ is $O(n)$
2. $n+2 \log n$ is $O(\log n)$
3. $\log n+2$ is $O(1)$
4. $\mathrm{n}^{50}$ is $\mathrm{O}\left(1.1^{\mathrm{n}}\right)$

True
False
False
True

## Big Oh: Common Categories

From fastest to slowest
$\mathrm{O}(1) \quad$ constant (or $\mathrm{O}(\mathrm{k})$ for constant k)
$\mathrm{O}(\log n) \quad$ logarithmic
$O(n) \quad$ linear
$O(n \log n) \quad " n \log n "$
$O\left(n^{2}\right) \quad q u a d r a t i c$
$O\left(n^{3}\right) \quad$ cubic
$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right) \quad$ polynomial (where is k is constant)
$\mathrm{O}\left(\mathrm{k}^{\mathrm{n}}\right) \quad$ exponential (where constant $\mathrm{k}>1$ )

## Caveats

- Even for more common functions, comparing $O()$ for small $n$ values can be misleading
- Quicksort: O(n log n) (expected)
- Insertion Sort: O( $n^{2}$ )(expected)
- In reality Insertion Sort is faster for small n's so much so that good QuickSort implementations switch to Insertion Sort when $\mathrm{n}<20$


## Examples (cont.)

For $f(n)=4 n \& g(n)=n^{2}$, prove $f(n)$ is in $O(g(n))$ A valid proof is to find valid $c$ and $n_{0}$ When $n=4, f=16$ and $g=16$, so this is the crossing over point
We can then chose $n_{0}=4$, and $c=1$

We also have infinitely many others choices for $c$ and $n_{0}$, such as $n_{0}=78$, and $c=42$

## Caveats

- Asymptotic complexity focuses on behavior for large $n$ and is independent of any computer/coding trick, but results can be misleading
- Example: $n^{1 / 10}$ vs. log $n$
- Asymptotically $n^{1 / 10}$ grows more quickly
- But the "cross-over" point is around $5 * 10^{17}$
- So if you have input size less than $2^{58}$, prefer $n^{1 / 10}$
- Similarly, an $O\left(2^{n}\right)$ algorithm may be more practical than an $O\left(n^{7}\right)$ algorithm


## Comment on Notation

- We say $\left(3 n^{2}+17\right)$ is in $O\left(n^{2}\right)$
- We may also say/write is as
- $\left(3 n^{2}+17\right)$ is $O\left(n^{2}\right)$
- $\left(3 n^{2}+17\right)=O\left(n^{2}\right)$
- $\left(3 n^{2}+17\right) \in O\left(n^{2}\right)$
- But it's not '=' as in 'equality':
- We would never say $O\left(n^{2}\right)=\left(3 n^{2}+17\right)$


## Big Oh's Family

- Big Oh: Upper bound: $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- $\mathrm{g}(n)$ is in $O(\mathrm{f}(n))$ if there exist constants $c$ and $n_{0}$ such that

$$
\mathrm{g}(n) \leq c \mathrm{f}(n) \text { for all } n \geq n_{0}
$$

- Big Omega: Lower bound: $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
- $\mathrm{g}(n)$ is in $\Omega(\mathrm{f}(n))$ if there exist constants $c$ and $n_{0}$ such that
$g(n) \geq c f(n)$ for all $n \geq n_{0}$
- Big Theta: Tight bound: $\Theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$
- Intersection of $O(f(n))$ and $\Omega(f(n))$

June 20, 2012

## Putting them in order

$$
\omega(\ldots)<\Omega(\ldots) \leq f(n) \leq O(\ldots)<o(\ldots)
$$

## Now to the Board

- What happens when we have a costly operation that only occurs some of the time?
- Example

My array is too small. Let's enlarge it.

Option 1: Increase array size by 10 Copy old array into new one

Option 2: Double the array size Copy old array into new one

We will now explore amortized analysis!

## Regarding use of terms

Common error is to say $O(f(n))$ when you mean $\Theta(f(n))$

- People often say O() to mean a tight bound
- Say we have $f(n)=n$; we could say $f(n)$ is in $\mathrm{O}(\mathrm{n})$, which is true, but only conveys the upperbound
- Somewhat incomplete; instead say it is $\Theta(n)$
- That means that it is not, for example $O(\log n)$

Less common notation:

- "little-oh": like "big-Oh" but strictly less than
- Example: sum is $o\left(n^{2}\right)$ but not $o(n)$
- "little-omega": like "big-Omega" but strictly greater than
- Example: sum is $\omega(\log n)$ but not $\omega(n)$


## Do Not Be Confused

- Best-Case does not imply $\Omega(f(n))$
- Average-Case does not imply $\Theta(f(n))$
- Worst-Case does not imply O(f(n))
- Best-, Average-, and Worst- are specific to the algorithm
- $\Omega(\mathrm{f}(\mathrm{n})), \Theta(\mathrm{f}(\mathrm{n})), \mathrm{O}(\mathrm{f}(\mathrm{n}))$ describe functions
- One can have an $\Omega(f(n))$ bound of the worstcase performance (worst is at least $f(n)$ )
- Once can have a $\Theta(f(n))$ of best-case (best is exactly $f(n)$ )


## Stretchy Array (version 1)

StretchyArray:
maxSize: positive integer (starts at 1)
array: an array of size maxSize
count: number of elements in array
put( $x$ ): add $x$ to the end of the array
if maxSize == count
make new array of size (maxSize +5)
copy old array contents to new array
maxSize $=$ maxSize +5
array[count] $=x$
count $=$ count +1

```
Stretchy Array (version 2)
StretchyArray:
    maxSize: positive integer (starts at 0)
    array: an array of size maxSize
    count: number of elements in array
    put \((x)\) : add \(x\) to the end of the array
    if maxSize == count
        make new array of size (maxSize * 2)
        copy old array contents to new array
        maxSize \(=\) maxSize * 2
    array[count] \(=x\)
    count \(=\) count +1
```


## Performance Cost of put(x)

In both stretchy array implementations, put( $x$ )is defined as essentially:

$$
\begin{array}{ll}
\text { if maxSize }=\text { count } & \mathrm{O}(1) \\
\quad \text { make new array of bigger size } & \mathrm{O}(1) \\
\quad \text { copy old array contents to new array } & \mathrm{O}(\mathrm{n}) \\
\quad \text { update maxSize } & \mathrm{O}(1) \\
\text { array [count] }=x & \mathrm{O}(1) \\
\text { count = count }+1 & \mathrm{O}(1)
\end{array}
$$

In the worst-case, $\operatorname{put}(\mathrm{x})$ is $\mathrm{O}(\mathrm{n})$ where n is the current size of the array!!

Amortized Analysis of StretchyArray Version 1

| $\mathbf{i}$ | $\boldsymbol{m a x S i z e}$ | count | cost | comments |
| :---: | :---: | :---: | :---: | :--- |
|  | 0 | 0 |  | Initial state |
| 1 | 5 | 1 | $0+1$ | Copy array of size 0 |
| 2 | 5 | 2 | 1 |  |
| 3 | 5 | 3 | 1 |  |
| 4 | 5 | 4 | 1 |  |
| 5 | 5 | 5 | 1 |  |
| 6 | 10 | 6 | $5+1$ | Copy array of size 5 |
| 7 | 10 | 7 | 1 |  |
| 8 | 10 | 8 | 1 |  |
| 9 | 10 | 9 | 1 |  |
| 10 | 10 | 10 | 1 |  |
| 11 | 15 | 11 | $10+1$ | Copy array of size 10 |
| $\vdots$ | $\vdots$ | $\vdots$ | $\vdots$ |  |

Amortized Analysis of StretchyArray Version 1
Assume the number of puts is $n=5 k$

- We will make $n$ calls to array[count]=x
- We will stretch the array $k$ times and will cost:

$$
0+5+10+\ldots+5(k-1)
$$

Total cost is then
$\mathrm{n}+(0+5+10+\ldots+5(\mathrm{k}-1))$
$=n+5(1+2+\ldots+(k-1))$
$=n+5(k-1)(k-1+1) / 2$
$=n+5 \mathrm{k}(\mathrm{k}-1) / 2$
$\approx n+n^{2} / 10$
Amortized cost for put $(x)$ is

$$
\frac{n+\frac{n^{2}}{10}}{n}=1+\frac{n}{10}=O(n)
$$

une 20, 2012
CSE332: Data Abstractions

## Amortized Analysis of StretchyArray Version 2

| $\mathbf{i}$ | maxSize | count | cost | comments |
| :---: | :---: | :---: | :---: | :--- |
|  | 1 | 0 |  | Initial state |
| 1 | 1 | 1 | 1 |  |
| 2 | 2 | 2 | $1+1$ | Copy array of size 1 |
| 3 | 4 | 3 | $2+1$ |  |
| 4 | 4 | 4 | 1 | Enlarge steps happen |
| 5 | 8 | 5 | $4+1$ | basically when i is a |
| 6 | 8 | 6 | 1 | power of 2 |
| 7 | 8 | 7 | 1 |  |
| 8 | 8 | 8 | 1 |  |
| 9 | 16 | 9 | $8+1$ | Copy array of size 8 |
| 10 | 16 | 10 | 1 |  |
| 11 | 16 | 11 | 1 |  |
| $\vdots$ | $\vdots$ | 1 | $\vdots$ |  |

## The Lesson

With amortized analysis, we know that over the long run (on average):

- If we stretch an array by a constant amount, each put( $x$ ) call is $O(n)$ time
- If we double the size of the array each time, each put( $x$ ) call is $O(1)$ time

June 20, 2012
CSE332: Data Abstractions
50
Amortized Analysis of StretchyArray Version 2

| $\mathbf{i}$ | maxSize | count | cost | comments |
| :---: | :---: | :---: | :---: | :--- |
|  | 1 | 0 |  | Initial state |
| 1 | 1 | 1 | 1 |  |
| 2 | 2 | 2 | $1+1$ | Copy array of size 1 |
| 3 | 4 | 3 | $2+1$ | Copy array of size 2 |
| 4 | 4 | 4 | 1 |  |
| 5 | 8 | 5 | $4+1$ | Copy array of size 4 |
| 6 | 8 | 6 | 1 |  |
| 7 | 8 | 7 | 1 |  |
| 8 | 8 | 8 | 1 |  |
| 9 | 16 | 9 | $8+1$ | Copy array of size 8 |
| 10 | 16 | 10 | 1 |  |
| 11 | 16 | 11 | 1 |  |
| 1 | $\vdots$ | $\vdots$ | 1 |  |

## Amortized Analysis of StretchyArray Version 2

Assume the number of puts is $n=2^{k}$

- We will make $n$ calls to array[count]=x
- We will stretch the array $k$ times and will cost:

$$
\approx 1+2+4+\ldots+2^{k-1}
$$

Total cost is then:
$\approx n+\left(1+2+4+\ldots+2^{k-1}\right)$
$\approx n+2^{k}-1$
$\approx 2 n-1$

Amortized cost for put(x) is

$$
\frac{2 n-1}{n}=2-\frac{1}{n}=O(1)
$$

