
2012-06-25

1

CSE 332 Data Abstractions:

Algorithmic, Asymptotic,
and Amortized Analysis

Kate Deibel

Summer 2012

June 20, 2012 CSE332: Data Abstractions 1

Announcements

 Project 1 posted

 Homework 0 posted

 Homework 1 posted this afternoon

 Feedback on typos is welcome

 New Section Location: CSE 203

 Comfy chairs! :O

 White board walls! :o

 Reboot coffee 100 yards away :)

 Kate's office is even closer :/

June 20, 2012 CSE332: Data Abstractions 2

Today

 Briefly review math essential to
algorithm analysis

 Proof by induction

 Powers of 2

 Exponents and logarithms

 Begin analyzing algorithms

 Big-O, Big-Ω, and Big-Θ notations

 Using asymptotic analysis

 Best-case, worst-case, average case analysis

 Using amortized analysis

June 20, 2012 CSE332: Data Abstractions 3

MATH REVIEW

If you understand the first n slides,
you will understand the n+1 slide

June 20, 2012 CSE332: Data Abstractions 4

Recurrence Relations

Functions that are defined using themselves
(think recursion but mathematically):

 F(n) = n ∙ F(n-1), F(0) = 1

 G(n) = G(n-1) + G(n-2), G(1)=G(2) = 1

 H(n) = 1 + H(⌊ n/2 ⌋), H(1)=1

Some recurrence relations can be written
more simply in closed form (non-recursive)

June 20, 2012 CSE332: Data Abstractions 5

⌊ x ⌋ is the floor function (first integer ≤x)

⌈ x ⌉ is the ceiling function (first integer ≥x)

Example Closed Form

H(n) = 1 + H(⌊ n/2 ⌋), H(1)=1

 H(1) = 1

 H(2) = 1 + H(⌊ 2/2 ⌋) = 1 + H(1) = 2

 H(3) = 1 + H(⌊ 3/2 ⌋) = 1 + H(1) = 2

 H(4) = 1 + H(⌊ 4/2 ⌋) = 1 + H(2) = 3

...

 H(8) = 1 + H(⌊ 8/2 ⌋) = 1 + H(4) = 4

…

H(n) = 1 + ⌊ log2 n ⌋

June 20, 2012 CSE332: Data Abstractions 6

2012-06-25

2

Mathematical Induction

Suppose P(n) is some predicate (with integer n)

 Example: n ≥ n/2 + 1

To prove P(n) for all n ≥ c, it suffices to prove

1. P(c) – called the “basis” or “base case”

2. If P(k) then P(k+1) – called the “induction step”
or “inductive case”

When we will use induction:

 To show an algorithm is correct or has a certain
running time no matter how big a data structure or
input value is

 Our “n” will be the data structure or input size.

June 20, 2012 CSE332: Data Abstractions 7

Induction Example

The sum of the first n powers of 2 (starting with
zero) is given the by formula:

P(n) = 2n-1

Theorem: P(n) holds for all n ≥ 1

Proof: By induction on n

Base case: n=1.

 Sum of first power of 2 is 20 , which equals 1.

 And for n=1,

2n-1 = 21-1 = 2-1 = 1

June 20, 2012 CSE332: Data Abstractions 8

Induction Example

The sum of the first n powers of 2 (starting with
zero) is given the by formula:

P(n) = 2n-1

Inductive case:

 Assume: sum of the first k powers of 2 is 2k-1

 Show: sum of the first (k+1) powers is 2k+1-1

 P(k+1) = 20+21+…+2k+1-2+2k+1-1

 = (20+21+…+2k-1)+2k

 = (2k-1)+2k since P(k)=20+21+…+2k-1= 2k-1

 = 2∙2k-1

 = 2k+1-1

June 20, 2012 CSE332: Data Abstractions 9

Powers of 2

 A bit is 0 or 1

 n bits can represent 2n distinct things

 For example, the numbers 0 through 2n-1

Rules of Thumb:

 210 is 1024 / “about a thousand”, kilo in CSE speak

 220 is “about a million”, mega in CSE speak

 230 is “about a billion”, giga in CSE speak

In Java:

 int is 32 bits and signed, so “max int” is 231 - 1
which is about 2 billion

 long is 64 bits and signed, so “max long” is 263 - 1

June 20, 2012 CSE332: Data Abstractions 10

Therefore…

One can give a unique id to:

 Every person in the U.S. with 29 bits

 Every person in the world with 33 bits

 Every person to have ever lived with ≈38 bits

 Every atom in the universe with 250-300 bits

 So if a password is 128 bits long and randomly
generated, do you think you could guess it?

June 20, 2012 CSE332: Data Abstractions 11

Logarithms and Exponents

 Since so much in CS is in binary,

 log almost always means log2

 Definition: log2 x = y if x = 2y

 So, log2 1,000,000 = “a little under 20”

 Just as exponents grow very quickly,

logarithms grow very slowly

See Excel file on
course page to
play with plot data!

June 20, 2012 CSE332: Data Abstractions 12

2012-06-25

3

Logarithms and Exponents

 Since so much in CS is in binary,

 log almost always means log2

 Definition: log2 x = y if x = 2y

 So, log2 1,000,000 = “a little under 20”

 Just as exponents grow very quickly,

logarithms grow very slowly

June 20, 2012 CSE332: Data Abstractions 13

See Excel file on
course page to
play with plot data!

Logarithms and Exponents

 Since so much in CS is in binary,

 log almost always means log2

 Definition: log2 x = y if x = 2y

 So, log2 1,000,000 = “a little under 20”

 Just as exponents grow very quickly,

logarithms grow very slowly

June 20, 2012 CSE332: Data Abstractions 14

See Excel file on
course page to
play with plot data!

Logarithms and Exponents

 Since so much in CS is in binary,

 log almost always means log2

 Definition: log2 x = y if x = 2y

 So, log2 1,000,000 = “a little under 20”

 Just as exponents grow very quickly,

logarithms grow very slowly

June 20, 2012 CSE332: Data Abstractions 15

See Excel file on
course page to
play with plot data!

Logarithms and Exponents

 log(A*B) = log A + log B

 log(Nk)= k log N

 log(A/B) = log A – log B

 log(log x) is written log log x

 Grows as slowly as 22
𝑥
grows fast

 (log x)(log x) is written log2 x

 It is greater than log x for all x > 2

June 20, 2012 CSE332: Data Abstractions 16

Logarithms and Exponents

Any base B log is equivalent to base 2 log
within a constant factor

In particular,

log2 x = 3.22 log10 x

In general,

logB x = (logA x) / (logA B)

June 20, 2012 CSE332: Data Abstractions 17

This matters in doing math but not CS!
In algorithm analysis, we tend to not care
much about constant factors

ALGORITHM ANALYSIS

Get out your stopwatches… or not

June 20, 2012 CSE332: Data Abstractions 18

2012-06-25

4

Algorithm Analysis

As the “size” of an algorithm’s input grows
(array length, size of queue, etc.):

 Time: How much longer does it run?

 Space: How much memory does it use?

How do we answer these questions?

For now, we will focus on time only.

June 20, 2012 CSE332: Data Abstractions 19

One Approach to Algorithm Analysis

Why not just code the algorithm and time it?

 Hardware: processor(s), memory, etc.

 OS, version of Java, libraries, drivers

 Programs running in the background

 Implementation dependent

 Choice of input

 Number of inputs to test

June 20, 2012 CSE332: Data Abstractions 20

The Problem with Timing

 Timing doesn’t really evaluate the algorithm but
merely evaluates a specific implementation

 At the core of CS is a backbone of theory &
mathematics

 Examine the algorithm itself, not the implementation

 Reason about performance as a function of n

 Mathematically prove things about performance

 Yet, timing has its place

 In the real world, we do want to know whether
implementation A runs faster than implementation B on
data set C

 Ex: Benchmarking graphics cards

June 20, 2012 CSE332: Data Abstractions 21

Basic Lesson

Evaluating an algorithm?

Use asymptotic analysis

Evaluating an implementation?

Use timing

June 20, 2012 CSE332: Data Abstractions 22

Goals of Comparing Algorithms

Many measures for comparing algorithms

 Security

 Clarity/ Obfuscation

 Performance

When comparing performance

 Use large inputs because probably any algorithm is
“plenty good” for small inputs (n < 10 always fast)

 Answer should be independent of CPU speed,
programming language, coding tricks, etc.

 Answer is general and rigorous, complementary to
“coding it up and timing it on some test cases”

June 20, 2012 CSE332: Data Abstractions 23

Assumptions in Analyzing Code

Basic operations take constant time

 Arithmetic (fixed-width)

 Assignment

 Access one Java field or array index

 Comparing two simple values (is x < 3)

Other operations are summations or products

 Consecutive statements are summed

 Loops are (cost of loop body) ╳ (number of loops)

What about conditionals?

June 20, 2012 CSE332: Data Abstractions 24

2012-06-25

5

Worst-Case Analysis

 In general, we are interested in three
types of performance

 Best-case / Fastest

 Average-case

 Worst-case / Slowest

 When determining worst-case, we tend
to be pessimistic

 If there is a conditional, count the branch
that will run the slowest

 This will give a loose bound on how slow the
algorithm may run

June 20, 2012 CSE332: Data Abstractions 25

Analyzing Code

What are the run-times for the
following code?

1. for(int i=0;i<n;i++)
 x = x+1;

2. for(int i=0;i<n;i++)
 for(int j=0;j<n;j++)
 x = x + 1

3. for(int i=0;i<n;i++)
 for(int j=0; j <= i); j++)
 x = x + 1

Answers are

≈1+4n

≈4n2

≈ 4(1+2+…+n)

≈ 4n(n+1)/2

≈ 2n2+2n+2

June 20, 2012 CSE332: Data Abstractions 26

No Need To Be So Exact

Constants do not matter

 Consider 6N2 and 20N2

 When N >> 20, the N2 is what is driving the
function's increase

Lower-order terms are also less important

 N*(N+1)/2 vs.
just N2/2

 The linear term is
inconsequential

We need a better notation for performance that
focuses on the dominant terms only

Spring 2012 CSE332: Data Abstractions 27

Big-Oh Notation

 Given two functions f(n) & g(n) for input n, we
say f(n) is in O(g(n)) iff there exist positive
constants c and n0 such that

 f(n)  c g(n) for all n  n0

 Basically, we want to find a
function g(n) that is eventually
always bigger than f(n)

June 20, 2012 CSE332: Data Abstractions 28

n

n0

g

f

The Gist of Big-Oh

Take functions f(n) & g(n), consider only
the most significant term and remove
constant multipliers:

 5n+3 → n

 7n+.5n2+2000 → n2

 300n+12+nlogn → n log n

 –n → ??? A negative run-time?

Then compare the functions; if f(n) ≤ g(n),

then f(n) is in O(g(n))

June 20, 2012 CSE332: Data Abstractions 29

A Big Warning

Do NOT ignore constants that are not
multipliers:

n3 is O(n2) is FALSE

3n is O(2n) is FALSE

When in doubt, refer to the rigorous
definition of Big-Oh

June 20, 2012 CSE332: Data Abstractions 30

2012-06-25

6

Examples

 True or false?

1. 4+3n is O(n)

2. n+2 logn is O(log n)

3. logn+2 is O(1)

4. n50 is O(1.1n)

True

False

False

True

June 20, 2012 CSE332: Data Abstractions 31

Examples (cont.)

For f(n)=4n & g(n)=n2, prove f(n) is in O(g(n))

A valid proof is to find valid c and n0

When n=4, f=16 and g=16, so this is the
crossing over point

We can then chose n0 = 4, and c=1

We also have infinitely many others choices for
c and n0, such as n0 = 78, and c=42

June 20, 2012 CSE332: Data Abstractions 32

Big Oh: Common Categories

From fastest to slowest

O(1) constant (or O(k) for constant k)

O(log n) logarithmic

O(n) linear

O(n log n) "n log n”

O(n2) quadratic

O(n3) cubic

O(nk) polynomial (where is k is constant)

O(kn) exponential (where constant k > 1)

June 20, 2012 CSE332: Data Abstractions 33

Caveats

 Asymptotic complexity focuses on
behavior for large n and is independent
of any computer/coding trick, but results
can be misleading

 Example: n1/10 vs. log n

 Asymptotically n1/10 grows more quickly

 But the “cross-over” point is around 5 * 1017

 So if you have input size less than 258,
prefer n1/10

 Similarly, an O(2n) algorithm may be more
practical than an O(n7) algorithm

June 20, 2012 CSE332: Data Abstractions 34

Caveats

 Even for more common functions,
comparing O() for small n values can be
misleading

 Quicksort: O(n log n) (expected)

 Insertion Sort: O(n2)(expected)

 In reality Insertion Sort is faster for small n’s so
much so that good QuickSort implementations
switch to Insertion Sort when n<20

June 20, 2012 CSE332: Data Abstractions 35

Comment on Notation

 We say (3n2+17) is in O(n2)

 We may also say/write is as

 (3n2+17) is O(n2)

 (3n2+17) = O(n2)

 (3n2+17) ∈ O(n2)

 But it’s not ‘=‘ as in ‘equality’:

 We would never say O(n2) = (3n2+17)

June 20, 2012 CSE332: Data Abstractions 36

2012-06-25

7

Big Oh’s Family
 Big Oh: Upper bound: O(f(n)) is the set of all

functions asymptotically less than or equal to f(n)

 g(n) is in O(f(n)) if there exist constants c and n0
such that

 g(n)  c f(n) for all n  n0

 Big Omega: Lower bound: (f(n)) is the set of all
functions asymptotically greater than or equal to f(n)

 g(n) is in (f(n)) if there exist constants c and n0
such that

 g(n)  c f(n) for all n  n0

 Big Theta: Tight bound: Θ(f(n)) is the set of all

functions asymptotically equal to f(n)

 Intersection of O(f(n)) and (f(n))

June 20, 2012 CSE332: Data Abstractions 37

Regarding use of terms
Common error is to say O(f(n)) when you

mean Θ(f(n))
 People often say O() to mean a tight bound
 Say we have f(n)=n; we could say f(n) is in

O(n), which is true, but only conveys the upper-
bound

 Somewhat incomplete; instead say it is Θ(n)
 That means that it is not, for example O(log n)

Less common notation:
 “little-oh”: like “big-Oh” but strictly less than

 Example: sum is o(n2) but not o(n)

 “little-omega”: like “big-Omega” but strictly
greater than
 Example: sum is (log n) but not (n)

June 20, 2012 CSE332: Data Abstractions 38

Putting them in order

(…) < (…) ≤ f(n) ≤ O(…) < o(...)

June 20, 2012 CSE332: Data Abstractions 39

Do Not Be Confused

 Best-Case does not imply (f(n))

 Average-Case does not imply Θ(f(n))

 Worst-Case does not imply O(f(n))

 Best-, Average-, and Worst- are specific to
the algorithm

 (f(n)), Θ(f(n)), O(f(n)) describe functions

 One can have an (f(n)) bound of the worst-
case performance (worst is at least f(n))

 Once can have a Θ(f(n)) of best-case (best
is exactly f(n))

 June 20, 2012 CSE332: Data Abstractions 40

Now to the Board
 What happens when we have a costly operation

that only occurs some of the time?

 Example:

 My array is too small. Let's enlarge it.

 Option 1: Increase array size by 10

 Copy old array into new one

 Option 2: Double the array size

 Copy old array into new one

We will now explore amortized analysis!

June 20, 2012 CSE332: Data Abstractions 41

Stretchy Array (version 1)
StretchyArray:

 maxSize: positive integer (starts at 1)

 array: an array of size maxSize

 count: number of elements in array

 put(x): add x to the end of the array

 if maxSize == count

 make new array of size (maxSize + 5)

 copy old array contents to new array

 maxSize = maxSize + 5

 array[count] = x

 count = count + 1

June 20, 2012 CSE332: Data Abstractions 42

2012-06-25

8

Stretchy Array (version 2)
StretchyArray:

 maxSize: positive integer (starts at 0)

 array: an array of size maxSize

 count: number of elements in array

 put(x): add x to the end of the array

 if maxSize == count

 make new array of size (maxSize * 2)

 copy old array contents to new array

 maxSize = maxSize * 2

 array[count] = x

 count = count + 1

June 20, 2012 CSE332: Data Abstractions 43

Performance Cost of put(x)

In both stretchy array implementations,
put(x)is defined as essentially:

 if maxSize == count

 make new array of bigger size

 copy old array contents to new array

 update maxSize

 array[count] = x

 count = count + 1

What f(n) is put(x) in O(f(n))?

June 20, 2012 CSE332: Data Abstractions 44

Performance Cost of put(x)

In both stretchy array implementations,
put(x)is defined as essentially:

 if maxSize == count O(1)

 make new array of bigger size O(1)

 copy old array contents to new array O(n)

 update maxSize O(1)

 array[count] = x O(1)

 count = count + 1 O(1)

In the worst-case, put(x) is O(n) where n is the
current size of the array!!

June 20, 2012 CSE332: Data Abstractions 45

But…

 We do not have to enlarge the array
each time we call put(x)

 What will be the average performance if
we put n items into the array?

 cost of calling put for the ith time 𝑛
𝑖=1

𝑛
= O(?)

 Calculating the average cost for multiple
calls is known as amortized analysis

June 20, 2012 CSE332: Data Abstractions 46

Amortized Analysis of StretchyArray Version 1

i maxSize count cost comments

0 0 Initial state

1 5 1 0 + 1 Copy array of size 0

2 5 2 1

3 5 3 1

4 5 4 1

5 5 5 1

6 10 6 5 + 1 Copy array of size 5

7 10 7 1

8 10 8 1

9 10 9 1

10 10 10 1

11 15 11 10 + 1 Copy array of size 10

⁞ ⁞ ⁞ ⁞ ⁞

June 20, 2012 CSE332: Data Abstractions 47

Amortized Analysis of StretchyArray Version 1

i maxSize count cost comments

0 0 Initial state

1 5 1 0 + 1 Copy array of size 0

2 5 2 1

3 5 3 1

4 5 4 1

5 5 5 1

6 10 6 5 + 1 Copy array of size 5

7 10 7 1

8 10 8 1

9 10 9 1

10 10 10 1

11 15 11 10 + 1 Copy array of size 10

⁞ ⁞ ⁞ ⁞ ⁞

June 20, 2012 CSE332: Data Abstractions 48

Every five steps, we
have to do a multiple
of five more work

2012-06-25

9

Amortized Analysis of StretchyArray Version 1

Assume the number of puts is n=5k
 We will make n calls to array[count]=x

 We will stretch the array k times and will cost:

0 + 5 + 10 + … + 5(k-1)

Total cost is then:

n + (0 + 5 + 10 + … + 5(k-1))

= n + 5(1 + 2 + … +(k-1))

= n + 5(k-1)(k-1+1)/2

= n + 5k(k-1)/2

≈ n + n2/10

June 20, 2012 CSE332: Data Abstractions 49

Amortized cost for put(x) is

𝑛 +
𝑛2

10
𝑛

= 1 +
𝑛

10
= 𝑂(𝑛)

Amortized Analysis of StretchyArray Version 2

i maxSize count cost comments

1 0 Initial state

1 1 1 1

2 2 2 1 + 1 Copy array of size 1

3 4 3 2 + 1 Copy array of size 2

4 4 4 1

5 8 5 4 + 1 Copy array of size 4

6 8 6 1

7 8 7 1

8 8 8 1

9 16 9 8 + 1 Copy array of size 8

10 16 10 1

11 16 11 1

⁞ ⁞ ⁞ ⁞ ⁞

June 20, 2012 CSE332: Data Abstractions 50

Amortized Analysis of StretchyArray Version 2

i maxSize count cost comments

1 0 Initial state

1 1 1 1

2 2 2 1 + 1 Copy array of size 1

3 4 3 2 + 1 Copy array of size 2

4 4 4 1

5 8 5 4 + 1 Copy array of size 4

6 8 6 1

7 8 7 1

8 8 8 1

9 16 9 8 + 1 Copy array of size 8

10 16 10 1

11 16 11 1

⁞ ⁞ ⁞ ⁞ ⁞

June 20, 2012 CSE332: Data Abstractions 51

Enlarge steps happen
basically when i is a
power of 2

Amortized Analysis of StretchyArray Version 2

Assume the number of puts is n=2k

 We will make n calls to array[count]=x

 We will stretch the array k times and will cost:

≈1 + 2 + 4 + … + 2k-1

Total cost is then:

≈ n + (1 + 2 + 4 + … + 2k-1)

≈ n + 2k – 1

≈ 2n - 1

June 20, 2012 CSE332: Data Abstractions 52

Amortized cost for put(x) is
2𝑛 − 1

𝑛
= 2 −

1

𝑛
= 𝑂(1)

The Lesson

With amortized analysis, we know that
over the long run (on average):

 If we stretch an array by a constant

amount, each put(x) call is O(n) time

 If we double the size of the array each

time, each put(x) call is O(1) time

June 20, 2012 CSE332: Data Abstractions 53

