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CSE 332 Data Abstractions:

Algorithmic, Asymptotic,
and Amortized Analysis

Kate Deibel
Summer 2012
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Today

= Briefly review math essential to
algorithm analysis
= Proof by induction
= Powers of 2
= Exponents and logarithms

= Begin analyzing algorithms
= Big-O, Big-Q, and Big-© notations
= Using asymptotic analysis
= Best-case, worst-case, average case analysis
= Using amortized analysis
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Recurrence Relations

Functions that are defined using themselves
(think recursion but mathematically):

= F(n) = n - F(n-1), F(0) =1
= G(n) = G(n-1) + G(n-2), G(1)=G(2) =1
= H(n) =1+ H(|n/2]), H(1)=1

Some recurrence relations can be written
more simply in closed form (non-recursive)

| x ] is the floor function (first integer <x)

[ x]is the ceiling function (first integer >x)

June 20, 2012 CSE332: Data Abstractions 5

Announcements

Project 1 posted

= Homework 0 posted

= Homework 1 posted this afternoon
= Feedback on typos is welcome

= New Section Location: CSE 203
= Comfy chairs! :0
= White board walls! :0
= Reboot coffee 100 yards away :)
= Kate's office is even closer :/
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If you understand the first n slides,
you will understand the n+1 slide

MATH REVIEW
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Example Closed Form

H(n) =1+ H(|n/2]), H(1)=1

= H(1l) =1

s H(2)=1+H(|2/2])=1+H(1) =2
= H(3)=1+H(3/2])=1+H(1) =2
= H(4)=1+H(|4/2])=1+H(2) =3

.-”H(8) =1+H(8/2])=1+H@4) =4

i-.|.(n) =1+ ]logyn|
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Mathematical Induction

Suppose P(n) is some predicate (with integer n)
= Example:n 2 n/2 + 1

To prove P(n) for all n > ¢, it suffices to prove
1. P(c) - called the “basis” or “base case”

2. If P(k) then P(k+1) - called the “induction step”
or “inductive case”

When we will use induction:

= To show an algorithm is correct or has a certain
running time no matter how big a data structure or
input value is

= Our “n” will be the data structure or input size.
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Induction Example
The sum of the first n powers of 2 (starting with
zero) is given the by formula:

P(n) = 2n-1

Inductive case:
= Assume: sum of the first k powers of 2 is 2k-1
= Show: sum of the first (k+1) powers is 2k+1-1
= P(k+1) = 204214, 42k+1-24 Dk+1-1
= (204214, +2K1)+2kK
= (2%1)+2k since P(k)=20+21+,, +2k1= 2k-1

=2.2k1

= 2k+l.1
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Therefore...

One can give a unique id to:

= Every person in the U.S. with 29 bits

= Every person in the world with 33 bits

= Every person to have ever lived with =38 bits
= Every atom in the universe with 250-300 bits

= So if a password is 128 bits long and randomly
generated, do you think you could guess it?
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Induction Example

The sum of the first n powers of 2 (starting with
zero) is given the by formula:
P(n) = 2n-1
Theorem: P(n) holds foralln > 1
Proof: By induction on n

Base case: n=1.
= Sum of first power of 2 is 2° , which equals 1.
= And for n=1,

2n-1=21-1=2-1=1
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Powers of 2

= AbitisOor1
= n bits can represent 2" distinct things
= For example, the numbers 0 through 2"-1

Rules of Thumb:

= 210 js 1024 / “about a thousand”, kilo in CSE speak
= 220 js “about a million”, mega in CSE speak

= 230 js “about a billion”, giga in CSE speak

In Java:

= intis 32 bits and signed, so “max int” is 23! - 1
which is about 2 billion

= long is 64 bits and signed, so “max long” is 263- 1
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Logarithms and Exponents
= Since so much in CS is in binary,
log almost always means log,
Definition: log, x = y if x = 2v
= So, log, 1,000,000 = “a little under 20"

= Just as exponents grow very quickly,
logarithms grow very slowly

1000000 .

See Excel file on
course page to
play with plot data!

June 20, 2012 CSE332: Data Abstractions 12



Logarithms and Exponents
= Since so much in CS is in binary,
log almost always means log,
= Definition: log, x = yif x = 2v
= So, log, 1,000,000 = “a little under 20"
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Logarithms and Exponents
= Since so much in CS is in binary,
log almost always means log,
= Definition: log, x = yif x = 2v
= So, log, 1,000,000 = “a little under 20"

= Just as exponents grow very quickly,
logarithms grow very slowly
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See Excel file on "
course page to w o
play with plot data!
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Logarithms and Exponents
Any base B log is equivalent to base 2 log
within a constant factor

In particular,
log, X = 3.22 10g44 X

In general,
logg x = (log, x) / (log, B)

This matters in doing math but not CS!
In algorithm analysis, we tend to not care
much about constant factors
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Logarithms and Exponents
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Logarithms and Exponents
= log(A*B) = log A + log B

= log(NK)=k log N

= log(A/B) = log A - log B

= log(log x) is written log log x
= Grows as slowly as 22"grows fast

= (log x)(log x) is written log? x
= It is greater than log x for all x > 2
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Get out your stopwatches... or not

ALGORITHM ANALYSIS
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Algorithm Analysis

As the “size” of an algorithm’s input grows
(array length, size of queue, etc.):

= Time: How much longer does it run?

= Space: How much memory does it use?

How do we answer these questions?
For now, we will focus on time only.
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The Problem with Timing

= Timing doesn't really evaluate the algorithm but
merely evaluates a specific implementation

= At the core of CS is a backbone of theory &
mathematics
= Examine the algorithm itself, not the implementation
= Reason about performance as a function of n
= Mathematically prove things about performance

= Yet, timing has its place
= In the real world, we do want to know whether

implementation A runs faster than implementation B on
data set C

= Ex: Benchmarking graphics cards
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Goals of Comparing Algorithms

Many measures for comparing algorithms
= Security

= Clarity/ Obfuscation

= Performance

When comparing performance

= Use large inputs because probably any algorithm is
“plenty good” for small inputs (n < 10 always fast)

= Answer should be independent of CPU speed,
programming language, coding tricks, etc.

= Answer is general and rigorous, complementary to
“coding it up and timing it on some test cases”
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One Approach to Algorithm Analysis

Why not just code the algorithm and time it?
= Hardware: processor(s), memory, etc.

= OS, version of Java, libraries, drivers

= Programs running in the background

= Implementation dependent

= Choice of input

= Number of inputs to test
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Basic Lesson

Evaluating an algorithm?
Use asymptotic analysis

Evaluating an implementation?
Use timing
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Assumptions in Analyzing Code

Basic operations take constant time
= Arithmetic (fixed-width)

= Assignment

= Access one Java field or array index

= Comparing two simple values (is x < 3)

Other operations are summations or products
= Consecutive statements are summed

= Loops are (cost of loop body) X (number of loops)

What about conditionals?
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Worst-Case Analysis

= In general, we are interested in three
types of performance
= Best-case / Fastest
= Average-case
= Worst-case / Slowest

= When determining worst-case, we tend
to be pessimistic

= If there is a conditional, count the branch
that will run the slowest

= This will give a loose bound on how slow the
algorithm may run
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No Need To Be So Exact

Constants do not matter

= Consider 6N2 and 20N?2

= When N >> 20, the N2 is what is driving the
function's increase

Lower-order terms are also less important

= N*(N+1)/2 vs.
just N2/2

= The linear term is
inconsequential

We need a better notation for performance that
focuses on the dominant terms only
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The Gist of Big-Oh

Take functions f(n) & g(n), consider only
the most significant term and remove
constant multipliers:

*5n+3 —>n

= 7n+.5n2+2000 — n?

= 300n+12+nlogn — nlog n

= -n — ?7?? A negative run-time?
Then compare the functions; if f(n) < g(n),
then f(n) is in O(g(n))
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Analyzing Code

What are the run-times for the Answers are
following code?

1. for(inti=0;i<n;i++) =1+4n
X = x+1;
2. for(inti=0;i<n;i++) =4n?
for(int j=0;j<n;j++)
X=X+1

3. for(int i=0;i<n;i++) ~ 4(1+2+...+n)
for(lntJ_=0;J <1= i);j++) an(n+1)/2
X=X+ ~ 2n2+2n+2
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Big-Oh Notation

= Given two functions f(n) & g(n) for input n, we
say f(n) is in O(g(n) ) iff there exist positive
constants c and nq such that

f(n) < cg(n) foralln=>n,

Basically, we want to find a
function g(n) that is eventually
always bigger than f(n)
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A Big Warning
Do NOT ignore constants that are not
multipliers:

n3 is O(n2) is FALSE

3nis O(2") is FALSE

When in doubt, refer to the rigorous
definition of Big-Oh
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Examples

= True or false?

1. 4+3n is O(n) True
2. n+2 logn is O(log n) False
3. logn+2 is O(1) False
4. n% is O(1.1n) True
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Big Oh: Common Categories
From fastest to slowest

0(1) constant (or O(k) for constant k)
O(log n) logarithmic

o(n) linear

O(nlogn) "nlogn”

0(n2) quadratic

0o(n3) cubic

0O(nk) polynomial (where is k is constant)
O(km) exponential (where constant k > 1)
Caveats

= Even for more common functions,
comparing O() for small n values can be
misleading
= Quicksort: O(n log n) (expected)
= Insertion Sort: O(n2)(expected)

= In reality Insertion Sort is faster for small n’s so
much so that good QuickSort implementations
switch to Insertion Sort when n<20
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Examples (cont.)

For f(n)=4n & g(n)=n2, prove f(n) is in O(g(n))
A valid proof is to find valid c and nq

When n=4, f=16 and g=16, so this is the
crossing over point

We can then chose ny = 4, and c=1

We also have infinitely many others choices for
c and ngy, such as ny = 78, and c=42
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Caveats

= Asymptotic complexity focuses on
behavior for large n and is independent
of any computer/coding trick, but results
can be misleading

= Example: n¥/10 vs. 1log n
= Asymptotically n/1° grows more quickly
= But the “cross-over” point is around 5 * 1017

= So if you have input size less than 258,
prefer nt/10

= Similarly, an O(2") algorithm may be more
practical than an O(n7) algorithm
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Comment on Notation
= We say (3n2+17) is in O(n?)
= We may also say/write is as
= (3n2+17) is O(n?)
= (3n2+17) = O(n?)
= (3n2+17) € 0O(n?)

= But it's not ‘=" as in ‘equality’:
= We would never say O(n?) = (3n2+17)
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Big Oh’s Family
= Big Oh: Upper bound: O( f(n) ) is the set of all
functions asymptotically less than or equal to f(n)

= g(n)is in O( f(n) ) if there exist constants c and n,
such that

g(n)< cf(n) foralln>n,

= Big Omega: Lower bound: Q( f(n) ) is the set of all
functions asymptotically greater than or equal to f(n)

= g(n)is in Q( f(n) ) if there exist constants c and n,
such that

g(n)> cf(n) foralln>n,

= Big Theta: Tight bound: ©( f(n) ) is the set of all
functions asymptotically equal to f(n)
= Intersection of O( f(n) ) and Q( f(n) )
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Putting them in order

o(...) < Q(...) £ f(n) =0(.) <o(...)
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Now to the Board

= What happens when we have a costly operation
that only occurs some of the time?

= Example:
My array is too small. Let's enlarge it.

Option 1: Increase array size by 10
Copy old array into new one
Option 2: Double the array size

Copy old array into new one
We will now explore amortized analysis!
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Regarding use of terms
Common error is to say O(f(n)) when you
mean O(f(n))
= People often say O() to mean a tight bound
= Say we have f(n)=n; we could say f(n) is in
0O(n), which is true, but only conveys the upper-
bound
= Somewhat incomplete; instead say it is ©(n)
= That means that it is not, for example O(log n)

Less common notation:
= “little-oh”: like “big-Oh” but strictly less than
= Example: sum is o(n2) but not o(n)
= “little-omega”: like “big-Omega” but strictly
greater than
= Example: sum is o(log n) but not w(n)
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Do Not Be Confused

= Best-Case does not imply Q(f(n))
= Average-Case does not imply O(f(n))
= Worst-Case does not imply O(f(n))

= Best-, Average-, and Worst- are specific to

the algorithm

Q(f(n)), ©(f(n)), O(f(n)) describe functions

= One can have an Q(f(n)) bound of the worst-
case performance (worst is at least f(n))

= Once can have a ©(f(n)) of best-case (best
is exactly f(n))
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Stretchy Array (version 1)

StretchyArray:
maxSize: positive integer (starts at 1)
array: an array of size maxSize
count: number of elements in array

put(x): add x to the end of the array
if maxSize == count
make new array of size (maxSize + 5)
copy old array contents to new array
maxSize = maxSize + 5
array[count] = x
count = count + 1
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Stretchy Array (version 2)

StretchyArray:
maxSize: positive integer (starts at 0)
array: an array of size maxSize
count: number of elements in array

put(x): add x to the end of the array
if maxSize == count
make new array of size (maxSize * 2)
copy old array contents to new array
maxSize = maxSize * 2
array[count] = x
count = count + 1
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Performance Cost of put(x)

In both stretchy array implementations,
put(x)is defined as essentially:

if maxSize == count 0(1)
make new array of bigger size 0(1)
copy old array contents to new array O(n)
update maxSize 0(1)

array[count] = x 0(1)

count = count + 1 0(1)

In the worst-case, put(x) is O(n) where n is the
current size of the array!!
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Amortized Analysis of StretchyArray Version 1

i maxSize count cost
0 0 Initial state

1 5 1 0+1 Copy array of size 0

2 5] 2 1

3 5 3 1

4 5] 4 1

5 5 5 1

6 10 6 5+1 Copy array of size 5

7 10 7 1

8 10 8 1

9 10 9 1

10 10 10 i

11 15 11 10 + 1  Copy array of size 10
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Performance Cost of put(x)

In both stretchy array implementations,
put(x)is defined as essentially:

if maxSize == count
make new array of bigger size
copy old array contents to new array
update maxSize

array[count] = x

count = count + 1

What f(n) is put(x) in O( f(n) )?
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But...
= We do not have to enlarge the array
each time we call put(x)

= What will be the average performance if
we put n items into the array?

", cost of calling put for the ith time
n

=0(?)

= Calculating the average cost for multiple
calls is known as amortized analysis
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Amortized Analysis of StretchyArray Version 1

i i count cost [
0 0 Initial state
1 5 1 Copy array of size 0

Every five steps, we
have to do a multiple

of five more work Copy array of size 5

Copy array of size 10
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Amortized Analysis of StretchyArray Version 1

Assume the number of puts is n=5k

= We will make n calls to array[count]=x

= We will stretch the array k times and will cost:
0+5+ 10+ ..+ 5(k-1)

Total cost is then:
n+(0+5+ 10+ ... + 5(k-1))
=n+5(1+2+..+(k-1))

n + 5(k-1)(k-1+1)/2

2012-06-25

Amortized Analysis of StretchyArray Version 2

=n + 5k(k-1)/2 Amortized cost for put(x) is
=~ n + n?/10 n?
S (LYo,
n 10
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Amortized Analysis of StretchyArray Version 2

i maxSize count cost
1 0 Initial state
1 1 1 1
2 2 2 1+1 Copy array of size 1
3 4 3 2+1
4 4 4 ' Enlarge steps happen
5 8 5 LREW basically when i is a
6 8 6 N power of 2
7 8 7 1
8 8 8 1
9 16 9 8+1 Copy array of size 8
10 16 10 1
11 16 11 1
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The Lesson

With amortized analysis, we know that
over the long run (on average):

= If we stretch an array by a constant
amount, each put(x) call is O(n) time

= If we double the size of the array each
time, each put(x) call is O(1) time
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i i count cost Ce
1 0 Initial state

1 1 1 1

2 2 2 1+1 Copy array of size 1
3 4 3 2+1 Copy array of size 2
4 4 4 1

5 8 5 4+1 Copy array of size 4
6 8 6 1

7 8 7 1

8 8 8 1

9 16 9 8+1 Copy array of size 8
10 16 10 1

11 16 11 1
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Amortized Analysis of StretchyArray Version 2

Assume the number of puts is n=2k

= We will make n calls to array[count]=x

= We will stretch the array k times and will cost:
R14+2+4+4+4 .. + 2K

Total cost is then:
n+(1+2+4+ .. +2k1)

Q

~n+2k-1
m2n-1 Amortized cost for put(x) is
m-1_ 1_, .
=2--=0()
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