

CSE 332 Data Abstractions:

Algorithmic, Asymptotic, and Amortized Analysis

Kate Deibel Summer 2012

CSE332: Data Abstractions

Announcements

- Project 1 posted
- Homework 0 posted
- Homework 1 posted this afternoon
- Feedback on typos is welcome
- New Section Location: CSE 203
 - Comfy chairs! :0
 - White board walls! :o
 - Reboot coffee 100 yards away :)

CSE332: Data Abstractions

Kate's office is even closer :/

Today

June 20, 2012

- Briefly review math essential to algorithm analysis
 - Proof by induction
 - Powers of 2
 - Exponents and logarithms
- Begin analyzing algorithms
 - Big-O, Big-Ω, and Big-Θ notations
 - Using asymptotic analysis
 - Best-case, worst-case, average case analysis

CSE332: Data Abstractions

Using amortized analysis

June 20, 2012

If you understand the first n slides, you will understand the n+1 slide **MATH REVIEW**

June 20, 2012

3

5

June 20, 2012

CSE332: Data Abstractions

Recurrence Relations

Functions that are defined using themselves (think recursion but mathematically):

- $F(n) = n \cdot F(n-1), F(0) = 1$
- G(n) = G(n-1) + G(n-2), G(1)=G(2) = 1
- H(n) = 1 + H([n/2]), H(1)=1

Some recurrence relations can be written more simply in closed form (non-recursive)

[x] is the floor function (first integer $\leq x$)

[x] is the ceiling function (first integer $\geq x$)

Example Closed Form

 $H(n) = 1 + H(\lfloor n/2 \rfloor), H(1)=1$ = H(1) = 1 = H(2) = 1 + H(\lfloor 2/2 \rfloor) = 1 + H(1) = 2 = H(3) = 1 + H(\lfloor 3/2 \rfloor) = 1 + H(1) = 2 = H(4) = 1 + H(\lfloor 4/2 \rfloor) = 1 + H(2) = 3 ... = H(8) = 1 + H(\lfloor 8/2 \rfloor) = 1 + H(4) = 4 ... H(n) = 1 + \lfloor \log_2 n \rfloor

June 20, 2012

CSE332: Data Abstractions

10

12

Mathematical Induction

Suppose P(n) is some predicate (with integer n)

• Example: $n \ge n/2 + 1$

To prove P(n) for all $n \ge c$, it suffices to prove

- 1. P(c) called the "basis" or "base case"
- 2. If P(k) then P(k+1) called the "induction step" or "inductive case"

When we will use induction:

- To show an algorithm is correct or has a certain running time no matter how big a data structure or input value is
- Our "n" will be the data structure or input size. CSE332: Data Abstractions

Induction Example

The sum of the first n powers of 2 (starting with zero) is given the by formula: $P(n) = 2^{n}-1$

Theorem: P(n) holds for all $n \ge 1$ Proof: By induction on n

Base case: n=1.

Powers of 2

A bit is 0 or 1

Rules of Thumb:

which is about 2 billion

In lava:

June 20, 2012

June 20, 2012

- Sum of first power of 2 is 2⁰, which equals 1.
- And for n=1,

$$2^{n}-1 = 2^{1}-1 = 2-1 = 1$$

CSE332: Data Abstractions

n bits can represent 2ⁿ distinct things

For example, the numbers 0 through 2ⁿ-1

• int is 32 bits and signed, so "max int" is 2³¹ - 1

long is 64 bits and signed, so "max long" is 2⁶³ - 1

CSE332: Data Abstractions

2²⁰ is "about a million", mega in CSE speak

2³⁰ is "about a billion", giga in CSE speak

2¹⁰ is 1024 / "about a thousand", kilo in CSE speak

Induction Example

The sum of the first n powers of 2 (starting with zero) is given the by formula:

$$P(n) = 2^{n}-1$$

Inductive case:

June 20, 2012

- Assume: sum of the first k powers of 2 is 2^k-1
- Show: sum of the first (k+1) powers is 2^{k+1}-1
- $P(k+1) = 2^0 + 2^1 + \dots + 2^{k+1-2} + 2^{k+1-1}$
 - $= (2^0+2^1+...+2^{k-1})+2^k$
 - $= (2^{k}-1)+2^{k}$ since $P(k)=2^{0}+2^{1}+...+2^{k-1}=2^{k}-1$
 - $= 2 \cdot 2^{k-1}$
 - $= 2^{k+1} 1$

June 20, 2012

CSE332: Data Abstractions

Therefore...

One can give a unique id to:

- Every person in the U.S. with 29 bits
- Every person in the world with 33 bits
- Every person to have ever lived with ≈38 bits
- Every atom in the universe with 250-300 bits
- So if a password is 128 bits long and randomly generated, do you think you could guess it?

Logarithms and Exponents

- Since so much in CS is in binary, log almost always means log₂
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"

CSE332: Data Abstractions

 Just as exponents grow very quickly, logarithms grow very slowly

See Excel file on course page to play with plot data!

June 20, 2012

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1

11

Logarithms and Exponents

- Since so much in CS is in binary, log almost always means log₂
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file on course page to play with plot data!

June 20, 2012

13

15

Logarithms and Exponents

- Since so much in CS is in binary, log almost always means log₂
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

Logarithms and Exponents

- Since so much in CS is in binary, log almost always means log₂
- Definition: $\log_2 x = y$ if $x = 2^y$
- So, log₂ 1,000,000 = "a little under 20"
- Just as exponents grow very quickly, logarithms grow very slowly

See Excel file on course page to play with plot data!

June 20, 2012

Logarithms and Exponents

- log(A*B) = log A + log B
- log(N^k) = k log N
- log(A/B) = log A log B
- log(log x) is written log log x
 Grows as slowly as 2^{2^x} grows fast
- (log x)(log x) is written log² x
 It is greater than log x for all x > 2

June 20, 2012

CSE332: Data Abstractions

16

Logarithms and Exponents

Any base B log is equivalent to base 2 log within a constant factor

In particular,

$$\log_2 x = 3.22 \log_{10} x$$

In general,

 $\log_{B} x = (\log_{A} x) / (\log_{A} B)$

This matters in doing math but not CS! In algorithm analysis, we tend to not care much about constant factors

huma 20, 2012	CEE322: Data Abstractions	17
Julie 20, 2012	CSESS2: Data Abstractions	17

Get out your stopwatches ... or not

June 20, 2012

CSE332: Data Abstractions

22

Algorithm Analysis

As the "size" of an algorithm's input grows (array length, size of queue, etc.):

- Time: How much longer does it run?
- Space: How much memory does it use?

How do we answer these questions? For now, we will focus on time only.

CSE332: Data Abstractions

19

21

One Approach to Algorithm Analysis

Why not just code the algorithm and time it?

CSE332: Data Abstractions

- Hardware: processor(s), memory, etc.
- OS, version of Java, libraries, drivers
- Programs running in the background
- Implementation dependent
- Choice of input
- Number of inputs to test

The Problem with Timing

- Timing doesn't really evaluate the algorithm but merely evaluates a specific implementation
- At the core of CS is a backbone of theory & mathematics
 - Examine the algorithm itself, **not** the implementation
 - Reason about performance as a function of n
 - Mathematically prove things about performance
- Yet, timing has its place

June 20, 2012

 In the real world, we do want to know whether implementation A runs faster than implementation B on data set C

CSE332: Data Abstractions

Ex: Benchmarking graphics cards

Basic Lesson

June 20, 2012

June 20, 2012

Evaluating an algorithm? Use asymptotic analysis

Evaluating an implementation? Use timing

CSE332: Data Abstractions

Goals of Comparing Algorithms

Many measures for comparing algorithms

Security

June 20, 2012

- Clarity/ Obfuscation
- Performance

When comparing performance

- Use large inputs because probably any algorithm is "plenty good" for small inputs (n < 10 always fast)
- Answer should be independent of CPU speed, programming language, coding tricks, etc.
- Answer is general and rigorous, complementary to "coding it up and timing it on some test cases"

June 20, 2012	CSE332: Data Abstractions	23

Assumptions in Analyzing Code

Basic operations take constant time

- Arithmetic (fixed-width)
- Assignment
- Access one Java field or array index
- Comparing two simple values (is x < 3)

Other operations are summations or products

- Consecutive statements are summed
- Loops are (cost of loop body) × (number of loops)

What about conditionals?

June 20, 2012

CSE332: Data Abstractions

28

Worst-Case Analysis

- In general, we are interested in three types of performance
 - Best-case / Fastest
 - Average-case

June 20, 2012

- Worst-case / Slowest
- When determining worst-case, we tend to be pessimistic
 - If there is a conditional, count the branch that will run the slowest

CSE332: Data Abstractions

 This will give a loose bound on how slow the algorithm may run

Analyzing Code

What are the run-times for the following code?	Answers are
1. for(int i=0;i <n;i++) x = x+1;</n;i++) 	≈1+4n
2. for(int i=0;i <n;i++) for(int j=0;j<n;j++) x = x + 1</n;j++) </n;i++) 	≈4n²
3. for(int i=0;i <n;i++) for(int j=0; j <= i); j++)</n;i++) 	$\approx 4(1+2++n)$ $\approx 4n(n+1)/2$

CSE332: Data Abstractions

$\begin{array}{l} x = x + 1 \\ x = x + 1 \end{array} \approx \begin{array}{l} x = (1 + 2 + \dots + n) \\ x = x + 1 \\ x = 2n^2 + 2n + 2 \end{array}$

No Need To Be So Exact

Constants do not matter

- Consider 6N² and 20N²
- When N >> 20, the N² is what is driving the function's increase

Lower-order terms are also less important

- N*(N+1)/2 vs. just N²/2
- The linear term is inconsequential

25

27

We need a better notation for performance that focuses on the dominant terms only

Spring 2012

CSE332: Data Abstractions

Big-Oh Notation

June 20, 2012

 Given two functions f(n) & g(n) for input n, we say f(n) is in O(g(n)) iff there exist positive constants c and n₀ such that

 $f(n) \leq c g(n)$ for all $n \geq n_0$

 Basically, we want to find a function g(n) that is eventually always bigger than f(n)

June 20, 2012

The Gist of Big-Oh

Take functions f(n) & g(n), consider only the most significant term and remove constant multipliers:

- $5n+3 \rightarrow n$
- $7n+.5n^2+2000 \rightarrow n^2$
- $300n+12+nlogn \rightarrow n log n$
- $-n \rightarrow ???$ A negative run-time?

Then compare the functions; if $f(n) \le g(n)$, then f(n) is in O(g(n))

A Big Warning

Do NOT ignore constants that are not multipliers:

 n^3 is O(n^2) is FALSE 3^n is O(2^n) is FALSE

CSE332: Data Abstractions

When in doubt, refer to the rigorous definition of Big-Oh

CSE332: Data Abstractions

29

June 20, 2012

CSE332: Data Abstractions

34

Examples

June 20, 2012

True or false?	
1. 4+3n is O(n)	True
2. $n+2 \log n$ is O(log n)	False
3. logn+2 is O(1)	False
4. n ⁵⁰ is O(1.1 ⁿ)	True

Examples (cont.)

For $f(n)=4n \& g(n)=n^2$, prove f(n) is in O(g(n))A valid proof is to find valid c and n_0 When n=4, f=16 and g=16, so this is the crossing over point We can then chose $n_0 = 4$, and c=1

We also have infinitely many others choices for c and $n_0,$ such as $n_0=78,$ and $c{=}42$

CSE332: Data Abstractions

Big Oh: Common Categories

From fast	est to slowest		
O(1)	constant (or O(k) for constant k)		
O(log n)	logarithmic		
O(n)	linear		
O(n log n)	"n log n″		
O(n²)	quadratic		
O(n³)	cubic		
O(n ^k)	polynomial (where is k is constant)		
O(k ⁿ)	exponential (where constant $k > 1$)		

CSE332: Data Abstractions

Caveats

June 20, 2012

June 20, 2012

- Asymptotic complexity focuses on behavior for large n and is independent of any computer/coding trick, but results can be misleading
- Example: n^{1/10} vs. log n
 - Asymptotically n^{1/10} grows more quickly
 - But the "cross-over" point is around 5 * 10¹⁷
 - So if you have input size less than 2^{58} , prefer $n^{1/10}$
 - Similarly, an O(2ⁿ) algorithm may be more practical than an O(n⁷) algorithm

CSE332: Data Abstractions

June 20, 2012

CSE332: Data Abstractions

33

31

Caveats

- Even for more common functions, comparing O() for small n values can be misleading
 - Quicksort: O(n log n) (expected)
 - Insertion Sort: O(n²)(expected)
 - In reality Insertion Sort is faster for small n's so much so that good QuickSort implementations switch to Insertion Sort when n<20

Comment on Notation

- We say (3*n*²+17) is in *O*(*n*²)
- We may also say/write is as
 - (3n²+17) is O(n²)
 - $(3n^2+17) = O(n^2)$
 - $(3n^2+17) \in O(n^2)$
- But it's not `=` as in `equality':
 We would never say O(n²) = (3n²+17)

CSE332: Data Abstractions

35

June 20, 2012

CSE332: Data Abstractions

40

Big Oh's Family

- Big Oh: Upper bound: O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - g(n) is in O(f(n)) if there exist constants c and n_n such that $g(n) \leq c f(n)$ for all $n \geq n_0$
- Big Omega: Lower bound: Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - g(n) is in $\Omega(f(n))$ if there exist constants c and n_0 such that
 - $g(n) \ge c f(n)$ for all $n \ge n_0$
- Big Theta: Tight bound: Θ(f(n)) is the set of all functions asymptotically equal to f(n)Intersection of O(f(n)) and Ω(f(n))

CSE332: Data Abstractions

37

39

Regarding use of terms

Common error is to say O(f(n)) when you mean $\Theta(f(n))$

- People often say O() to mean a tight bound
- Say we have f(n)=n; we could say f(n) is in O(n), which is true, but only conveys the upper-bòuńd
- Somewhat incomplete; instead say it is Θ(n)
- That means that it is not, for example $O(\log n)$

Less common notation:

June 20, 2012

June 20, 2012

- "little-oh": like "big-Oh" but strictly less than • Example: sum is $o(n^2)$ but not o(n)
- "little-omega": like "big-Omega" but strictly greater than Example: sum is ω(log n) but not ω(n)

CSE332: Data Abstractions

Putting them in order

$\omega(...) < \Omega(...) \le f(n) \le O(...) < o(...)$

June 20, 2012

June 20, 2012

CSE332: Data Abstractions

Do Not Be Confused

- Best-Case does not imply Ω(f(n))
- Average-Case does not imply Θ(f(n))
- Worst-Case does not imply O(f(n))
- Best-, Average-, and Worst- are specific to the algorithm
- $\Omega(f(n)), \Theta(f(n)), O(f(n))$ describe functions
 - One can have an $\Omega(f(n))$ bound of the worstcase performance (worst is at least f(n))
 - Once can have a Θ(f(n)) of best-case (best is exactly f(n))

CSE332: Data Abstractions

Now to the Board

- What happens when we have a costly operation that only occurs some of the time?
- Example: My array is too small. Let's enlarge it.
 - Option 1: Increase array size by 10 Copy old array into new one
 - Option 2: Double the array size Copy old array into new one

We will now explore amortized analysis!

Stretchy Array (version 1) StretchyArray:

```
maxSize: positive integer (starts at 1)
array: an array of size maxSize
count: number of elements in array
put(x): add x to the end of the array
```

if maxSize == count make new array of size (maxSize + 5) copy old array contents to new array maxSize = maxSize + 5array[count] = xcount = count + 1

CSE332: Data Abstractions

June 20, 2012 41

Stretchy Array (version 2)

StretchyArray: maxSize: positive integer (starts at 0) array: an array of size maxSize count: number of elements in array

put(x): add x to the end of the array if maxSize == count make new array of size (maxSize * 2) copy old array contents to new array maxSize = maxSize * 2 array[count] = x count = count + 1

CSE332: Data Abstractions

Performance Cost of put(x)

In both stretchy array implementations, put(x)is defined as essentially:

if maxSize == count
 make new array of bigger size
 copy old array contents to new array
 update maxSize
array[count] = x
count = count + 1

CSE332: Data Abstractions

What f(n) is put(x) in O(f(n))?

Performance Cost of put(x)

June 20, 2012

In both stretchy array implementations, put(x)is defined as essentially:

if maxSize == count	0(1)
make new array of bigger size	0(1)
copy old array contents to new array	O(n)
update maxSize	0(1)
array[count] = x	0(1)
count = count + 1	0(1)

In the worst-case, put(x) is O(n) where n is the current size of the array!!

lune 20, 2012	CSE332: Data Abstractions	45

But...

June 20, 2012

43

- We do not have to enlarge the array each time we call put(x)
- What will be the average performance if we put n items into the array?

$\sum_{i=1}^{n} \text{ cost of calling put for the ith time}$	- O(2)
n	- 0(:)

• Calculating the average cost for multiple calls is known as *amortized analysis*

June 20, 2012 CSE332: Data Abstractions 46

Amortized Analysis of StretchyArray Version 1

i	maxSize	count	cost	comments
	0	0		Initial state
1	5	1	0 + 1	Copy array of size 0
2	5	2	1	
3	5	3	1	
4	5	4	1	
5	5	5	1	
6	10	6	5 + 1	Copy array of size 5
7	10	7	1	
8	10	8	1	
9	10	9	1	
10	10	10	1	
11	15	11	10 + 1	Copy array of size 10
I	I	I	I	i

June 20, 2012

CSE332: Data Abstractions

	i	maxSize	count	cost	comments	
		0	0		Initial state	
	1	5	1	0 + 1	Copy array of size 0	
	2	5	2	. 11		
				1		
E	very	five step	os, we	1		
h	ave	to do a n	nultiple	1		
0	f five	more w	ork	5+1	Copy array of size 5	
U.			UIK	N		
0			OIK	1		
0	8	10	8	1		
	8	10 10	8 9	1 1 1		
	8 9 10	10 10 10	8 9 10	1 1 1		
	8 9 10 11	10 10 10 10 15	8 9 10 11	1 1 1 1 10+1	Copy array of size 10	

Amortized Analysis of StretchyArray Version 1

Assume the number of puts is n=5k

- We will make n calls to array[count]=x
- We will stretch the array k times and will cost: $0\,+\,5\,+\,10\,+\,...\,+\,5(k\text{--}1)$

Total cost is then: n + (0 + 5 + 10 + ... + 5(k-1)) = n + 5(1 + 2 + ... + (k-1)) = n + 5(k-1)(k-1+1)/2 = n + 5k(k-1)/2 $\approx n + n^2/10$ Amortized cost for put(x) is $\frac{n + \frac{n^2}{10}}{n} = 1 + \frac{n}{10} = O(n)$ June 20, 2012 CESI32: Data Abstractions

Amortized Analysis of StretchyArray Version 2

i	maxSize	count	cost	comments
	1	0		Initial state
1	1	1	1	
2	2	2	1 + 1	Copy array of size 1
3	4	3	2 + 1	Copy array of size 2
4	4	4	1	
5	8	5	4 + 1	Copy array of size 4
6	8	6	1	
7	8	7	1	
8	8	8	1	
9	16	9	8 + 1	Copy array of size 8
10	16	10	1	
11	16	11	1	
I	I	I	I	I

CSE332: Data Abstractions

Amortized Analysis of StretchyArray Version 2

i	maxSize	count	cost	comments		
	1	0		Initial state		
1	1	1	1			
2	2	2	1 + 1	Copy array of size 1		
3	4	3	2 + 1			
4	4	4	1	Enlarge steps happen 📃		
5	8	5	4 + 1	basically when i is a		
6	8	6	1	power of 2		
7	8	7	1			
8	8	8	1			
9	16	9	8 + 1	Copy array of size 8		
10	16	10	1			
11	16	11	1			
1	I	I	I	i		

Amortized Analysis of StretchyArray Version 2

Assume the number of puts is $n=2^{k}$

- We will make n calls to array[count]=x
- We will stretch the array k times and will cost: $\approx 1 + 2 + 4 + ... + 2^{k \cdot 1}$

Total cost is then: $\approx n + (1 + 2 + 4 + \dots + 2^{k-1})$ $\approx n + 2^k - 1$ $\approx 2n - 1$ Amortize 2n - 1

Amortized cost for put(x) is
$\frac{2n-1}{2} = 2 - \frac{1}{2} = 0(1)$
$\frac{n}{n} = 2 - \frac{1}{n} = O(1)$

June 20, 2012

June 20, 2012

CSE332: Data Abstractions

52

50

The Lesson

With amortized analysis, we know that over the long run (on average):

- If we stretch an array by a constant amount, each put(x) call is O(n) time
- If we double the size of the array each time, each put(x) call is O(1) time

CSE332: Data Abstractions