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Announcements 

 Project 1 posted 

 Homework 0 posted 

 Homework 1 posted this afternoon 

 Feedback on typos is welcome 

 

 New Section Location: CSE 203  

 Comfy chairs! :O 

 White board walls! :o 

 Reboot coffee 100 yards away :) 

 Kate's office is even closer :/ 
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Today 

 Briefly review math essential to 
algorithm analysis 

 Proof by induction 

 Powers of 2 

 Exponents and logarithms 

 

 Begin analyzing algorithms 

 Big-O, Big-Ω, and Big-Θ notations 

 Using asymptotic analysis 

 Best-case, worst-case, average case analysis 

 Using amortized analysis 
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MATH REVIEW 

If you understand the first n slides,  
you will understand the n+1 slide 
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Recurrence Relations 

Functions that are defined using themselves 
(think recursion but mathematically): 

 F(n) = n ∙ F(n-1), F(0) = 1 

 G(n) = G(n-1) + G(n-2), G(1)=G(2) = 1 

 H(n) = 1 + H( ⌊ n/2 ⌋ ), H(1)=1 
 

Some recurrence relations can be written 
more simply in closed form (non-recursive) 
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⌊ x ⌋ is the floor function (first integer ≤x) 

⌈ x ⌉ is the ceiling function (first integer ≥x) 

Example Closed Form 

H(n) = 1 + H( ⌊ n/2 ⌋ ), H(1)=1 

 H(1) = 1 

 H(2) = 1 + H(⌊ 2/2 ⌋ ) = 1 + H(1) = 2 

 H(3) = 1 + H(⌊ 3/2 ⌋ ) = 1 + H(1) = 2 

 H(4) = 1 + H(⌊ 4/2 ⌋ ) = 1 + H(2) = 3 

... 

 H(8) = 1 + H(⌊ 8/2 ⌋ ) = 1 + H(4) = 4 

… 

H(n) = 1 + ⌊ log2 n ⌋ 
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Mathematical Induction 

Suppose P(n) is some predicate (with integer n) 

 Example: n ≥ n/2 + 1 
 

To prove P(n) for all n ≥ c, it suffices to prove 

1. P(c) – called the “basis” or “base case” 

2. If P(k) then P(k+1) – called the “induction step” 
or “inductive case” 

 

When we will use induction: 

 To show an algorithm is correct or has a certain 
running time no matter how big a data structure or 
input value is  

 Our “n” will be the data structure or input size. 
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Induction Example 

The sum of the first n powers of 2 (starting with 
zero) is given the by formula:  

P(n) = 2n-1 
 

Theorem:  P(n) holds for all n ≥ 1 

Proof:  By induction on n 
 

Base case: n=1.   

 Sum of first power of 2 is 20 , which equals 1. 

 And for n=1,  

2n-1 = 21-1 = 2-1 = 1 
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Induction Example 

The sum of the first n powers of 2 (starting with 
zero) is given the by formula:  

P(n) = 2n-1 
 

Inductive case: 

 Assume: sum of the first k powers of 2 is 2k-1 

 Show: sum of the first (k+1) powers is 2k+1-1 

 P(k+1) = 20+21+…+2k+1-2+2k+1-1 

 = (20+21+…+2k-1)+2k 

 = (2k-1)+2k     since P(k)=20+21+…+2k-1= 2k-1 

 = 2∙2k-1 

 = 2k+1-1 
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Powers of 2 

 A bit is 0 or 1 

 n bits can represent 2n distinct things 

 For example, the numbers 0 through 2n-1 
 

Rules of Thumb: 

 210 is 1024 / “about a thousand”, kilo in CSE speak 

 220 is “about a million”, mega in CSE speak 

 230 is “about a billion”, giga in CSE speak 
 

In Java:  

 int is 32 bits and signed, so “max int” is 231 - 1 
which is about 2 billion 

 long is 64 bits and signed, so “max long” is 263 - 1 
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Therefore… 

One can give a unique id to: 

 Every person in the U.S. with 29 bits 

 Every person in the world with 33 bits 

 Every person to have ever lived with ≈38 bits  

 Every atom in the universe with 250-300 bits 

 So if a password is 128 bits long and randomly 
generated, do you think you could guess it? 
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Logarithms and Exponents 

 Since so much in CS is in binary, 

 log almost always means log2   

 Definition: log2 x = y if  x = 2y 

 So, log2 1,000,000 = “a little under 20” 

 Just as exponents grow very quickly, 

logarithms grow very slowly 

 

See Excel file on 
course page to 
play with plot data! 
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Logarithms and Exponents 

 log(A*B) = log A + log B 
 

 log(Nk)= k log N 
 

 log(A/B) = log A – log B 
 

 log(log x) is written log log x 

 Grows as slowly as 22
𝑥
grows fast 

 

 (log x)(log x) is written log2 x 

 It is greater than log x for all x > 2 
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Logarithms and Exponents 

Any base B log is equivalent to base 2 log 
within a constant factor 
 

In particular, 

log2 x = 3.22 log10 x 
 

In general,  

logB x = (logA x) / (logA B) 
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This matters in doing math but not CS! 
In algorithm analysis, we tend to not care 
much about constant factors 

ALGORITHM ANALYSIS 

Get out your stopwatches… or not 
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Algorithm Analysis 

As the “size” of an algorithm’s input grows  
(array length, size of queue, etc.): 

 Time: How much longer does it run?  

 Space: How much memory does it use?  

 

How do we answer these questions? 

For now, we will focus on time only. 

June 20, 2012 CSE332: Data Abstractions 19 

One Approach to Algorithm Analysis 

Why not just code the algorithm and time it? 

 Hardware: processor(s), memory, etc. 

 OS, version of Java, libraries, drivers 

 Programs running in the background 

 Implementation dependent 

 Choice of input 

 Number of inputs to test 
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The Problem with Timing 

 Timing doesn’t really evaluate the algorithm but 
merely evaluates a specific implementation  

 At the core of CS is a backbone of theory & 
mathematics 

 Examine the algorithm itself, not the implementation 

 Reason about performance as a function of n 

 Mathematically prove things about performance 

 Yet, timing has its place 

 In the real world, we do want to know whether 
implementation A runs faster than implementation B on 
data set C 

 Ex: Benchmarking graphics cards 
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Basic Lesson 

Evaluating an algorithm?   

Use asymptotic analysis 

 

Evaluating an implementation? 

Use timing 
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Goals of Comparing Algorithms 

Many measures for comparing algorithms 

 Security 

 Clarity/ Obfuscation 

 Performance 

 

When comparing performance 

 Use large inputs because probably any algorithm is 
“plenty good” for small inputs (n < 10 always fast) 

 Answer should be independent of CPU speed, 
programming language, coding tricks, etc. 

 Answer is general and rigorous, complementary to 
“coding it up and timing it on some test cases” 

June 20, 2012 CSE332: Data Abstractions 23 

Assumptions in Analyzing Code 

Basic operations take constant time 

 Arithmetic (fixed-width) 

 Assignment 

 Access one Java field or array index 

 Comparing two simple values (is x < 3) 

 

Other operations are summations or products 

 Consecutive statements are summed 

 Loops are (cost of loop body) ╳ (number of loops) 

 

What about conditionals? 
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Worst-Case Analysis 

 In general, we are interested in three 
types of performance 

 Best-case / Fastest 

 Average-case 

 Worst-case / Slowest 

 When determining worst-case, we tend 
to be pessimistic 

 If there is a conditional, count the branch 
that will run the slowest 

 This will give a loose bound on how slow the 
algorithm may run 
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Analyzing Code 

What are the run-times for the 
following code? 
 

1. for(int i=0;i<n;i++)  
 x = x+1;  
 

2. for(int i=0;i<n;i++) 
 for(int j=0;j<n;j++) 
  x = x + 1 
 

3. for(int i=0;i<n;i++)  
 for(int j=0; j <= i); j++) 
  x = x + 1 

  

Answers are 
 

 

≈1+4n 

 

≈4n2 

 
 

 

≈ 4(1+2+…+n) 

≈ 4n(n+1)/2 

≈ 2n2+2n+2 
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No Need To Be So Exact 

Constants do not matter 

 Consider 6N2 and 20N2  

 When N >> 20, the N2 is what is driving the 
function's increase 

Lower-order terms are also less important 

 N*(N+1)/2 vs.  
just N2/2 

 The linear term is 
inconsequential 

 

We need a better notation for performance that 
focuses on the dominant terms only 
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Big-Oh Notation 

 Given two functions f(n) & g(n) for input n, we 
say f(n) is in O(g(n) ) iff there exist positive 
constants c and n0 such that 
  
 f(n)    c g(n)  for all n  n0 

 

 Basically, we want to find a 
function g(n) that is eventually 
always bigger than f(n) 
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n 

n0 

g 

f 

The Gist of Big-Oh 

Take functions f(n) & g(n), consider only 
the most significant term and remove 
constant multipliers: 

 5n+3 → n 

 7n+.5n2+2000 → n2 

 300n+12+nlogn → n log n 

 –n →  ??? A negative run-time? 

Then compare the functions; if f(n) ≤ g(n), 

then f(n) is in O(g(n)) 
 

June 20, 2012 CSE332: Data Abstractions 29 

A Big Warning 

Do NOT ignore constants that are not 
multipliers: 

n3 is O(n2) is FALSE 

3n is O(2n) is FALSE 

 

 

When in doubt, refer to the rigorous 
definition of Big-Oh 
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Examples 

 True or false? 

1. 4+3n is O(n) 

2. n+2 logn is O(log n) 

3. logn+2 is O(1) 

4. n50 is O(1.1n) 

 

True 

False 

False 

True 

June 20, 2012 CSE332: Data Abstractions 31 

Examples (cont.) 

For f(n)=4n & g(n)=n2, prove f(n) is in O(g(n)) 

A valid proof is to find valid c and n0  

When n=4, f=16 and g=16, so this is the 
crossing over point 

We can then chose n0 = 4, and c=1 

 

We also have infinitely many others choices for 
c and n0, such as n0 = 78, and c=42  
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Big Oh: Common Categories 

From fastest to slowest 

O(1)    constant (or O(k) for constant k) 

O(log n)   logarithmic 

O(n)    linear 

O(n log n)   "n log n” 

O(n2)   quadratic 

O(n3)   cubic 

O(nk)    polynomial (where is k is constant) 

O(kn)    exponential (where constant k > 1) 

June 20, 2012 CSE332: Data Abstractions 33 

Caveats 

 Asymptotic complexity focuses on 
behavior for large n and is independent 
of any computer/coding trick, but results 
can be misleading 

 Example: n1/10 vs. log n 

 Asymptotically n1/10 grows more quickly 

 But the “cross-over” point is around 5 * 1017 

 So if you have input size less than 258, 
prefer n1/10 

 Similarly, an O(2n) algorithm may be more 
practical than an O(n7) algorithm 
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Caveats 

 Even for more common functions, 
comparing O() for small n values can be 
misleading 

 Quicksort: O(n log n) (expected) 

 Insertion Sort: O(n2)(expected) 

 In reality Insertion Sort is faster for small n’s so 
much so that good QuickSort implementations 
switch to Insertion Sort when n<20 
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Comment on Notation 

 We say (3n2+17) is in O(n2)  

 We may also say/write is as 

 (3n2+17)  is O(n2)  

 (3n2+17)  =  O(n2)  

 (3n2+17)  ∈  O(n2)  

 

 But it’s not ‘=‘ as in ‘equality’: 

 We would never say O(n2) =  (3n2+17) 
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Big Oh’s Family 
 Big Oh: Upper bound: O( f(n) ) is the set of all 

functions asymptotically less than or equal to f(n) 

 g(n) is in O( f(n) ) if there exist  constants c and n0 
such that  

  g(n)   c f(n) for all n  n0 
 

 Big Omega: Lower bound: ( f(n) ) is the set of all 
functions asymptotically greater than or equal to f(n) 

 g(n) is in ( f(n) ) if there exist  constants c and n0 
such that  

  g(n)   c f(n) for all n  n0 
 

 Big Theta: Tight bound: Θ( f(n) ) is the set of all 

functions asymptotically equal to f(n) 

 Intersection of O( f(n) ) and ( f(n) ) 
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Regarding use of terms 
Common error is to say O(f(n)) when you 

mean Θ(f(n)) 
 People often say O() to mean a tight bound 
 Say we have f(n)=n; we could say f(n) is in 

O(n), which is true, but only conveys the upper-
bound 

 Somewhat incomplete; instead say it is Θ(n) 
 That means that it is not, for example O(log n) 

 

Less common notation: 
 “little-oh”: like “big-Oh” but strictly less than 

 Example: sum is o(n2) but not o(n) 

 “little-omega”: like “big-Omega” but strictly 
greater than 
 Example: sum is (log n) but not (n) 
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Putting them in order 

(…) < (…) ≤ f(n) ≤ O(…) < o(...)  
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Do Not Be Confused 

 Best-Case does not imply (f(n)) 

 Average-Case does not imply Θ(f(n)) 

 Worst-Case does not imply O(f(n)) 
 

 Best-, Average-, and Worst- are specific to 
the algorithm 

 (f(n)), Θ(f(n)), O(f(n)) describe functions 

 One can have an (f(n)) bound of the worst-
case performance (worst is at least f(n)) 

 Once can have a Θ(f(n)) of best-case (best 
is exactly f(n)) 
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Now to the Board 
 What happens when we have a costly operation 

that only occurs some of the time? 

 

 Example: 

 My array is too small. Let's enlarge it. 

 

 Option 1:  Increase array size by 10 

   Copy old array into new one 

 

 Option 2:  Double the array size 

   Copy old array into new one 

 

We will now explore amortized analysis! 
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Stretchy Array (version 1) 
StretchyArray:  

 maxSize: positive integer (starts at 1) 

 array: an array of size maxSize 

 count: number of elements in array 

 

 put(x): add x to the end of the array 

  if maxSize == count 

   make new array of size (maxSize + 5) 

   copy old array contents to new array 

   maxSize = maxSize + 5 

  array[count] = x 

  count = count + 1   

June 20, 2012 CSE332: Data Abstractions 42 



2012-06-25 

8 

Stretchy Array (version 2) 
StretchyArray:  

 maxSize: positive integer (starts at 0) 

 array: an array of size maxSize 

 count: number of elements in array 

 

 put(x): add x to the end of the array 

  if maxSize == count 

   make new array of size (maxSize * 2) 

   copy old array contents to new array 

   maxSize = maxSize * 2 

  array[count] = x 

  count = count + 1   
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Performance Cost of put(x) 

In both stretchy array implementations, 
put(x)is defined as essentially: 
 
 if maxSize == count 

  make new array of bigger size 

  copy old array contents to new array 

  update maxSize 

 array[count] = x 

 count = count + 1  

 

What f(n) is put(x) in O( f(n) )? 
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Performance Cost of put(x) 

In both stretchy array implementations, 
put(x)is defined as essentially: 
 
 if maxSize == count    O(1) 

  make new array of bigger size  O(1) 

  copy old array contents to new array O(n) 

  update maxSize     O(1) 

 array[count] = x     O(1) 

 count = count + 1     O(1) 
 

In the worst-case, put(x) is O(n) where n is the 
current size of the array!! 
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But… 

 We do not have to enlarge the array 
each time we call put(x) 

 What will be the average performance if 
we put n items into the array? 

 

 cost of calling put for the ith time  𝑛
𝑖=1

𝑛
= O(?) 

 

 Calculating the average cost for multiple 
calls is known as amortized analysis 
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Amortized Analysis of StretchyArray Version 1 

i maxSize count cost comments 

0 0 Initial state 

1 5 1 0 + 1 Copy array of size 0 

2 5 2 1 

3 5 3 1 

4 5 4 1 

5 5 5 1 

6 10 6 5 + 1 Copy array of size 5 

7 10 7 1 

8 10 8 1 

9 10 9 1 

10 10 10 1 

11 15 11 10 + 1 Copy array of size 10 

⁞ ⁞ ⁞ ⁞ ⁞ 
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Amortized Analysis of StretchyArray Version 1 

i maxSize count cost comments 

0 0 Initial state 

1 5 1 0 + 1 Copy array of size 0 

2 5 2 1 

3 5 3 1 

4 5 4 1 

5 5 5 1 

6 10 6 5 + 1 Copy array of size 5 

7 10 7 1 

8 10 8 1 

9 10 9 1 

10 10 10 1 

11 15 11 10 + 1 Copy array of size 10 

⁞ ⁞ ⁞ ⁞ ⁞ 
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Every five steps, we 
have to do a multiple 
of five more work 
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Amortized Analysis of StretchyArray Version 1 

Assume the number of puts is n=5k 
 We will make n calls to array[count]=x 

 We will stretch the array k times and will cost: 

0 + 5 + 10 + … + 5(k-1) 

 

Total cost is then: 

n + (0 + 5 + 10 + … + 5(k-1)) 

= n + 5(1 + 2 + … +(k-1)) 

= n + 5(k-1)(k-1+1)/2 

= n + 5k(k-1)/2 

≈ n + n2/10 
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Amortized cost for put(x) is 

𝑛 + 
𝑛2

10
𝑛

= 1 +
𝑛

10
= 𝑂(𝑛) 

Amortized Analysis of StretchyArray Version 2 

i maxSize count cost comments 

1 0 Initial state 

1 1 1 1 

2 2 2 1 + 1 Copy array of size 1 

3 4 3 2 + 1 Copy array of size 2 

4 4 4 1 

5 8 5 4 + 1 Copy array of size 4 

6 8 6 1 

7 8 7 1 

8 8 8 1 

9 16 9 8 + 1 Copy array of size 8 

10 16 10 1 

11 16 11 1 

⁞ ⁞ ⁞ ⁞ ⁞ 
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Amortized Analysis of StretchyArray Version 2 

i maxSize count cost comments 

1 0 Initial state 

1 1 1 1 

2 2 2 1 + 1 Copy array of size 1 

3 4 3 2 + 1 Copy array of size 2 

4 4 4 1 

5 8 5 4 + 1 Copy array of size 4 

6 8 6 1 

7 8 7 1 

8 8 8 1 

9 16 9 8 + 1 Copy array of size 8 

10 16 10 1 

11 16 11 1 

⁞ ⁞ ⁞ ⁞ ⁞ 
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Enlarge steps happen 
basically when i is a 
power of 2 

Amortized Analysis of StretchyArray Version 2 

Assume the number of puts is n=2k 

 We will make n calls to array[count]=x 

 We will stretch the array k times and will cost: 

≈1 + 2 + 4 + … + 2k-1 

 

Total cost is then: 

≈ n + (1 + 2 + 4 + … + 2k-1) 

≈ n + 2k – 1 

≈ 2n - 1 
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Amortized cost for put(x) is 
2𝑛 − 1

𝑛
= 2 −

1

𝑛
= 𝑂(1) 

The Lesson 

With amortized analysis, we know that 
over the long run (on average): 

 If we stretch an array by a constant 

amount, each put(x) call is O(n) time 

 If we double the size of the array each 

time, each put(x) call is O(1) time 
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