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Announcements 

David's Super Awesome Office Hours 

 Mondays 2:30-3:30 CSE 220 

 Wednesdays 2:30-3:30 CSE 220 

 Sundays 1:30-3:30 Allen Library Research Commons 

 Or by appointment 

 

Kate's Fairly Generic But Good Quality Office Hours 

 Tuesdays, 2:30-4:30 CSE 210 

 Whenever my office door is open 

 Or by appointment 
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Announcements 

 Remember to use cse332-staff@cs 

 Or at least e-mail both me and David 

 Better chance of a speedy reply 

 

 Kate is not available on Thursdays 

 I've decided to make Thursdays my focus on 
everything but Teaching days 

 I will not answer e-mails received on 
Thursdays until Friday 
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Today 

 Amortized Analysis Redux  

 Review of Big-Oh times for Array, 
Linked-List and Tree Operations 

 Priority Queue ADT 

 Heap Data Structure 
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AMORTIZED ANALYSIS 

Thinking beyond one isolated operation 
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Amortized Analysis 
 What happens when we have a costly operation 

that only occurs some of the time? 

 

 Example: 

 My array is too small. Let's enlarge it. 

 

 Option 1:  Increase array size by 5 

   Copy old array into new one 

 

 Option 2:  Double the array size 

   Copy old array into new one 

 

We will now explore amortized analysis! 
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Stretchy Array (version 1) 
StretchyArray:  

 maxSize: positive integer (starts at 0) 

 array: an array of size maxSize 

 count: number of elements in array 

 

 put(x): add x to the end of the array 

  if maxSize == count 

   make new array of size (maxSize + 5) 

   copy old array contents to new array 

   maxSize = maxSize + 5 

  array[count] = x 

  count = count + 1   
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Stretchy Array (version 2) 
StretchyArray:  

 maxSize: positive integer (starts at 0) 

 array: an array of size maxSize 

 count: number of elements in array 

 

 put(x): add x to the end of the array 

  if maxSize == count 

   make new array of size (maxSize * 2) 

   copy old array contents to new array 

   maxSize = maxSize * 2 

  array[count] = x 

  count = count + 1   
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Performance Cost of put(x) 

In both stretchy array implementations, 
put(x)is defined as essentially: 
 
 if maxSize == count 

  make new array of bigger size 

  copy old array contents to new array 

  update maxSize 

 array[count] = x 

 count = count + 1  

 

What f(n) is put(x) in O( f(n) )? 
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Performance Cost of put(x) 

In both stretchy array implementations, 
put(x)is defined as essentially: 
 
 if maxSize == count    O(1) 

  make new array of bigger size  O(1) 

  copy old array contents to new array O(n) 

  update maxSize     O(1) 

 array[count] = x     O(1) 

 count = count + 1     O(1) 
 

In the worst-case, put(x) is O(n) where n is the 
current size of the array!! 
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But… 

 We do not have to enlarge the array 
each time we call put(x) 

 What will be the average performance if 
we put n items into the array? 

 

 cost of calling put for the ith time  𝑛
𝑖=1

𝑛
= O(?) 

 

 Calculating the average cost for multiple 
calls is known as amortized analysis 
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Amortized Analysis of StretchyArray Version 1 

i maxSize count cost comments 

0 0 Initial state 

1 5 1 0 + 1 Copy array of size 0 

2 5 2 1 

3 5 3 1 

4 5 4 1 

5 5 5 1 

6 10 6 5 + 1 Copy array of size 5 

7 10 7 1 

8 10 8 1 

9 10 9 1 

10 10 10 1 

11 15 11 10 + 1 Copy array of size 10 

⁞ ⁞ ⁞ ⁞ ⁞ 

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 12 



Amortized Analysis of StretchyArray Version 1 

i maxSize count cost comments 

0 0 Initial state 

1 5 1 0 + 1 Copy array of size 0 

2 5 2 1 

3 5 3 1 

4 5 4 1 

5 5 5 1 

6 10 6 5 + 1 Copy array of size 5 

7 10 7 1 

8 10 8 1 

9 10 9 1 

10 10 10 1 

11 15 11 10 + 1 Copy array of size 10 

⁞ ⁞ ⁞ ⁞ ⁞ 
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Every five steps, we 
have to do a multiple 
of five more work 



Amortized Analysis of StretchyArray Version 1 

Assume the number of puts is n=5k 
 We will make n calls to array[count]=x 

 We will stretch the array k times and will cost: 

0 + 5 + 10 + ⋯ + 5(k-1) 

 

Total cost is then: 

n + (0 + 5 + 10 + ⋯ + 5(k-1)) 

= n + 5(1 + 2 + ⋯ +(k-1)) 

= n + 5(k-1)(k-1+1)/2 

= n + 5k(k-1)/2 

≈ n + n2/10 
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Amortized cost for put(x) is 

𝑛 + 
𝑛2

10
𝑛
= 1 +

𝑛

10
= 𝑂(𝑛) 



Amortized Analysis of StretchyArray Version 2 

i maxSize count cost comments 

1 0 Initial state 

1 1 1 1 

2 2 2 1 + 1 Copy array of size 1 

3 4 3 2 + 1 Copy array of size 2 

4 4 4 1 

5 8 5 4 + 1 Copy array of size 4 

6 8 6 1 

7 8 7 1 

8 8 8 1 

9 16 9 8 + 1 Copy array of size 8 

10 16 10 1 

11 16 11 1 

⁞ ⁞ ⁞ ⁞ ⁞ 
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Amortized Analysis of StretchyArray Version 2 

i maxSize count cost comments 

1 0 Initial state 

1 2 1 1 

2 2 2 1 + 1 Copy array of size 1 

3 4 3 2 + 1 Copy array of size 2 

4 4 4 1 

5 8 5 4 + 1 Copy array of size 4 

6 8 6 1 

7 8 7 1 

8 8 8 1 

9 16 9 8 + 1 Copy array of size 8 

10 16 10 1 

11 16 11 1 

⁞ ⁞ ⁞ ⁞ ⁞ 
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Enlarge steps happen 
basically when i is a 
power of 2 



Amortized Analysis of StretchyArray Version 2 

Assume the number of puts is n=2k 

 We will make n calls to array[count]=x 

 We will stretch the array k times and will cost: 

≈1 + 2 + 4 + ⋯ + 2k-1 

 

Total cost is then: 

≈ n + (1 + 2 + 4 + ⋯ + 2k-1) 

≈ n + 2k – 1 

≈ 2n - 1 
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Amortized cost for put(x) is 
2𝑛 − 1

𝑛
= 2 −

1

𝑛
= 𝑂(1) 



The Lesson 

With amortized analysis, we know that 
over the long run (on average): 

 If we stretch an array by a constant 
amount, each put(x) call is O(n) time 

 If we double the size of the array each 

time, each put(x) call is O(1) time 

 

In general, paying a high-cost infrequently 
can pay off over the long run.   
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What about wasted space? 

Two options: 

 We can adjust our growth factor 

 As long as we multiply the size of the array 
by a factor >1, amortized analysis holds 

 We can also shrink the array: 

 A good rule of thumb is to halve the array 
when it is only 25% full 

 Same amortized cost 
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ARRAY, LIST, AND TREE 
PERFORMANCE 

Memorize these. They appear all the time. 
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Very Common Interactions 

When we are working with data, there are 

three very common operations: 

 Insert(x): insert x into structure 

 Find(x): determine if x is in structure 

 Remove(i): remove item as position i 

 Delete(x): find and delete x from structure 

 

Note that when we usually delete, we 

 First find the element to remove  

 Then we remove it 

Overall time is O(Find + Remove) 
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Arrays and Linked Lists 

 Most common data structures 

 Several variants 
 Unsorted Array 

 Unsorted Circular Array 

 Unsorted Linked List 

 Sorted Array 

 Sorted Circular Array 

 Sorted Linked List 

 We will ignore whether the list is singly 
or doubly-linked 
 Usually only leads to a constant factor 

change in overall performance 
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Binary Search Tree (BST) 

 Another common data structure 

 Each node has at most two children 

 Left child's value is less than its parent 

 Right child's value is greater than parent 

 Structure depends on order elements 
were inserted into tree 

 Best performance occurs 
if the tree is balanced  

 General properties 

 Min is leftmost node 

 Max is rightmost node 
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Worst-Case Run-Times 

Insert Find Remove Delete 

Unsorted Array 

Unsorted Circular Array 

Unsorted Linked List 

Sorted Array 

Sorted Circular Array 

Sorted Linked List 

Binary Search Tree 

Balanced BST 

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 24 



Worst-Case Run-Times 

Insert Find Remove Delete 

Unsorted Array O(1) O(n) O(1) O(n) 

Unsorted Circular Array O(1) O(n) O(1) O(n) 

Unsorted Linked List O(1) O(n) O(1) O(n) 

Sorted Array O(n) O(log n) O(n) O(n) 

Sorted Circular Array O(n/2) O(log n) O(n/2) O(n/2) 

Sorted Linked List O(n) O(n) O(1) O(n) 

Binary Search Tree O(n) O(n) O(n) O( n) 

Balanced BST O(log n) O(log n) O(log n) O(log n) 
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Remove in an Unsorted Array 

 Let's say we want to remove the item at 
position i in the array 

 All that we do is move the last item in 
the array to position i 
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⋯ ⋯ 
i 

last item 

⋯ ⋯ 
i 

last item 



Remove in a Binary Search Tree 

Replace node based on following logic 

 If no children, just remove it 

 If only one child, replace node with child 

 If two children, replace node with the 
smallest data for the right subtree 

 See Weiss 4.3.4 for implementation details 
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Balancing a Tree 

How do you guarantee that a BST will 
always be  balanced? 

 Non-trivial task 

 We will discuss several implementations 
next Monday 
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PRIORITY QUEUES 

The immediate priority is to discuss heaps. 
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Scenario 

What is the difference between waiting for 
service at a pharmacy versus an ER? 

 

Pharmacies usually follow the rule 
First Come, First Served 

 

Emergency Rooms assign priorities  
based on each individual's need 
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New ADT: Priority Queue 

Each item has a “priority” 

 The next/best item has the lowest priority 

 So “priority 1” should come before “priority 4” 

 Could also do maximum priority if so desired 
 

Operations:  

 insert 

 deleteMin 

 

deleteMin returns/deletes item with lowest priority 

 Any ties are resolved arbitrarily 

 Fancier PQueues may use a FIFO approach for ties 

insert deleteMin 

        6        2 

  15           23 

          12         18 

45       3               7 
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Priority Queue Example 

 insert a with priority 5 

 insert b with priority 3 

 insert c with priority 4 

 w = deleteMin 

 x = deleteMin 

 insert d with priority 2 

 insert e with priority 6 

 y = deleteMin 

 z = deleteMin  

 

 after execution: 

 

 w = b  

 x = c  

 y = d  

 z = a 

 

To simplify our examples, we will just 
use the priority values from now on 

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 32 



Applications of Priority Queues 

PQueues are a major and common ADT 

 Forward network packets by urgency 

 Execute work tasks in order of priority  

 “critical” before “interactive” before 
“compute-intensive” tasks 

 allocating idle tasks in cloud environments 

 A fairly efficient sorting algorithm 

 Insert all items into the PQueue 

 Keep calling deleteMin until empty 
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Advanced PQueue Applications 

 “Greedy” algorithms 

 Efficiently track what is “best” to try next 

 

 Discrete event simulation (e.g., virtual worlds, 
system simulation) 

 Every event e happens at some time t and generates  
new events e1, …, en at times t+t1, …, t+tn 

 Naïve approach:  

 Advance “clock” by 1, check for events at that time 

 Better approach: 

 Place events in a priority queue (priority = time) 

 Repeatedly: deleteMin and then insert new events 

 Effectively “set clock ahead to next event” 
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From ADT to Data Structure 

 How will we implement our PQueue? 
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Insert Find Remove Delete 

Unsorted Array O(1) O(n) O(1) O(n) 

Unsorted Circular Array O(1) O(n) O(1) O(n) 

Unsorted Linked List O(1) O(n) O(1) O(n) 

Sorted Array O(n) O(log n) O(n/2) O(n/2) 

Sorted Circular Array O(n/2) O(log n) O(n/2) O(n/2) 

Sorted Linked List O(n) O(n) O(1) O(n) 

Binary Search Tree O(n) O(n) O(n) O( n) 

Balanced BST O(log n) O(log n) O(log n) O(log n) 

 We need to add one more analysis to the 
above: finding the min value 

 

 



Finding the Minimum Value  
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FindMin 

Unsorted Array 

Unsorted Circular Array 

Unsorted Linked List 

Sorted Array 

Sorted Circular Array 

Sorted Linked List 

Binary Search Tree 

Balanced BST 



Finding the Minimum Value  
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FindMin 

Unsorted Array O(n) 

Unsorted Circular Array O(n) 

Unsorted Linked List O(n) 

Sorted Array O(1) 

Sorted Circular Array O(1) 

Sorted Linked List O(1) 

Binary Search Tree O(n) 

Balanced BST O(log n) 



Best Choice for the PQueue? 
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Insert FindMin+Remove 

Unsorted Array O(1) O(n)+O(1) 

Unsorted Circular Array O(1) O(n)+O(1) 

Unsorted Linked List O(1) O(n)+O(1) 

Sorted Array O(n) O(1)+O(n) 

Sorted Circular Array O(n/2) O(1)+O(n/2) 

Sorted Linked List O(n) O(1)+O(1) 

Binary Search Tree O(n) O(n)+O(n) 

Balanced BST O(log n) O(log n)+O(log n) 



None are that great 

We generally have to pay linear time for 
either insert or deleteMin 

 Made worse by the fact that: 
# inserts ≈ # deleteMins 

 

Balanced trees seem to be the best 
solution with O(log n) time for both 

 But balanced trees are complex structures 

 Do we really need all of that complexity? 
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Our Data Structure: The Heap 

Key idea: Only pay for functionality needed 

 Do better than scanning unsorted items 

 But do not need to maintain a full sort 

 

The Heap: 

 O(log n) insert and O(log n) deleteMin 

 If items arrive in random order, then the  
average-case of insert is O(1) 

 Very good constant factors 
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Reviewing Some Tree Terminology 

root(T):  

leaves(T): 

children(B): 

parent(H): 

siblings(E): 

ancestors(F): 

descendents(G): 

subtree(G): 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

Tree T A 

D-F, I, J-N 

D, E, F 

G 

D, F 

B, A 

H, I, J-N 

G and its 

children 
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Some More Tree Terminology 

depth(B): 

height(G): 

height(T): 

degree(B): 

branching factor(T): 

 

 

1 

2 

4 

3 

0-5 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

Tree T 
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Types of Trees 

 Binary tree:   Every node has ≤2 children 
 

 n-ary tree:   Every node as ≤n children 
 

 Perfect tree:  Every row is completely full 
 

 Complete tree:    
All rows except the bottom are completely 
full, and it is filled from left to right 

Perfect Tree Complete Tree 

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 43 



Some Basic Tree Properties 

Nodes in a perfect binary tree of height h? 

 2h+1-1 
 

Leaves in a perfect binary tree of height h? 

 2h 
 

Height of a perfect binary tree with n nodes? 

 ⌊log2 n⌋ 
 

Height of a complete binary tree with n nodes? 

 ⌊log2 n⌋ 
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Properties of a Binary Min-Heap 

More commonly known as a binary heap 
or simply a heap 

 Structure Property:   
A complete [binary] tree 

 Heap Property:  
The priority of every non-root node is 
greater than the priority of its parent 

 

How is this different from a binary 
search tree? 
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Properties of a Binary Min-Heap 

More commonly known as a binary heap 
or simply a heap 

 Structure Property:   
A complete [binary] tree 

 Heap Property:  
The priority of every non-root node is 
greater than the priority of its parent 

25 13 

80 20 

30 

99 60 40 

80 20 

10 

50 700 

85 

A Heap Not a Heap 
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Properties of a Binary Min-Heap 

 Where is the minimum priority item? 

 At the root 

 

 What is the height of a heap with n items? 

 ⌊log2 n⌋ 

 

99 60 40 

80 20 

10 

50 700 

85 

A Heap 
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Basics of Heap Operations 

findMin: 

 return root.data 
 

deleteMin:  

 Move last node up to root 

 Violates heap property, so 
Percolate Down to restore 
 

insert: 

 Add node after last position 

 Violate heap property, so 
Percolate Up to restore 
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80 20 
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50 700 

85 

The general idea: 

 Preserve the complete 
tree structure property 

 This likely breaks the 
heap property 

 So percolate to restore 
the heap property 



DeleteMin Implementation 

1. Delete value at root node (and store 

it for later return) 

2. There is now a "hole" at the root. 
We must "fill" the hole with another 
value, must have a tree with one 
less node, and it must still be a 
complete tree 

3. The "last" node is the is obvious 
choice, but now the heap property 
is violated 

4. We percolate down to fix the heap 

While greater than either child 

 Swap with smaller child 

 

3 4 

9 8 5 7 

10 6 9 11 

3 4 

9 8 5 7 

10 6 9 11 

10 
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Percolate Down 

While greater than either child 

 Swap with smaller child 

What is the runtime? 
O(log n)  

Why does this work? 
Both children are heaps 

10 

8 4 

9 5 7 

6 9 11 

3 

? 
10 4 

9 8 5 7 

6 9 11 

3 

? 

? 

3 4 

9 8 5 7 

10 

6 9 11 
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Insert Implementation 

1. To maintain structure property, 
there is only one node we can 
insert into that keeps the tree 
complete. 
 

We put our new data there. 

2. We then percolate up to fix  
the heap property: 

While less than parent  

 Swap with parent 

  

 

8 4 

9 10 5 7 

6 9 11 

1 

2 

2 

8 4 

9 10 5 7 

6 9 11 

1 
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Percolate Up 

2 

8 4 

9 10 5 7 

6 9 11 

1 

? 

2 

5 

8 4 

9 10 7 

6 9 11 

1 

? 
2 

5 

8 

9 10 4 7 

6 9 11 

1 

? 

What is the runtime? 
O(log n)  

Why does this work? 
Both children are heaps 

While less than parent 

 Swap with parent 
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Achieving Average-Case O(1) insert 

Clearly, insert and deleteMin are worst-case O(log n)  

 But we promised average-case O(1) insert 
 

Insert only requires finding that one special spot 

 Walking the tree requires O(log n) steps 
 

We should only pay for the functionality we need 

 Why have we insisted the tree be complete? 
 

All complete trees of size n contain the same edges 

 So why are we even representing the edges? 
 

Here comes the really clever bit 
about implementing heaps!!! 
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Array Representation of a Binary Heap  

From node i: 

 left child:  2i 

 right child: 2i+1 

 parent:  i / 2 

 We skip index 0 to make the math simpler 

 Actually, it can be a good place to store the 
current size of the heap 

 June 25, 2012 CSE 332 Data Abstractions, Summer 2012 54 

G E D 

C B 

A 

J K H I 

F 

L 

7 

1 

2 3 

4 5 6 

9 8 10 11 12 

A B C D E F G H I J K L 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 



Pseudocode: insert 

This pseudocode uses ints.  In real use, you will have 
data nodes with priorities. 

void insert(int val) { 

 if(size == arr.length-1) 

    resize();   

  size = size + 1; 

  i = percolateUp(size, val); 

  arr[i] = val; 

} 

int percolateUp(int hole, int val) { 

  while(hole > 1 && val < arr[hole/2]) 

    arr[hole] = arr[hole/2]; 

    hole = hole / 2; 

  } 

  return hole; 

} 
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Pseudocode: deleteMin 

int deleteMin() { 

  if(isEmpty()) throw… 

  ans = arr[1]; 

  hole = percolateDown(1,arr[size]); 

  arr[hole] = arr[size]; 

  size--; 

  return ans; 

} 

This pseudocode uses ints.  In real use, you will have 
data nodes with priorities. 
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Pseudocode: deleteMin 
int percolateDown(int hole, int val) { 

  while(2 * hole <= size) { 

    left  = 2 * hole;  

    right = left + 1; 

    if(arr[left] < arr[right] || right > size) 

      target = left; 

    else 

      target = right; 
   

    if(arr[target] < val) { 

      arr[hole] = arr[target]; 

      hole = target; 

    }  

    else 

      break; 

  } 

  return hole; 

} 

Note that percolateDown is more 

complicated than percolateUp because 

a node might not have two children 
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Advantages of Array Implementation 

Minimal amount of wasted space: 

 Only index 0 and any unused space on right 

 No "holes" due to complete tree property 

 No wasted space representing tree edges 
 

Fast lookups: 

 Benefit of array lookup speed 

 Multiplying and dividing by 2 is extremely 
fast (can be done through bit shifting) 

 Last used position is easily found by using 
the PQueue's size for the index 
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Disadvantages of Array Implementation 

May be too clever: 

 Will you understand it at 3am three months 
from now? 

 

What if the array gets too full or too empty? 

 Array will have to be resized  

 Stretchy arrays give us O(1) amortized 
performance 

 

Advantages outweigh disadvantages:  
This is how heaps are implemented. 

Period. 
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So why O(1) average-case insert? 

 Yes, insert's worst case is O(log n) 

 The trick is that it all depends on the order 
the items are inserted 

 Experimental studies of randomly ordered 
inputs shows the following: 

 Average 2.607 comparisons per insert 
(# of percolation passes) 

 An element usually moves up 1.607 levels  

 deleteMin is average O(log n) 

 Moving a leaf to the root usually requires re-
percolating that value back to the bottom 
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MORE ON HEAPS 

I promised you a small-town barber… 
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Other Common Heap Operations 

decreaseKey(i, p): O(log n) 

 given pointer to object in priority queue  
(e.g., its array index), lower its priority to p 

 Change priority and percolate up 
 

increaseKey(i, p): O(log n) 

 given pointer to object in priority queue  
(e.g., its array index), raise its priority to p 

 Change priority and percolate down 
 

remove(i):  O(log n) 

 given pointer to object in priority queue  
(e.g., its array index), remove it from the queue 

 decreaseKey to p = -, then deleteMin 
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Building a Heap 

Suppose you have n items to put in a new priority 
queue… what is the complexity? 

 Sequence of n inserts  O(n log n) 
Worst-case is Θ(n log n) 
 

Can we do better? 

 If we only have access to the insert and deleteMin 
operations, then NO 

 There is a faster way, but that requires the ADT to 
have buildHeap operation 

 

When designing an ADT, adding more and more 
specialized operations leads to tradeoffs with 
Convenience, Efficiency, and Simplicity 
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Proof that n inserts can be Θ(n log n) 

Worst performance is if insert has to percolate up to 
the root (Occurs when inserted in reverse order) 
 

If n = 7, worst case is 

 insert(7) takes 0 percolations 

 insert(6) takes 1 percolation 

 insert(5) takes 1 percolation 

 insert(4) takes 2 percolations 

 insert(3) takes 2 percolations 

 insert(2) takes 2 percolations 

 insert(1) takes 2 percolations 
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More generally… 

If 𝑛 = 2𝑘 − 1, then the worst-case number of 

percolations will be: 
 

0 ∙ 1 + 1 ∙ 2 + 2 ∙ 4 + 3 ∙ 8 + ⋯+ (k − 1) ∙ 2𝑘−1 
= 0 ∙ 20 + 1 ∙ 21 + 2 ∙ 22 +⋯+ k − 1 ∙ 2𝑘−1 

= 𝑖 ∙ 2𝑖
𝑘−1

0
 

 

If we focus on just the last item, then 

𝑘 − 1 ∙ 2𝑘−1 = 𝑘 ∙ 2𝑘−1 − 2𝑘−1 = 𝑘2 2
𝑘−1  + 

𝑘
2 − 
1
2∙2
𝑘 

= 1
2
n∙log2 𝑛 + log2 𝑛 − log2 𝑛+1   

= Θ 𝑛 ∙ log 𝑛  
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BuildHeap using Floyd’s Algorithm 
We can actually build a heap in O(n) 

 

The trick is to use our general 
strategy for working with the heap: 

 Preserve structure property 

 Break and restore heap property 

 

Floyd's Algorithm: 

 Create a complete tree by putting 
the n items in array indices 1,…,n 

 Fix the heap-order property 

Thank you, Floyd the 
barber, for your cool 

O(n) algorithm!! 
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Floyd’s Algorithm 

Bottom-up fixing of the heap 

 Leaves are already in heap order 

 Work up toward the root one level at a time 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 
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Example 

 We use a tree for 
readability purposes 

 Red nodes are not 
less than children   

 No leaves are red 

 

 We start at i=size/2 
6 7 1 8 

9 2 10 3 

11 5 

12 

4 
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Example 

6 7 1 8 

9 2 10 3 

11 5 

12 

4 

i = 6, node is 2 

no change is needed 

6 7 1 8 

9 2 10 3 

11 5 

12 

4 
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Example 

6 7 1 8 

9 2 10 3 

11 5 

12 

4 

i = 5, node is 10 

10 percolates down; 1 moves up 

6 7 10 8 

9 2 1 3 

11 5 

12 

4 
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Example 

6 7 10 8 

9 2 1 3 

11 5 

12 

4 

i = 4, node is 3 

no change is needed 

6 7 10 8 

9 2 1 3 

11 5 

12 

4 
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Example 

6 7 10 8 

9 2 1 3 

11 5 

12 

4 

i = 3, node is 11 

11 percolates down twice; 2 and 6 move up 

11 7 10 8 

9 6 1 3 

2 5 

12 

4 
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Example 

11 7 10 8 

9 6 1 3 

2 5 

12 

4 

i = 2, node is 5 

5 percolates down; 1 moves up (again) 

11 7 10 8 

9 6 5 3 

2 1 

12 

4 

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 73 



Example 

6 7 10 8 

9 2 5 3 

11 1 

12 

4 

i = 1, node is 12 

12 percolates down; 1, 3, and 4 move up 

11 7 10 8 

9 6 5 4 

2 3 

1 

12 
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But is it right? 

Floyd's algorithm "seems to work" 

 

We will prove that it does work 

 First we will prove it restores the heap 
property (correctness) 

 Then we will prove its running time 
(efficiency) 
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Correctness 

We claim the following is a loop invariant:  

For all j>i, arr[j] is less than its children 
 

True initially: If j > size/2, then j is  a leaf 

 Otherwise its left child would be at position > size 
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void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Correctness 

We claim the following is a loop invariant:  

For all j>i, arr[j] is less than its children 
 

After an iteration: Still true 

 We know that for j > i + 1, the heap property is 
maintained (from previous iteration) 

 percolateDown 
maintains heap 
property 

 arr[i] is fixed by 
percolate down 

 Ergo, loop body  
maintains the  
invariant 
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void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 



Correctness 

We claim the following is a loop invariant:  

For all j>i, arr[j] is less than its children 
 

Loop invariant implies that heap property is present 

 Each node is less than its children 

 We also know it is a complete tree 

∴ It's a heap! 
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void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 

What type of 
proof was this? 



Efficiency 

Easy argument: buildHeap is O(n log n)  

 We perform n/2 loop iterations 

 Each iteration does one percolateDown, and 
costs O(log n) 

 

This is correct,  
but can make a  
tighter analysis. 
 

The heights of 
each percolate 
are different!  
 

void buildHeap() { 

 for(i = size/2; i>0; i--) { 

    val  = arr[i]; 

   hole = percolateDown(i,val); 

    arr[hole] = val; 

  } 

} 
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Efficiency 

Better argument:  buildHeap is O(n)  

 We perform n/2 loop iterations 

 1/2 iterations percolate at most 1 step 

 1/4 iterations percolate at most 2 steps 

 1/8 iterations percolate at most 3 steps 

 etc. 

 

# of percolations < 
𝑛

2
∙
1

2
+
2

4
+
3

8
+ ⋯ =

𝑛

2
∙  
𝑖

2𝑖𝑖
=
𝑛

2
∙ 2 = 𝑛 

 

Ergo, buildHeap is O(n) 
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Proof of Summation 

Let S =  
𝑖

2𝑖𝑖
=
1

21
+
2

22
+
3

23
+
4

24
+⋯ 

 

Then 2S = 1 +
2

21
+
3

22
+
4

23
+
5

24
+⋯ 

 

Then 2S − S = 1 +
1

21
+
1

22
+
1

23
+⋯ = 2 
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Lessons from buildHeap 

 Without buildHeap, the PQueue ADT 
allows clients to implement their own 
buildHeap with worst-case Θ(n log n) 

 

 By providing a specialized operation 
internal to the data structure (with 
access to the internal data), we can do  
a much better O(n) worst case 
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Our Analysis of buildHeap 

Correctness:  

 Example of a non-trivial inductive proof 
using loop invariants 

Efficiency: 

 First analysis easily proved it was at 
least O(n log n) 

 A "tighter" analysis looked at individual 
steps to show algorithm is O(n) 
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PARTING THOUGHTS ON 
HEAPS 

Unrelated but consider reading up on the Fallacy of the 
Heap, also known as Loki's wager 
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What to take away  

 Priority Queues are a simple to 
understand ADT 

 Making a useful data structure for them  
is tricky 

 Requires creative thinking for implementation 

 Resulting array allows for amazing efficiency 
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What we are skipping (see textbook) 

d-heaps: have d children instead of 2 

 Makes heaps shallower which is useful for heaps 
that are too big for memory 

 The same issue arises for balanced binary search 
trees (we will study “B-Trees”) 

 

Merging heaps 

 Given two PQueues, make one PQueue 

 O(log n) merge impossible for binary heaps 

 Can be done with specialized pointer structures 
 

Binomial queues 

 Collections of binary heap-like structures 

 Allow for O(log n) insert, delete and merge 
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