
CSE 332 Data Abstractions:

Priority Queues, Heaps, and
a Small Town Barber

Kate Deibel

Summer 2012

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 1

Announcements

David's Super Awesome Office Hours

 Mondays 2:30-3:30 CSE 220

 Wednesdays 2:30-3:30 CSE 220

 Sundays 1:30-3:30 Allen Library Research Commons

 Or by appointment

Kate's Fairly Generic But Good Quality Office Hours

 Tuesdays, 2:30-4:30 CSE 210

 Whenever my office door is open

 Or by appointment

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 2

Announcements

 Remember to use cse332-staff@cs

 Or at least e-mail both me and David

 Better chance of a speedy reply

 Kate is not available on Thursdays

 I've decided to make Thursdays my focus on
everything but Teaching days

 I will not answer e-mails received on
Thursdays until Friday

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 3

Today

 Amortized Analysis Redux

 Review of Big-Oh times for Array,
Linked-List and Tree Operations

 Priority Queue ADT

 Heap Data Structure

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 4

AMORTIZED ANALYSIS

Thinking beyond one isolated operation

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 5

Amortized Analysis
 What happens when we have a costly operation

that only occurs some of the time?

 Example:

 My array is too small. Let's enlarge it.

 Option 1: Increase array size by 5

 Copy old array into new one

 Option 2: Double the array size

 Copy old array into new one

We will now explore amortized analysis!

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 6

Stretchy Array (version 1)
StretchyArray:

 maxSize: positive integer (starts at 0)

 array: an array of size maxSize

 count: number of elements in array

 put(x): add x to the end of the array

 if maxSize == count

 make new array of size (maxSize + 5)

 copy old array contents to new array

 maxSize = maxSize + 5

 array[count] = x

 count = count + 1

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 7

Stretchy Array (version 2)
StretchyArray:

 maxSize: positive integer (starts at 0)

 array: an array of size maxSize

 count: number of elements in array

 put(x): add x to the end of the array

 if maxSize == count

 make new array of size (maxSize * 2)

 copy old array contents to new array

 maxSize = maxSize * 2

 array[count] = x

 count = count + 1

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 8

Performance Cost of put(x)

In both stretchy array implementations,
put(x)is defined as essentially:

 if maxSize == count

 make new array of bigger size

 copy old array contents to new array

 update maxSize

 array[count] = x

 count = count + 1

What f(n) is put(x) in O(f(n))?

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 9

Performance Cost of put(x)

In both stretchy array implementations,
put(x)is defined as essentially:

 if maxSize == count O(1)

 make new array of bigger size O(1)

 copy old array contents to new array O(n)

 update maxSize O(1)

 array[count] = x O(1)

 count = count + 1 O(1)

In the worst-case, put(x) is O(n) where n is the
current size of the array!!

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 10

But…

 We do not have to enlarge the array
each time we call put(x)

 What will be the average performance if
we put n items into the array?

 cost of calling put for the ith time 𝑛
𝑖=1

𝑛
= O(?)

 Calculating the average cost for multiple
calls is known as amortized analysis

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 11

Amortized Analysis of StretchyArray Version 1

i maxSize count cost comments

0 0 Initial state

1 5 1 0 + 1 Copy array of size 0

2 5 2 1

3 5 3 1

4 5 4 1

5 5 5 1

6 10 6 5 + 1 Copy array of size 5

7 10 7 1

8 10 8 1

9 10 9 1

10 10 10 1

11 15 11 10 + 1 Copy array of size 10

⁞ ⁞ ⁞ ⁞ ⁞

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 12

Amortized Analysis of StretchyArray Version 1

i maxSize count cost comments

0 0 Initial state

1 5 1 0 + 1 Copy array of size 0

2 5 2 1

3 5 3 1

4 5 4 1

5 5 5 1

6 10 6 5 + 1 Copy array of size 5

7 10 7 1

8 10 8 1

9 10 9 1

10 10 10 1

11 15 11 10 + 1 Copy array of size 10

⁞ ⁞ ⁞ ⁞ ⁞

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 13

Every five steps, we
have to do a multiple
of five more work

Amortized Analysis of StretchyArray Version 1

Assume the number of puts is n=5k
 We will make n calls to array[count]=x

 We will stretch the array k times and will cost:

0 + 5 + 10 + ⋯ + 5(k-1)

Total cost is then:

n + (0 + 5 + 10 + ⋯ + 5(k-1))

= n + 5(1 + 2 + ⋯ +(k-1))

= n + 5(k-1)(k-1+1)/2

= n + 5k(k-1)/2

≈ n + n2/10

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 14

Amortized cost for put(x) is

𝑛 +
𝑛2

10
𝑛
= 1 +

𝑛

10
= 𝑂(𝑛)

Amortized Analysis of StretchyArray Version 2

i maxSize count cost comments

1 0 Initial state

1 1 1 1

2 2 2 1 + 1 Copy array of size 1

3 4 3 2 + 1 Copy array of size 2

4 4 4 1

5 8 5 4 + 1 Copy array of size 4

6 8 6 1

7 8 7 1

8 8 8 1

9 16 9 8 + 1 Copy array of size 8

10 16 10 1

11 16 11 1

⁞ ⁞ ⁞ ⁞ ⁞

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 15

Amortized Analysis of StretchyArray Version 2

i maxSize count cost comments

1 0 Initial state

1 2 1 1

2 2 2 1 + 1 Copy array of size 1

3 4 3 2 + 1 Copy array of size 2

4 4 4 1

5 8 5 4 + 1 Copy array of size 4

6 8 6 1

7 8 7 1

8 8 8 1

9 16 9 8 + 1 Copy array of size 8

10 16 10 1

11 16 11 1

⁞ ⁞ ⁞ ⁞ ⁞

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 16

Enlarge steps happen
basically when i is a
power of 2

Amortized Analysis of StretchyArray Version 2

Assume the number of puts is n=2k

 We will make n calls to array[count]=x

 We will stretch the array k times and will cost:

≈1 + 2 + 4 + ⋯ + 2k-1

Total cost is then:

≈ n + (1 + 2 + 4 + ⋯ + 2k-1)

≈ n + 2k – 1

≈ 2n - 1

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 17

Amortized cost for put(x) is
2𝑛 − 1

𝑛
= 2 −

1

𝑛
= 𝑂(1)

The Lesson

With amortized analysis, we know that
over the long run (on average):

 If we stretch an array by a constant
amount, each put(x) call is O(n) time

 If we double the size of the array each

time, each put(x) call is O(1) time

In general, paying a high-cost infrequently
can pay off over the long run.

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 18

What about wasted space?

Two options:

 We can adjust our growth factor

 As long as we multiply the size of the array
by a factor >1, amortized analysis holds

 We can also shrink the array:

 A good rule of thumb is to halve the array
when it is only 25% full

 Same amortized cost

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 19

ARRAY, LIST, AND TREE
PERFORMANCE

Memorize these. They appear all the time.

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 20

Very Common Interactions

When we are working with data, there are

three very common operations:

 Insert(x): insert x into structure

 Find(x): determine if x is in structure

 Remove(i): remove item as position i

 Delete(x): find and delete x from structure

Note that when we usually delete, we

 First find the element to remove

 Then we remove it

Overall time is O(Find + Remove)

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 21

Arrays and Linked Lists

 Most common data structures

 Several variants
 Unsorted Array

 Unsorted Circular Array

 Unsorted Linked List

 Sorted Array

 Sorted Circular Array

 Sorted Linked List

 We will ignore whether the list is singly
or doubly-linked
 Usually only leads to a constant factor

change in overall performance

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 22

Binary Search Tree (BST)

 Another common data structure

 Each node has at most two children

 Left child's value is less than its parent

 Right child's value is greater than parent

 Structure depends on order elements
were inserted into tree

 Best performance occurs
if the tree is balanced

 General properties

 Min is leftmost node

 Max is rightmost node

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 23

34 14

80 20

50

17

78

79

Worst-Case Run-Times

Insert Find Remove Delete

Unsorted Array

Unsorted Circular Array

Unsorted Linked List

Sorted Array

Sorted Circular Array

Sorted Linked List

Binary Search Tree

Balanced BST

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 24

Worst-Case Run-Times

Insert Find Remove Delete

Unsorted Array O(1) O(n) O(1) O(n)

Unsorted Circular Array O(1) O(n) O(1) O(n)

Unsorted Linked List O(1) O(n) O(1) O(n)

Sorted Array O(n) O(log n) O(n) O(n)

Sorted Circular Array O(n/2) O(log n) O(n/2) O(n/2)

Sorted Linked List O(n) O(n) O(1) O(n)

Binary Search Tree O(n) O(n) O(n) O(n)

Balanced BST O(log n) O(log n) O(log n) O(log n)

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 25

Remove in an Unsorted Array

 Let's say we want to remove the item at
position i in the array

 All that we do is move the last item in
the array to position i

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 26

⋯ ⋯
i

last item

⋯ ⋯
i

last item

Remove in a Binary Search Tree

Replace node based on following logic

 If no children, just remove it

 If only one child, replace node with child

 If two children, replace node with the
smallest data for the right subtree

 See Weiss 4.3.4 for implementation details

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 27

Balancing a Tree

How do you guarantee that a BST will
always be balanced?

 Non-trivial task

 We will discuss several implementations
next Monday

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 28

PRIORITY QUEUES

The immediate priority is to discuss heaps.

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 29

Scenario

What is the difference between waiting for
service at a pharmacy versus an ER?

Pharmacies usually follow the rule
First Come, First Served

Emergency Rooms assign priorities
based on each individual's need

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 30

Queue

Priority
Queue

New ADT: Priority Queue

Each item has a “priority”

 The next/best item has the lowest priority

 So “priority 1” should come before “priority 4”

 Could also do maximum priority if so desired

Operations:

 insert

 deleteMin

deleteMin returns/deletes item with lowest priority

 Any ties are resolved arbitrarily

 Fancier PQueues may use a FIFO approach for ties

insert deleteMin

 6 2

 15 23

 12 18

45 3 7

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 31

Priority Queue Example

 insert a with priority 5

 insert b with priority 3

 insert c with priority 4

 w = deleteMin

 x = deleteMin

 insert d with priority 2

 insert e with priority 6

 y = deleteMin

 z = deleteMin

 after execution:

 w = b

 x = c

 y = d

 z = a

To simplify our examples, we will just
use the priority values from now on

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 32

Applications of Priority Queues

PQueues are a major and common ADT

 Forward network packets by urgency

 Execute work tasks in order of priority

 “critical” before “interactive” before
“compute-intensive” tasks

 allocating idle tasks in cloud environments

 A fairly efficient sorting algorithm

 Insert all items into the PQueue

 Keep calling deleteMin until empty

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 33

Advanced PQueue Applications

 “Greedy” algorithms

 Efficiently track what is “best” to try next

 Discrete event simulation (e.g., virtual worlds,
system simulation)

 Every event e happens at some time t and generates
new events e1, …, en at times t+t1, …, t+tn

 Naïve approach:

 Advance “clock” by 1, check for events at that time

 Better approach:

 Place events in a priority queue (priority = time)

 Repeatedly: deleteMin and then insert new events

 Effectively “set clock ahead to next event”

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 34

From ADT to Data Structure

 How will we implement our PQueue?

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 35

Insert Find Remove Delete

Unsorted Array O(1) O(n) O(1) O(n)

Unsorted Circular Array O(1) O(n) O(1) O(n)

Unsorted Linked List O(1) O(n) O(1) O(n)

Sorted Array O(n) O(log n) O(n/2) O(n/2)

Sorted Circular Array O(n/2) O(log n) O(n/2) O(n/2)

Sorted Linked List O(n) O(n) O(1) O(n)

Binary Search Tree O(n) O(n) O(n) O(n)

Balanced BST O(log n) O(log n) O(log n) O(log n)

 We need to add one more analysis to the
above: finding the min value

Finding the Minimum Value

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 36

FindMin

Unsorted Array

Unsorted Circular Array

Unsorted Linked List

Sorted Array

Sorted Circular Array

Sorted Linked List

Binary Search Tree

Balanced BST

Finding the Minimum Value

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 37

FindMin

Unsorted Array O(n)

Unsorted Circular Array O(n)

Unsorted Linked List O(n)

Sorted Array O(1)

Sorted Circular Array O(1)

Sorted Linked List O(1)

Binary Search Tree O(n)

Balanced BST O(log n)

Best Choice for the PQueue?

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 38

Insert FindMin+Remove

Unsorted Array O(1) O(n)+O(1)

Unsorted Circular Array O(1) O(n)+O(1)

Unsorted Linked List O(1) O(n)+O(1)

Sorted Array O(n) O(1)+O(n)

Sorted Circular Array O(n/2) O(1)+O(n/2)

Sorted Linked List O(n) O(1)+O(1)

Binary Search Tree O(n) O(n)+O(n)

Balanced BST O(log n) O(log n)+O(log n)

None are that great

We generally have to pay linear time for
either insert or deleteMin

 Made worse by the fact that:
inserts ≈ # deleteMins

Balanced trees seem to be the best
solution with O(log n) time for both

 But balanced trees are complex structures

 Do we really need all of that complexity?

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 39

Our Data Structure: The Heap

Key idea: Only pay for functionality needed

 Do better than scanning unsorted items

 But do not need to maintain a full sort

The Heap:

 O(log n) insert and O(log n) deleteMin

 If items arrive in random order, then the
average-case of insert is O(1)

 Very good constant factors

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 40

Reviewing Some Tree Terminology

root(T):

leaves(T):

children(B):

parent(H):

siblings(E):

ancestors(F):

descendents(G):

subtree(G):

A

E

B

D F

C

G

I H

L J M K N

Tree T A

D-F, I, J-N

D, E, F

G

D, F

B, A

H, I, J-N

G and its

children

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 41

Some More Tree Terminology

depth(B):

height(G):

height(T):

degree(B):

branching factor(T):

1

2

4

3

0-5

A

E

B

D F

C

G

I H

L J M K N

Tree T

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 42

Types of Trees

 Binary tree: Every node has ≤2 children

 n-ary tree: Every node as ≤n children

 Perfect tree: Every row is completely full

 Complete tree:
All rows except the bottom are completely
full, and it is filled from left to right

Perfect Tree Complete Tree

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 43

Some Basic Tree Properties

Nodes in a perfect binary tree of height h?

 2h+1-1

Leaves in a perfect binary tree of height h?

 2h

Height of a perfect binary tree with n nodes?

 ⌊log2 n⌋

Height of a complete binary tree with n nodes?

 ⌊log2 n⌋

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 44

Properties of a Binary Min-Heap

More commonly known as a binary heap
or simply a heap

 Structure Property:
A complete [binary] tree

 Heap Property:
The priority of every non-root node is
greater than the priority of its parent

How is this different from a binary
search tree?

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 45

Properties of a Binary Min-Heap

More commonly known as a binary heap
or simply a heap

 Structure Property:
A complete [binary] tree

 Heap Property:
The priority of every non-root node is
greater than the priority of its parent

25 13

80 20

30

99 60 40

80 20

10

50 700

85

A Heap Not a Heap

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 46

Properties of a Binary Min-Heap

 Where is the minimum priority item?

 At the root

 What is the height of a heap with n items?

 ⌊log2 n⌋

99 60 40

80 20

10

50 700

85

A Heap

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 47

Basics of Heap Operations

findMin:

 return root.data

deleteMin:

 Move last node up to root

 Violates heap property, so
Percolate Down to restore

insert:

 Add node after last position

 Violate heap property, so
Percolate Up to restore

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 48

99 60 40

80 20

10

50 700

85

The general idea:

 Preserve the complete
tree structure property

 This likely breaks the
heap property

 So percolate to restore
the heap property

DeleteMin Implementation

1. Delete value at root node (and store

it for later return)

2. There is now a "hole" at the root.
We must "fill" the hole with another
value, must have a tree with one
less node, and it must still be a
complete tree

3. The "last" node is the is obvious
choice, but now the heap property
is violated

4. We percolate down to fix the heap

While greater than either child

 Swap with smaller child

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11

10

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 49

Percolate Down

While greater than either child

 Swap with smaller child

What is the runtime?
O(log n)

Why does this work?
Both children are heaps

10

8 4

9 5 7

6 9 11

3

?
10 4

9 8 5 7

6 9 11

3

?

?

3 4

9 8 5 7

10

6 9 11

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 50

Insert Implementation

1. To maintain structure property,
there is only one node we can
insert into that keeps the tree
complete.

We put our new data there.

2. We then percolate up to fix
the heap property:

While less than parent

 Swap with parent

8 4

9 10 5 7

6 9 11

1

2

2

8 4

9 10 5 7

6 9 11

1

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 51

Percolate Up

2

8 4

9 10 5 7

6 9 11

1

?

2

5

8 4

9 10 7

6 9 11

1

?
2

5

8

9 10 4 7

6 9 11

1

?

What is the runtime?
O(log n)

Why does this work?
Both children are heaps

While less than parent

 Swap with parent

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 52

Achieving Average-Case O(1) insert

Clearly, insert and deleteMin are worst-case O(log n)

 But we promised average-case O(1) insert

Insert only requires finding that one special spot

 Walking the tree requires O(log n) steps

We should only pay for the functionality we need

 Why have we insisted the tree be complete?

All complete trees of size n contain the same edges

 So why are we even representing the edges?

Here comes the really clever bit
about implementing heaps!!!

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 53

Array Representation of a Binary Heap

From node i:

 left child: 2i

 right child: 2i+1

 parent: i / 2

 We skip index 0 to make the math simpler

 Actually, it can be a good place to store the
current size of the heap

 June 25, 2012 CSE 332 Data Abstractions, Summer 2012 54

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Pseudocode: insert

This pseudocode uses ints. In real use, you will have
data nodes with priorities.

void insert(int val) {

 if(size == arr.length-1)

 resize();

 size = size + 1;

 i = percolateUp(size, val);

 arr[i] = val;

}

int percolateUp(int hole, int val) {

 while(hole > 1 && val < arr[hole/2])

 arr[hole] = arr[hole/2];

 hole = hole / 2;

 }

 return hole;

}

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 55

Pseudocode: deleteMin

int deleteMin() {

 if(isEmpty()) throw…

 ans = arr[1];

 hole = percolateDown(1,arr[size]);

 arr[hole] = arr[size];

 size--;

 return ans;

}

This pseudocode uses ints. In real use, you will have
data nodes with priorities.

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 56

Pseudocode: deleteMin
int percolateDown(int hole, int val) {

 while(2 * hole <= size) {

 left = 2 * hole;

 right = left + 1;

 if(arr[left] < arr[right] || right > size)

 target = left;

 else

 target = right;

 if(arr[target] < val) {

 arr[hole] = arr[target];

 hole = target;

 }

 else

 break;

 }

 return hole;

}

Note that percolateDown is more

complicated than percolateUp because

a node might not have two children

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 57

Advantages of Array Implementation

Minimal amount of wasted space:

 Only index 0 and any unused space on right

 No "holes" due to complete tree property

 No wasted space representing tree edges

Fast lookups:

 Benefit of array lookup speed

 Multiplying and dividing by 2 is extremely
fast (can be done through bit shifting)

 Last used position is easily found by using
the PQueue's size for the index

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 58

Disadvantages of Array Implementation

May be too clever:

 Will you understand it at 3am three months
from now?

What if the array gets too full or too empty?

 Array will have to be resized

 Stretchy arrays give us O(1) amortized
performance

Advantages outweigh disadvantages:
This is how heaps are implemented.

Period.

 June 25, 2012 CSE 332 Data Abstractions, Summer 2012 59

So why O(1) average-case insert?

 Yes, insert's worst case is O(log n)

 The trick is that it all depends on the order
the items are inserted

 Experimental studies of randomly ordered
inputs shows the following:

 Average 2.607 comparisons per insert
(# of percolation passes)

 An element usually moves up 1.607 levels

 deleteMin is average O(log n)

 Moving a leaf to the root usually requires re-
percolating that value back to the bottom

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 60

MORE ON HEAPS

I promised you a small-town barber…

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 61

Other Common Heap Operations

decreaseKey(i, p): O(log n)

 given pointer to object in priority queue
(e.g., its array index), lower its priority to p

 Change priority and percolate up

increaseKey(i, p): O(log n)

 given pointer to object in priority queue
(e.g., its array index), raise its priority to p

 Change priority and percolate down

remove(i): O(log n)

 given pointer to object in priority queue
(e.g., its array index), remove it from the queue

 decreaseKey to p = -, then deleteMin

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 62

Building a Heap

Suppose you have n items to put in a new priority
queue… what is the complexity?

 Sequence of n inserts  O(n log n)
Worst-case is Θ(n log n)

Can we do better?

 If we only have access to the insert and deleteMin
operations, then NO

 There is a faster way, but that requires the ADT to
have buildHeap operation

When designing an ADT, adding more and more
specialized operations leads to tradeoffs with
Convenience, Efficiency, and Simplicity

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 63

Proof that n inserts can be Θ(n log n)

Worst performance is if insert has to percolate up to
the root (Occurs when inserted in reverse order)

If n = 7, worst case is

 insert(7) takes 0 percolations

 insert(6) takes 1 percolation

 insert(5) takes 1 percolation

 insert(4) takes 2 percolations

 insert(3) takes 2 percolations

 insert(2) takes 2 percolations

 insert(1) takes 2 percolations

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 64

More generally…

If 𝑛 = 2𝑘 − 1, then the worst-case number of

percolations will be:

0 ∙ 1 + 1 ∙ 2 + 2 ∙ 4 + 3 ∙ 8 + ⋯+ (k − 1) ∙ 2𝑘−1
= 0 ∙ 20 + 1 ∙ 21 + 2 ∙ 22 +⋯+ k − 1 ∙ 2𝑘−1

= 𝑖 ∙ 2𝑖
𝑘−1

0

If we focus on just the last item, then

𝑘 − 1 ∙ 2𝑘−1 = 𝑘 ∙ 2𝑘−1 − 2𝑘−1 = 𝑘2 2
𝑘−1 +

𝑘
2 −
1
2∙2
𝑘

= 1
2
n∙log2 𝑛 + log2 𝑛 − log2 𝑛+1

= Θ 𝑛 ∙ log 𝑛

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 65

BuildHeap using Floyd’s Algorithm
We can actually build a heap in O(n)

The trick is to use our general
strategy for working with the heap:

 Preserve structure property

 Break and restore heap property

Floyd's Algorithm:

 Create a complete tree by putting
the n items in array indices 1,…,n

 Fix the heap-order property

Thank you, Floyd the
barber, for your cool

O(n) algorithm!!

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 66

Floyd’s Algorithm

Bottom-up fixing of the heap

 Leaves are already in heap order

 Work up toward the root one level at a time

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 67

Example

 We use a tree for
readability purposes

 Red nodes are not
less than children

 No leaves are red

 We start at i=size/2
6 7 1 8

9 2 10 3

11 5

12

4

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 68

Example

6 7 1 8

9 2 10 3

11 5

12

4

i = 6, node is 2

no change is needed

6 7 1 8

9 2 10 3

11 5

12

4

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 69

Example

6 7 1 8

9 2 10 3

11 5

12

4

i = 5, node is 10

10 percolates down; 1 moves up

6 7 10 8

9 2 1 3

11 5

12

4

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 70

Example

6 7 10 8

9 2 1 3

11 5

12

4

i = 4, node is 3

no change is needed

6 7 10 8

9 2 1 3

11 5

12

4

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 71

Example

6 7 10 8

9 2 1 3

11 5

12

4

i = 3, node is 11

11 percolates down twice; 2 and 6 move up

11 7 10 8

9 6 1 3

2 5

12

4

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 72

Example

11 7 10 8

9 6 1 3

2 5

12

4

i = 2, node is 5

5 percolates down; 1 moves up (again)

11 7 10 8

9 6 5 3

2 1

12

4

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 73

Example

6 7 10 8

9 2 5 3

11 1

12

4

i = 1, node is 12

12 percolates down; 1, 3, and 4 move up

11 7 10 8

9 6 5 4

2 3

1

12

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 74

But is it right?

Floyd's algorithm "seems to work"

We will prove that it does work

 First we will prove it restores the heap
property (correctness)

 Then we will prove its running time
(efficiency)

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 75

Correctness

We claim the following is a loop invariant:

For all j>i, arr[j] is less than its children

True initially: If j > size/2, then j is a leaf

 Otherwise its left child would be at position > size

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 76

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

Correctness

We claim the following is a loop invariant:

For all j>i, arr[j] is less than its children

After an iteration: Still true

 We know that for j > i + 1, the heap property is
maintained (from previous iteration)

 percolateDown
maintains heap
property

 arr[i] is fixed by
percolate down

 Ergo, loop body
maintains the
invariant

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 77

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

Correctness

We claim the following is a loop invariant:

For all j>i, arr[j] is less than its children

Loop invariant implies that heap property is present

 Each node is less than its children

 We also know it is a complete tree

∴ It's a heap!

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 78

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

What type of
proof was this?

Efficiency

Easy argument: buildHeap is O(n log n)

 We perform n/2 loop iterations

 Each iteration does one percolateDown, and
costs O(log n)

This is correct,
but can make a
tighter analysis.

The heights of
each percolate
are different!

void buildHeap() {

 for(i = size/2; i>0; i--) {

 val = arr[i];

 hole = percolateDown(i,val);

 arr[hole] = val;

 }

}

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 79

Efficiency

Better argument: buildHeap is O(n)

 We perform n/2 loop iterations

 1/2 iterations percolate at most 1 step

 1/4 iterations percolate at most 2 steps

 1/8 iterations percolate at most 3 steps

 etc.

of percolations <
𝑛

2
∙
1

2
+
2

4
+
3

8
+ ⋯ =

𝑛

2
∙
𝑖

2𝑖𝑖
=
𝑛

2
∙ 2 = 𝑛

Ergo, buildHeap is O(n)

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 80

Proof of Summation

Let S =
𝑖

2𝑖𝑖
=
1

21
+
2

22
+
3

23
+
4

24
+⋯

Then 2S = 1 +
2

21
+
3

22
+
4

23
+
5

24
+⋯

Then 2S − S = 1 +
1

21
+
1

22
+
1

23
+⋯ = 2

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 81

Lessons from buildHeap

 Without buildHeap, the PQueue ADT
allows clients to implement their own
buildHeap with worst-case Θ(n log n)

 By providing a specialized operation
internal to the data structure (with
access to the internal data), we can do
a much better O(n) worst case

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 82

Our Analysis of buildHeap

Correctness:

 Example of a non-trivial inductive proof
using loop invariants

Efficiency:

 First analysis easily proved it was at
least O(n log n)

 A "tighter" analysis looked at individual
steps to show algorithm is O(n)

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 83

PARTING THOUGHTS ON
HEAPS

Unrelated but consider reading up on the Fallacy of the
Heap, also known as Loki's wager

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 84

What to take away

 Priority Queues are a simple to
understand ADT

 Making a useful data structure for them
is tricky

 Requires creative thinking for implementation

 Resulting array allows for amazing efficiency

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 85

What we are skipping (see textbook)

d-heaps: have d children instead of 2

 Makes heaps shallower which is useful for heaps
that are too big for memory

 The same issue arises for balanced binary search
trees (we will study “B-Trees”)

Merging heaps

 Given two PQueues, make one PQueue

 O(log n) merge impossible for binary heaps

 Can be done with specialized pointer structures

Binomial queues

 Collections of binary heap-like structures

 Allow for O(log n) insert, delete and merge

June 25, 2012 CSE 332 Data Abstractions, Summer 2012 86

