
CSE 332 Data Abstractions:

Dictionary ADT: Arrays, Lists
and Trees

Kate Deibel

Summer 2012

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 1

Where We Are
Studying the absolutely essential ADTs of
computer science and classic data structures for
implementing them

ADTs so far:

 Stack: push, pop, isEmpty, …

 Queue: enqueue, dequeue, isEmpty, …

 Priority queue: insert, deleteMin, …

Next:

 Dictionary/Map: key-value pairs

 Set: just keys

 Grabbag: random selection

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 2

MEET THE DICTIONARY
AND SET ADTS

Dictionary sometimes goes by Map. It's easier to spell.

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 3

Dictionary and Set ADTs

The ADTs we have already discussed are
mainly defined around actions:

 Stack: LIFO ordering

 Queue: FIFO ordering

 Priority Queue: ordering by priority

The Dictionary and Set ADTs are the same
except they focus on data storage/retrieval:

 insert information into structure

 find information in structure

 remove information from structure

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 4

A Key Idea

If you put marbles into a sack of marbles, how
do you get back your original marbles?

You only can do that if all
marbles are somehow unique.

The Dictionary and Set ADTs insist
that everything put inside of them must be
unique (i.e., no duplicates).

This is achieved through keys.

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 5

The Dictionary (a.k.a. Map) ADT

Data:

 Set of (key, value) pairs

 keys are mapped to values

 keys must be comparable

 keys must be unique

Standard Operations:

 insert(key, value)

 find(key)

 delete(key)

insert(deibel, ….)

find(swansond)

Swanson, David, …

Like with Priority Queues, we will tend
to emphasize the keys, but you should
not forget about the stored values

• jfogarty
James

 Fogarty

 …

• trobison
Tyler
Robison

 …

• swansond
David
Swanson,

 …

• deibel

 Katherine,
Deibel
…

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 6

The Set ADT

Data:

 keys must be comparable

 keys must be unique

Standard Operations:

 insert(key)

 find(key)

 delete(key)

insert(deibel)

find(swansond)

swansond

• jfogarty

• trobison

• swansond

• deibel

• djg

• tompa

• tanimoto

• rea

…

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 7

Comparing Set and Dictionary

Set and Dictionary are essentially the same

 Set has no values and only keys

 Dictionary's values are "just along for the ride"

 The same data structure ideas thus work for
both dictionaries and sets

 We will thus focus on implementing dictionaries

But this may not hold if your Set ADT has other
important mathematical set operations

 Examples: union, intersection, isSubset, etc.

 These are binary operators on sets

 There are better data structures for these

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 8

A Modest Few Uses

Any time you want to store information
according to some key and then be able to
retrieve it efficiently, a dictionary helps:

 Networks: router tables

 Operating systems: page tables

 Compilers: symbol tables

 Databases: dictionaries with other
 nice properties

 Search: inverted indexes,
 phone directories, …

 And many more

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 9

But wait…

No duplicate keys? Isn't this limiting?
Duplicate data occurs all the time!?

Yes, but dictionaries can handle this:

 Complete duplicates are rare. Use a
different field(s) for a better key

 Generate unique keys for each entry
(this is how hashtables work)

 Depends on why you want duplicates

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 10

Example: Dictionary for Counting

One example where duplicates occur is
calculating frequency of occurrences

To count the occurrences of words in a story:

 Each dictionary entry is keyed by the word

 The related value is the count

 When entering words into dictionary

 Check if word is already there

 If no, enter it with a value of 1

 If yes, increment its value

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 11

IMPLEMENTING THE
DICTIONARY

Calling Noah Webster…

or at least a Civil War veteran in a British sanatorium…

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 12

Some Simple Implementations

Arrays and linked lists are viable options, just
not great particular good ones.

For a dictionary with n key/value pairs, the
worst-case performances are:

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 13

Insert Find Delete

Unsorted Array O(1) O(n) O(n)

Unsorted Linked List O(1) O(n) O(n)

Sorted Array O(n) O(log n) O(n)

Sorted Linked List O(n) O(n) O(n)

Again, the
array shifting

is costly

Lazy Deletion in Sorted Arrays

Instead of actually removing an item from the sorted
array, just mark it as deleted using an extra array

Advantages:

 Delete is now as fast as find: O(log n)

 Can do removals later in batches

 If re-added soon thereafter, just unmark the deletion

Disadvantages:

 Extra space for the “is-it-deleted” flag

 Data structure full of deleted nodes wastes space

 find O(log m) time (m is data-structure size)

 May complicate other operations

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 14

10 12 24 30 41 42 44 45 50

        

Better Dictionary Data Structures

The next several lectures will dicuss implementing
dictionaries with several different data structures

AVL trees

 Binary search trees with guaranteed balancing

Splay Trees

 BSTs that move recently accessed nodes to the root

B-Trees

 Another balanced tree but different and shallower

Hashtables

 Not tree-like at all

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 15

See a Pattern?

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 16

TREES!!

Why Trees?

Trees offer speed ups because of their
branching factors

 Binary Search Trees are structured forms
of binary search

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 17

Binary Search

3 4 5 7 8 9 10 1

find(4)

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 18

Binary Search Tree

Our goal is the performance of binary search
in a tree representation

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 19

3 4 5 7 8 9 10 1

Why Trees?

Trees offer speed ups because of their
branching factors

 Binary Search Trees are structured forms
of binary search

Even a basic BST is fairly good

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 20

Insert Find Delete

Worse-Case O(n) O(n) O(n)

Average-Case O(log n) O(log n) O(log n)

BINARY SEARCH TREES:
A REVIEW

Cats like to climb trees… my Susie prefers boxes…

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 21

Binary Trees

A non-empty binary tree consists of a

 a root (with data)

 a left subtree (may be empty)

 a right subtree (may be empty)

Representation:

 For a dictionary, data will
include a key and a value

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 22

Data

right
pointer

left
pointer

A

B

D E

C

F

H G

J I

Tree Traversals

Pre-Order: root, left subtree, right subtree

+ * 2 4 5

In-Order: left subtree, root, right subtree

2 * 4 + 5

Post-Order:left subtree, right subtree, root

2 4 * 5 +

+

*

2 4

5

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 23

A traversal is a recursively defined order
for visiting all the nodes of a binary tree

Binary Search Trees

BSTs are binary trees with the following
added criteria:

 Each node has a key for
comparing nodes

 Keys in left subtree are
smaller than node’s key

 Keys in right subtree
are larger than node’s key

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 24

A

B

D E

C

F

H G

J I

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 25

Are these BSTs?

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21

7

15

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 26

Calculating Height

What is the height of a BST with root r?

Running time for tree with n nodes:

 O(n) – single pass over tree

How would you do this without recursion?

Stack of pending nodes, or use two queues

 June 27, 2012 CSE 332 Data Abstractions, Summer 2012 27

int treeHeight(Node root) {
 if(root == null)
 return -1;

 return 1 + max(treeHeight(root.left),
 treeHeight(root.right));

}

Find in BST, Recursive

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 28

20 9 2

15 5

12

30 7 17 10

Data find(Key key, Node root){

 if(root == null)

 return null;

 if(key < root.key)

 return find(key, root.left);

 if(key > root.key)

 return find(key, root.right);

 return root.data;

}

Find in BST, Iterative

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 29

Data find(Key key, Node root){

 while(root != null && root.key != key) {

 if(key < root.key)

 root = root.left;

 else(key > root.key)

 root = root.right;

 }

 if(root == null)

 return null;

 return root.data;

}
20 9 2

15 5

12

30 7 17 10

Performance of Find

We have already said it is worst-case O(n)

Average case is O(log n)

But if want to be exact, the time to find
node x is actually Θ(depth of x in tree)

 If we can bound the depth of nodes, we
automatically bound the time for find()

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 30

Other “Finding” Operations

 Find minimum node

 Find maximum node

 Find predecessor of a non-leaf

 Find successor of a non-leaf

 Find predecessor of a leaf

 Find successor of a leaf

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 31

20 9 2

15 5

12

30 7 17 10

Insert in BST

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 32

insert(13)

insert(8)

insert(31)

20 9 2

15 5

12

30 7 17 10

Insert in BST

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 33

insert(13)

insert(8)

insert(31)

9 2

15 5

12

7

20

30 17 10

13

Insert in BST

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 34

insert(13)

insert(8)

insert(31)

9 2

15 5

12

7

20

30 17 10

13

8

Insert in BST

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 35

insert(13)

insert(8)

insert(31)

9 2

15 5

12

7

20

30 17 10

13

8 31

Insert in BST

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 36

The code for insert is the
same as with find except
you add a node when you
fail to find it.

What makes it easy is that
inserts only happen at the
leaves.

9 2

15 5

12

7

20

30 17 10

13

8 31

Deletion in BST

20 9 2

15 5

12

30 7 17

Why might deletion be harder
than insertion?

10

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 37

Deletion

Removing an item disrupts the tree structure

Basic idea:

 find the node to be removed,

 Remove it

 Fix the tree so that it is still a BST

Three cases:

 node has no children (leaf)

 node has one child

 node has two children

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 38

Deletion – The Leaf Case

This is by far the easiest case… you just
cut off the node and correct its parent

20 9 2

15 5

12

30 7 17

delete(17)

10

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 39

Deletion – The One Child Case

If there is only one child, we just pull up
the child to take its parents place

delete(15)

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 40

20 9 2

15 5

12

30 7 10

20

9 2

5

12

30

7 10

Deletion – The Two Child Case

Deleting a node with two children is the
most difficult case. We need to replace the
deleted node with another node.

What node is the best
to replace 5 with?

30 9 2

20 5

12

7 10 delete(5)

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 41

Deletion – The Two Child Case

Idea: Replace the deleted node with a value
 guaranteed to be between the node's
 two child subtrees

Options are

 successor from right subtree: findMin(node.right)

 predecessor from left subtree: findMax(node.left)

 These are the easy cases of predecessor/successor

Either option is fine as both are guaranteed
to exist in this case

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 42

Delete Using Successor

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 43

30 9 2

20 5

12

7 10

delete(5)

findMin(right sub tree)  7

30 9 2

20 7

12

10

Delete Using Predecessor

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 44

30 9 2

20 5

12

7 10

delete(5)

findMax(left sub tree)  2

30 9

20 2

12

7 10

BuildTree for BST

We had buildHeap, so let’s consider buildTree

Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an
empty tree

 If inserted in given order,
what is the tree?

 What big-O runtime for
this kind of sorted input?

 Is inserting in the reverse
order any better?

 June 27, 2012 CSE 332 Data Abstractions, Summer 2012 45

1

2

3

O(n2) 9

8

7

BuildTree for BST (take 2)

What if we rearrange the keys?

 median first, then left median, right median,
etc.  5, 3, 7, 2, 1, 4, 8, 6, 9

What tree does that give us?

What big-O runtime?

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 46

8 4 2

7 3

5

9

6

1

O(n log n)

Give up on BuildTree

The median trick will guarantee a O(n log n)
build time, but it is not worth the effort.

Why?

 Subsequent inserts and deletes will
eventually transform the carefully
balanced tree into the dreaded list

 Then everything will have the O(n)
performance of a linked list

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 47

Achieving a Balanced BST (part 1)

For a BST with n nodes inserted in
arbitrary order

 Average height is O(log n) – see text

 Worst case height is O(n)

 Simple cases, such as pre-sorted, lead to
worst-case scenario

 Inserts and removes can and will destroy
the balance

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 48

Achieving a Balanced BST (part 2)

Shallower trees give better performance

 This happens when the tree's height is
O(log n)  like a perfect or complete tree

Solution: Require a Balance Condition that

1. ensures depth is always O(log n)

2. is easy to maintain

Doing so will take some careful data structure
implementation… Monday's topic

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 49

DATA STRUCTURE
SCENARIOS

Time to put your learning into practice…

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 50

About Scenarios

We will try to use lecture time to get some
experience in manipulating data structures

 We will do these in small groups then share
them with the class

 We will shake up the groups from time to
time to get different experiences

For any data structure scenario problem:

 Make any assumptions you need to

 There are no “right” answers for any of
these questions

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 51

GrabBag
A GrabBag is used use for choosing a random element
from a collection. GrabBags are useful for simulating
random draws without repetition, like drawing cards from
a deck or numbers in a bingo game.

GrabBag Operations:

 Insert(item e): e is inserted into the grabbag

 Grab(): if not empty, return a random element

 Size(): return how many items are in the grabbag

 List(): return a list of all items in the grabbag

In groups:

 Describe how you would implement a GrabBag.

 Discuss the time complexities of each of the operations.

 How complex are calls to random number generators?

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 52

Improving Linked Lists

For reasons beyond your control, you have
to work with a very large linked list. You
will be doing many finds, inserts, and
deletes. Although you cannot stop using a
linked list, you are allowed to modify the
linked structure to improve performance.

What can you do?

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 53

