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Where We Are 
Studying the absolutely essential ADTs of 
computer science and classic data structures for 
implementing them 

 

ADTs so far: 

 Stack:  push, pop, isEmpty, … 

 Queue:  enqueue, dequeue, isEmpty, … 

 Priority queue: insert, deleteMin, … 
 

Next:  

 Dictionary/Map: key-value pairs 

 Set:  just keys 

 Grabbag:  random selection 
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MEET THE DICTIONARY 
AND SET ADTS 

Dictionary sometimes goes by Map. It's easier to spell. 
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Dictionary and Set ADTs 

The ADTs we have already discussed are 
mainly defined around actions: 

 Stack: LIFO ordering 

 Queue: FIFO ordering 

 Priority Queue: ordering by priority 

 

The Dictionary and Set ADTs are the same 
except they focus on data storage/retrieval: 

 insert information into structure 

 find information in structure 

 remove information from structure 
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A Key Idea 

If you put marbles into a sack of marbles, how 
do you get back your original marbles? 

 

You only can do that if all  
marbles are somehow unique. 

 

The Dictionary and Set ADTs insist  
that everything put inside of them must be 
unique (i.e., no duplicates).  

 

This is achieved through keys. 
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The Dictionary (a.k.a. Map) ADT 

Data: 

 Set of (key, value) pairs 

 keys are mapped to values 

 keys must be comparable 

 keys must be unique 
 

Standard Operations: 

 insert(key, value) 

 find(key) 

 delete(key) 

insert(deibel, ….) 

find(swansond) 

Swanson, David, … 

Like with Priority Queues, we will tend 
to emphasize the keys, but you should 
not forget about the stored values 

• jfogarty 
James 

 Fogarty 

 … 

 

• trobison 
Tyler 
Robison 

 … 

• swansond 
David 
Swanson, 

 … 

 

• deibel 

 Katherine, 
Deibel 
… 
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The Set ADT 

Data: 

 keys must be comparable 

 keys must be unique 
 

Standard Operations: 

 insert(key) 

 find(key) 

 delete(key) 

 

insert(deibel) 

find(swansond) 

swansond 

• jfogarty 

• trobison 

• swansond 

• deibel 

• djg 

• tompa 

• tanimoto 

• rea 

… 
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Comparing Set and Dictionary 

Set and Dictionary are essentially the same 

 Set has no values and only keys 

 Dictionary's values are "just along for the ride" 

 The same data structure ideas thus work for 
both dictionaries and sets 

 We will thus focus on implementing dictionaries 
 

But this may not hold if your Set ADT has other 
important mathematical set operations  

 Examples: union, intersection, isSubset, etc. 

 These are binary operators on sets 

 There are better data structures for these  
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A Modest Few Uses 

Any time you want to store information 
according to some key and then be able to 
retrieve it efficiently, a dictionary helps: 

 

 Networks:  router tables 

 Operating systems:  page tables 

 Compilers:  symbol tables 

 Databases:  dictionaries with other 
 nice properties 

 Search: inverted indexes, 
 phone directories, … 

 And many more 
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But wait… 

No duplicate keys? Isn't this limiting? 
Duplicate data occurs all the time!? 

 

Yes, but dictionaries can handle this: 

 Complete duplicates are rare. Use a 
different field(s) for a better key  

 Generate unique keys for each entry 
(this is how hashtables work) 

 Depends on why you want duplicates 
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Example: Dictionary for Counting 

One example where duplicates occur is 
calculating frequency of occurrences 

 

To count the occurrences of words in a story: 

 Each dictionary entry is keyed by the word 

 The related value is the count 

 When entering words into dictionary 

 Check if word is already there 

 If no, enter it with a value of 1 

 If yes, increment its value 
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IMPLEMENTING THE 
DICTIONARY 

Calling Noah Webster…  

or at least a Civil War veteran in a British sanatorium… 
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Some Simple Implementations 

Arrays and linked lists are viable options, just 
not great particular good ones. 
 

For a dictionary with n key/value pairs, the  
worst-case performances are: 

 

 

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 13 

Insert Find Delete 

Unsorted Array O(1) O(n) O(n) 

Unsorted Linked List O(1) O(n) O(n) 

Sorted Array O(n) O(log n) O(n) 

Sorted Linked List O(n) O(n) O(n) 

Again, the 
array shifting 

is costly 



Lazy Deletion in Sorted Arrays 

Instead of actually removing an item from the sorted 
array, just mark it as deleted using an extra array 

 

Advantages: 

 Delete is now as fast as find: O(log n) 

 Can do removals later in batches 

 If re-added soon thereafter, just unmark the deletion 
 

Disadvantages: 

 Extra space for the “is-it-deleted” flag 

 Data structure full of deleted nodes wastes space 

 find O(log m) time (m is data-structure size) 

 May complicate other operations 
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Better Dictionary Data Structures 

The next several lectures will dicuss implementing 
dictionaries with several different data structures 

 

AVL trees 

 Binary search trees with guaranteed balancing 
 

Splay Trees 

 BSTs that move recently accessed nodes to the root 
 

B-Trees 

 Another balanced tree but different and shallower 
 

Hashtables 

 Not tree-like at all 

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 15 



See a Pattern? 
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TREES!! 



Why Trees? 

Trees offer speed ups because of their 
branching factors 

 Binary Search Trees are structured forms 
of binary search 
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Binary Search 

3 4 5 7 8 9 10 1 

find(4) 
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Binary Search Tree 

Our goal is the performance of binary search 
in a tree representation 
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Why Trees? 

Trees offer speed ups because of their 
branching factors 

 Binary Search Trees are structured forms 
of binary search 

 

Even a basic BST is fairly good 
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Insert Find Delete 

Worse-Case O(n) O(n) O(n) 

Average-Case O(log n) O(log n) O(log n) 



BINARY SEARCH TREES: 
A REVIEW 

Cats like to climb trees… my Susie prefers boxes… 
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Binary Trees 

A non-empty binary tree consists of a  

 a root (with data) 

 a left subtree (may be empty)  

 a right subtree (may be empty)  
 

 

Representation: 

 

 

 
 

 For a dictionary, data will  
include a key and a value 
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Data 

right  
pointer 

left 
pointer 

A 

B 

D E 

C 

F 

H G 

J I 



Tree Traversals 

Pre-Order: root, left subtree, right subtree 

+ * 2 4 5 
 

In-Order: left subtree, root, right subtree 

2 * 4 + 5 
 

Post-Order:left subtree, right subtree, root 

2 4 * 5 + 

+ 

* 

2 4 

5 
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A traversal is a recursively defined order  
for visiting all the nodes of a binary tree 



Binary Search Trees 

BSTs are binary trees with the following 
added criteria: 

 Each node has a key for 
comparing nodes 

 Keys in left subtree are  
smaller than node’s key 

 Keys in right subtree  
are larger than node’s key 
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A 

B 

D E 

C 

F 

H G 

J I 



Are these BSTs? 

3 

11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 

7 

15 
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Are these BSTs? 

3 

11 7 1 

8 4 

5 

4 

18 10 6 2 

11 5 

8 

20 

21 

7 

15 
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Calculating Height 

What is the height of a BST with root  r? 

 

 

 

 

 

Running time for tree with n nodes:  

 O(n) – single pass over tree 
 

How would you do this without recursion? 

Stack of pending nodes, or use two queues 
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int treeHeight(Node root) { 
  if(root == null) 
    return -1; 
 
  return 1 + max(treeHeight(root.left), 
                 treeHeight(root.right)); 

} 



Find in BST, Recursive 
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20 9 2 

15 5 

12 

30 7 17 10 

Data find(Key key, Node root){ 

 if(root == null) 

   return null; 

 if(key < root.key) 

   return find(key, root.left); 

 if(key > root.key) 

   return find(key, root.right); 

 return root.data; 

} 



Find in BST, Iterative 
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Data find(Key key, Node root){ 

 while(root != null && root.key != key) { 

  if(key < root.key) 

    root = root.left; 

  else(key > root.key) 

    root = root.right; 

 } 

 if(root == null) 

    return null; 

 return root.data; 

} 
20 9 2 

15 5 

12 

30 7 17 10 



Performance of Find 

We have already said it is worst-case O(n) 

 

Average case is O(log n) 

 

But if want to be exact, the time to find 
node x is actually Θ(depth of x in tree) 

 If we can bound the depth of nodes, we 
automatically bound the time for find() 
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Other “Finding” Operations 

 Find minimum node 

 Find maximum node 

 Find predecessor of a non-leaf 

 Find successor of a non-leaf 

 Find predecessor of a leaf 

 Find successor of a leaf 
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20 9 2 

15 5 

12 

30 7 17 10 



Insert in BST 
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insert(13) 

insert(8) 

insert(31) 

20 9 2 

15 5 

12 

30 7 17 10 



Insert in BST 
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insert(13) 

insert(8) 

insert(31) 

9 2 

15 5 

12 

7 

20 

30 17 10 

13 



Insert in BST 
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insert(13) 

insert(8) 

insert(31) 

9 2 

15 5 

12 

7 

20 

30 17 10 

13 

8 



Insert in BST 
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insert(13) 

insert(8) 

insert(31) 

9 2 

15 5 

12 

7 

20 

30 17 10 

13 

8 31 



Insert in BST 
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The code for insert is the 
same as with find except 
you add a node when you 
fail to find it. 

What makes it easy is that 
inserts only happen at the 
leaves.   

9 2 

15 5 

12 

7 

20 

30 17 10 

13 

8 31 



Deletion in BST 

20 9 2 

15 5 

12 

30 7 17 

Why might deletion be harder 
than insertion? 

10 
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Deletion 

Removing an item disrupts the tree structure 
 

Basic idea:  

 find the node to be removed,  

 Remove it 

 Fix the tree so that it is still a BST 
 

Three cases: 

 node has no children (leaf) 

 node has one child 

 node has two children 

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 38 



Deletion – The Leaf Case 

This is by far the easiest case… you just 
cut off the node and correct its parent 

20 9 2 

15 5 

12 

30 7 17 

delete(17) 

10 
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Deletion – The One Child Case 

If there is only one child, we just pull up 
the child to take its parents place 

delete(15) 
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20 9 2 

15 5 

12 

30 7 10 

20 

9 2 

5 

12 

30 

7 10 



Deletion – The Two Child Case 

Deleting a node with two children is the 
most difficult case. We need to replace the 
deleted node with another node. 

 

What node is the best 
to replace 5 with? 

30 9 2 

20 5 

12 

7 10 delete(5) 
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Deletion – The Two Child Case 

Idea: Replace the deleted node with a value 
 guaranteed to be between the node's 
 two child subtrees 

 

Options are  

 successor from right subtree: findMin(node.right) 

 predecessor from left subtree: findMax(node.left) 

 These are the easy cases of predecessor/successor 
 

Either option is fine as both are guaranteed 
to exist in this case 
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Delete Using Successor  
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30 9 2 

20 5 

12 

7 10 

delete(5) 

findMin(right sub tree)  7 

30 9 2 

20 7 

12 

10 



Delete Using Predecessor 

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 44 

30 9 2 

20 5 

12 

7 10 

delete(5) 

findMax(left sub tree)  2 

30 9 

20 2 

12 

7 10 



BuildTree for BST 

We had buildHeap, so let’s consider buildTree 
 

Insert keys 1, 2, 3, 4, 5, 6, 7, 8, 9 into an 
empty tree 

 If inserted in given order,  
what is the tree?  

  

 What big-O runtime for  
this kind of sorted input? 

 

 Is inserting in the reverse  
order any better? 
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1 

2 

3 

O(n2) 9 

8 

7 



BuildTree for BST (take 2) 

What if we rearrange the keys? 

 median first, then left median, right median, 
etc.  5, 3, 7, 2, 1, 4, 8, 6, 9  

 

What tree does that give us?  
 

What big-O runtime? 
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8 4 2 

7 3 

5 

9 

6 

1 

O(n log n) 



Give up on BuildTree 

The median trick will guarantee a O(n log n) 
build time, but it is not worth the effort. 

 

Why? 

 Subsequent inserts and deletes will 
eventually transform the carefully 
balanced tree into the dreaded list 

 Then everything will have the O(n) 
performance of a linked list 
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Achieving a Balanced BST (part 1) 

For a BST with n nodes inserted in 
arbitrary order 

 Average height is O(log n) – see text  

 Worst case height is O(n) 

 Simple cases, such as pre-sorted, lead to 
worst-case scenario 

 Inserts and removes can and will destroy 
the balance 
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Achieving a Balanced BST (part 2) 

Shallower trees give better performance 

 This happens when the tree's height is  
O(log n)  like a perfect or complete tree 

 

Solution: Require a Balance Condition that 

1. ensures depth is always O(log n) 

2. is easy to maintain  

 

Doing so will take some careful data structure 
implementation… Monday's topic 
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DATA STRUCTURE 
SCENARIOS 

Time to put your learning into practice… 
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About Scenarios 

We will try to use lecture time to get some 
experience in manipulating data structures 

 We will do these in small groups then share 
them with the class 

 We will shake up the groups from time to 
time to get different experiences 

 

For any data structure scenario problem: 

 Make any assumptions you need to   

 There are no “right” answers for any of 
these questions 
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GrabBag 
A GrabBag is used use for choosing a random element 
from a collection. GrabBags are useful for simulating 
random draws without repetition, like drawing cards from 
a deck or numbers in a bingo game.  
 

GrabBag Operations: 

 Insert(item e): e is inserted into the grabbag 

 Grab(): if not empty, return a random element  

 Size(): return how many items are in the grabbag 

 List(): return a list of all items in the grabbag 
 

In groups: 

 Describe how you would implement a GrabBag.   

 Discuss the time complexities of each of the operations.  

 How complex are calls to random number generators? 
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Improving Linked Lists 

For reasons beyond your control, you have 
to work with a very large linked list. You 
will be doing many finds, inserts, and 
deletes. Although you cannot stop using a 
linked list, you are allowed to modify the 
linked structure to improve performance. 

 

What can you do? 
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