
CSE 332 Data Abstractions:

B Trees and Hash Tables
Make a Complete Breakfast

Kate Deibel

Summer 2012

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 1

HASH TABLES

The national data structure of the Netherlands

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 2

Hash Tables

A hash table is an array of some fixed size

Basic idea:

The goal:

Aim for constant-time find, insert, and delete "on
average" under reasonable assumptions

 0

⁞

size -1

hash function:

index = h(key)

hash table

key space (e.g., integers, strings)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 3

An Ideal Hash Functions

 Is fast to compute

 Rarely hashes two keys to the same index

 Known as collisions

 Zero collisions often impossible in theory but
reasonably achievable in practice

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 4

 0

⁞

size -1

hash function:

index = h(key)

key space (e.g., integers, strings)

What to Hash?

We will focus on two most common things to
hash: ints and strings

If you have objects with several fields, it is
usually best to hash most of the "identifying
fields" to avoid collisions:

class Person {

 String firstName, middleName, lastName;

 Date birthDate;

 …

}

An inherent trade-off:

hashing-time vs. collision-avoidance

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 5

use these four values

Hashing Integers

key space = integers

Simple hash function:

 h(key) = key % TableSize

 Client: f(x) = x

 Library: g(x) = f(x) % TableSize

 Fairly fast and natural

Example:

 TableSize = 10

 Insert keys 7, 18, 41, 34, 10

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 6

0

1

2

3

4

5

6

7

8

9

7

18

41

34

10

Hashing non-integer keys

If keys are not ints, the client must provide a
means to convert the key to an int

Programming Trade-off:

 Calculation speed

 Avoiding distinct keys hashing to same ints

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 7

Hashing Strings

Key space K = s0s1s2…sk-1
where si are chars: si  [0, 256]

Some choices: Which ones best avoid collisions?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 8

h K = s0 % TableSize

h K = si

k−1

i=0

 % TableSize

h K = si ∙ 37
𝑖

k−1

i=0

 % TableSize

Combining Hash Functions
A few rules of thumb / tricks:

1. Use all 32 bits (be careful with negative numbers)

2. Use different overlapping bits for different parts of the hash

 This is why a factor of 37i works better than 256i

 Example: "abcde" and "ebcda"

3. When smashing two hashes into one hash, use bitwise-xor

 bitwise-and produces too many 0 bits

 bitwise-or produces too many 1 bits

4. Rely on expertise of others; consult books and other

resources for standard hashing functions

5. Advanced: If keys are known ahead of time, a perfect hash

can be calculated

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 9

COLLISION RESOLUTION

Calling a State Farm agent is not an option…

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 10

Collision Avoidance

With (x%TableSize), number of collisions depends on

 the ints inserted

 TableSize

Larger table-size tends to help, but not always

 Example: 70, 24, 56, 43, 10
with TableSize = 10 and TableSize = 60

Technique: Pick table size to be prime. Why?

 Real-life data tends to have a pattern,

 "Multiples of 61" are probably less likely than
"multiples of 60"

 Some collision strategies do better with prime size

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 11

Collision Resolution

Collision:

When two keys map to the same location
in the hash table

We try to avoid it, but the number of keys
always exceeds the table size

Ergo, hash tables generally must support
some form of collision resolution

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 12

Flavors of Collision Resolution

Separate Chaining

Open Addressing

 Linear Probing

 Quadratic Probing

 Double Hashing

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 13

Terminology Warning

We and the book use the terms

 "chaining" or "separate chaining"

 "open addressing"

Very confusingly, others use the terms

 "open hashing" for "chaining"

 "closed hashing" for "open addressing"

We also do trees upside-down

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 14

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 15

0 /

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 16

0

1 /

2 /

3 /

4 /

5 /

6 /

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 17

0

1 /

2

3 /

4 /

5 /

6 /

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

22 /

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 18

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

22 /

86 /

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 19

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

12

86 /

22 /

Separate Chaining

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 20

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

All keys that map to the same
table location are kept in a linked
list (a.k.a. a "chain" or "bucket")

As easy as it sounds

Example:
 insert 10, 22, 86, 12, 42
 with h(x) = x % 10

10 /

42

86 /

12 22 /

Thoughts on Separate Chaining

Worst-case time for find?

 Linear

 But only with really bad luck or bad hash function

 Not worth avoiding (e.g., with balanced trees at each bucket)

 Keep small number of items in each bucket

 Overhead of tree balancing not worthwhile for small n

Beyond asymptotic complexity, some "data-structure
engineering" can improve constant factors

 Linked list, array, or a hybrid

 Insert at end or beginning of list

 Sorting the lists gains and loses performance

 Splay-like: Always move item to front of list

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 21

Rigorous Separate Chaining Analysis

The load factor, , of a hash table is calculated as

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

where n is the number of items currently in the table

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 22

Load Factor?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 23

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ? =
5

10
= 0.5

Load Factor?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 24

0

1

2

3

4 /

5

6

7

8

9

10 /

42

86 /

12 22 /

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ? =
21

10
= 2.1

71 2 31 /

63 73 /

75 5 65 95 /

27 47

88 18 38 98 /

99 /

Rigorous Separate Chaining Analysis

The load factor, , of a hash table is calculated as

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

where n is the number of items currently in the table

Under chaining, the average number of elements per
bucket is ___

So if some inserts are followed by random finds, then
on average:

 Each unsuccessful find compares against ___ items

 Each successful find compares against ___ items

How big should TableSize be??

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 25

Rigorous Separate Chaining Analysis

The load factor, , of a hash table is calculated as

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

where n is the number of items currently in the table

Under chaining, the average number of elements per
bucket is 

So if some inserts are followed by random finds, then
on average:

 Each unsuccessful find compares against  items

 Each successful find compares against  items

 If  is low, find and insert likely to be O(1)

 We like to keep  around 1 for separate chaining

 July 9, 2012 CSE 332 Data Abstractions, Summer 2012 26

Separate Chaining Deletion

Not too bad and quite easy

 Find in table

 Delete from bucket

Similar run-time as insert

 Sensitive to underlying
bucket structure

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 27

0

1 /

2

3 /

4 /

5 /

6

7 /

8 /

9 /

10 /

42

86 /

12 22 /

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell

 No linked lists or buckets

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0

1

2

3

4

5

6

7

8

9

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 28

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell (no linked
list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0

1

2

3

4

5

6

7

8 38

9

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 29

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell
(no linked list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0

1

2

3

4

5

6

7

8 38

9 19

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 30

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell
(no linked list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0 8

1

2

3

4

5

6

7

8 38

9 19

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 31

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell
(no linked list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0 8

1 79

2

3

4

5

6

7

8 38

9 19

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 32

Open Addressing: Linear Probing

Separate chaining does not use all the
space in the table. Why not use it?

 Store directly in the array cell
(no linked list or buckets)

How to deal with collisions?

If h(key) is already full,

try (h(key) + 1) % TableSize. If full,

try (h(key) + 2) % TableSize. If full,

try (h(key) + 3) % TableSize. If full…

Example: insert 38, 19, 8, 79, 10

0 8

1 79

2 10

3

4

5

6

7

8 38

9 19

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 33

Load Factor?

0 8

1 79

2 10

3

4

5

6

7

8 38

9 19

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 34

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ? =
5

10
= 0.5

Can the load factor when using
linear probing ever exceed 1.0?

Nope!!

Open Addressing in General

This is one example of open addressing

Open addressing means resolving collisions by trying
a sequence of other positions in the table

Trying the next spot is called probing

 We just did linear probing
h(key) + i) % TableSize

 In general have some probe function f and use
h(key) + f(i) % TableSize

Open addressing does poorly with high load factor 

 So we want larger tables

 Too many probes means we lose our O(1)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 35

Open Addressing: Other Operations

insert finds an open table position using a probe
function

What about find?

 Must use same probe function to "retrace the
trail" for the data

 Unsuccessful search when reach empty position

What about delete?

 Must use "lazy" deletion. Why?

 Marker indicates "data was here, keep on probing"

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 36

10  / 23 / / 16  26

Primary Clustering

It turns out linear probing is a bad idea, even
though the probe function is quick to compute
(which is a good thing)

 This tends to produce
clusters, which lead to
long probe sequences

 This is called primary
clustering

 We saw the start of a
cluster in our linear
probing example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 37

[R. Sedgewick]

Analysis of Linear Probing

Trivial fact:
For any  < 1, linear probing will find an empty slot

 We are safe from an infinite loop unless table is full

Non-trivial facts (we won’t prove these):

Average # of probes given load factor 

 For an unsuccessful search as TableSize → ∞:
1

2
1 +

1

(1 − 𝜆)2

 For an successful search as TableSize → ∞:
1

2
1 +

1

(1 − 𝜆)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 38

Analysis in Chart Form

Linear-probing performance degrades rapidly as
the table gets full

 The Formula does assumes a "large table" but
the point remains

Note that separate chaining performance is linear
in  and has no trouble with  > 1

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 39

Open Addressing: Quadratic Probing

We can avoid primary clustering by changing the
probe function from just i to f(i)

(h(key) + f(i)) % TableSize

For quadratic probing, f(i) = i2:

0th probe: (h(key) + 0) % TableSize

1st probe: (h(key) + 1) % TableSize

2nd probe: (h(key) + 4) % TableSize

3rd probe: (h(key) + 9) % TableSize

…

ith probe: (h(key) + i2) % TableSize

Intuition: Probes quickly "leave the neighborhood"

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 40

Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 41

0

1

2

3

4

5

6

7

8

9

TableSize = 10

insert(89)

Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 42

0

1

2

3

4

5

6

7

8

9 89

TableSize = 10

insert(89)

insert(18)

Quadratic Probing Example

TableSize = 10

insert(89)

insert(18)

insert(49)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 43

0

1

2

3

4

5

6

7

8 18

9 89

Quadratic Probing Example

TableSize = 10

insert(89)

insert(18)

insert(49)

49 % 10 = 9 collision!

(49 + 1) % 10 = 0

insert(58)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 44

0 49

1

2

3

4

5

6

7

8 18

9 89

Quadratic Probing Example

TableSize = 10

insert(89)

insert(18)

insert(49)

insert(58)

58 % 10 = 8 collision!

(58 + 1) % 10 = 9 collision!

(58 + 4) % 10 = 2

insert(79)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 45

0 49

1

2 58

3

4

5

6

7

8 18

9 89

Quadratic Probing Example

TableSize = 10

insert(89)

insert(18)

insert(49)

insert(58)

insert(79)

79 % 10 = 9 collision!

(79 + 1) % 10 = 0 collision!

(79 + 4) % 10 = 3

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 46

0 49

1

2 58

3 79

4

5

6

7

8 18

9 89

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 47

0

1

2

3

4

5

6

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 48

0

1

2

3

4

5

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 49

0

1

2

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 50

0 48

1

2

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 51

0 48

1

2 5

3

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 52

0 48

1

2 5

3 55

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 53

0 48

1

2 5

3 55

4

5 40

6 76

TableSize = 7

Insert:

76 (76 % 7 = 6)

40 (40 % 7 = 5)

48 (48 % 7 = 6)

5 (5 % 7 = 5)

55 (55 % 7 = 6)

47 (47 % 7 = 5)

(47 + 1) % 7 = 6 collision!

(47 + 4) % 7 = 2 collision!

(47 + 9) % 7 = 0 collision!

(47 + 16) % 7 = 0 collision!

(47 + 25) % 7 = 2 collision!

Will we ever get
a 1 or 4?!?

Another Quadratic Probing Example

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 54

0 48

1

2 5

3 55

4

5 40

6 76

insert(47) will always fail here. Why?

For all n, (5 + n2) % 7 is 0, 2, 5, or 6

Proof uses induction and

(5 + n2) % 7 = (5 + (n - 7)2) % 7

In fact, for all c and k,

(c + n2) % k = (c + (n - k)2) % k

From Bad News to Good News

After TableSize quadratic probes, we cycle

through the same indices

The good news:

 For prime T and 0  i, j  T/2 where i  j,

(h(key) + i2) % T  (h(key) + j2) % T

 If TableSize is prime and  < ½, quadratic

probing will find an empty slot in at most

TableSize/2 probes

 If you keep  < ½, no need to detect cycles as

we just saw

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 55

Clustering Reconsidered

Quadratic probing does not suffer from primary
clustering as the quadratic nature quickly escapes
the neighborhood

But it is no help if keys initially hash the same index

 Any 2 keys that hash to the same value will have
the same series of moves after that

 Called secondary clustering

We can avoid secondary clustering with a probe
function that depends on the key: double hashing

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 56

Open Addressing: Double Hashing

Idea:

Given two good hash functions h and g, it is very
unlikely that for some key, h(key) == g(key)

Ergo, why not probe using g(key)?

For double hashing, f(i) = i ⋅ g(key):

0th probe: (h(key) + 0 ⋅ g(key)) % TableSize

1st probe: (h(key) + 1 ⋅ g(key)) % TableSize

2nd probe: (h(key) + 2 ⋅ g(key)) % TableSize

…

ith probe: (h(key) + i ⋅ g(key)) % TableSize

Crucial Detail:

We must make sure that g(key) cannot be 0

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 57

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 58

0

1

2

3

4

5

6

7

8

9

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 59

0

1

2

3 13

4

5

6

7

8

9

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 60

0

1

2

3 13

4

5

6

7

8 28

9

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33  g(33) = 1 + 3 mod 9 = 4

147

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 61

0

1

2

3 13

4

5

6

7 33

8 28

9

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147  g(147) = 1 + 14 mod 9 = 6

43

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 62

0

1

2

3 13

4

5

6

7 33

8 28

9 147

Double Hashing

Insert these values into the hash table in this
order. Resolve any collisions with double hashing:

13

28

33

147  g(147) = 1 + 14 mod 9 = 6

43  g(43) = 1 + 4 mod 9 = 5

T = 10 (TableSize)

Hash Functions:

 h(key) = key mod T

 g(key) = 1 + ((key/T) mod (T-1))

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 63

0

1

2

3 13

4

5

6

7 33

8 28

9 147

We have a problem:
3 + 0 = 3 3 + 5 = 8 3 + 10 = 13
 3 + 15 = 18 3 + 20 = 23

Double Hashing Analysis

Because each probe is "jumping" by g(key) each
time, we should ideally "leave the neighborhood" and
"go different places from the same initial collision"

But, as in quadratic probing, we could still have a
problem where we are not "safe" due to an infinite
loop despite room in table

This cannot happen in at least one case:

For primes p and q such that 2 < q < p

h(key) = key % p

g(key) = q – (key % q)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 64

Summarizing Collision Resolution

Separate Chaining is easy

 find, delete proportional to load factor on average

 insert can be constant if just push on front of list

Open addressing uses probing, has clustering issues
as it gets full but still has reasons for its use:

 Easier data representation

 Less memory allocation

 Run-time overhead for list nodes (but an array
implementation could be faster)

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 65

REHASHING

When you make hash from hash leftovers…

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 66

Rehashing

As with array-based stacks/queues/lists

 If table gets too full, create a bigger table and
copy everything

 Less helpful to shrink a table that is underfull

With chaining, we get to decide what "too full"
means

 Keep load factor reasonable (e.g., < 1)?

 Consider average or max size of non-empty chains

For open addressing, half-full is a good rule of thumb

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 67

Rehashing

What size should we choose?

 Twice-as-big?

 Except that won’t be prime!

We go twice-as-big but guarantee prime

 Implement by hard coding a list of prime numbers

 You probably will not grow more than 20-30 times
and can then calculate after that if necessary

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 68

Rehashing
Can we copy all data to the same indices in the new table?

 Will not work; we calculated the index based on TableSize

Rehash Algorithm:

Go through old table

Do standard insert for each item into new table

Resize is an O(n) operation,

 Iterate over old table: O(n)

 n inserts / calls to the hash function: n ⋅ O(1) = O(n)

Is there some way to avoid all those hash function calls?

 Space/time tradeoff: Could store h(key) with each data item

 Growing the table is still O(n); only helps by a constant factor

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 69

IMPLEMENTING HASHING

Reality is never as clean-cut as theory

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 70

Hashing and Comparing

Our use of int key can lead to us overlooking a
critical detail

 We do perform the initial hash on E

 While chaining/probing, we compare to E which
requires equality testing (compare == 0)

A hash table needs a hash function and a comparator

 In Project 2, you will use two function objects

 The Java library uses a more object-oriented approach:
each object has an equals method and a hashCode
method:

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 71

class Object {

 boolean equals(Object o) {…}

 int hashCode() {…}

 …

}

Equal Objects Must Hash the Same

The Java library (and your project hash table) make
a very important assumption that clients must satisfy

Object-oriented way of saying it:

If a.equals(b), then we must require

a.hashCode()==b.hashCode()

Function object way of saying it:

If c.compare(a,b) == 0, then we must require

h.hash(a) == h.hash(b)

If you ever override equals

 You need to override hashCode also in a consistent way

 See CoreJava book, Chapter 5 for other "gotchas" with equals

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 72

Comparable/Comparator Rules

We have not emphasized important "rules"
about comparison for:
 all our dictionaries

 sorting (next major topic)

Comparison must impose a consistent,
total ordering:

For all a, b, and c:

 If compare(a,b) < 0, then compare(b,a) > 0

 If compare(a,b) == 0, then compare(b,a) == 0

 If compare(a,b) < 0 and compare(b,c) < 0,
then compare(a,c) < 0

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 73

A Generally Good hashCode()

int result = 17; // start at a prime

foreach field f

 int fieldHashcode =

 boolean: (f ? 1: 0)

 byte, char, short, int: (int) f

 long: (int) (f ^ (f >>> 32))

 float: Float.floatToIntBits(f)

 double: Double.doubleToLongBits(f), then above

 Object: object.hashCode()

 result = 31 * result + fieldHashcode;

return result;

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 74

Final Word on Hashing
The hash table is one of the most important data structures

 Efficient find, insert, and delete

 Operations based on sorted order are not so efficient

 Useful in many, many real-world applications

 Popular topic for job interview questions

Important to use a good hash function

 Good distribution of key hashs

 Not overly expensive to calculate (bit shifts good!)

Important to keep hash table at a good size

 Keep TableSize a prime number

 Set a preferable  depending on type of hashtable

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 75

MIDTERM EXAM

Are you ready… for an exam?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 76

The Midterm

It is next Wednesday, July 18

It will take up the entire class period

It will cover everything up through today:

 Algorithmic analysis, Big-O, Recurrences

 Heaps and Priority Queues

 Stacks, Queues, Arrays, Linked Lists, etc.

 Dictionaries

 Regular BSTs, Balanced Trees, and B-Trees

 Hash Tables

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 77

The Midterm

The exam consists of 10 problems

 Total points possible is 110

 Your score will be out of 100

 Yes, you could score as well as 110/100

Types of Questions:

 Some calculations

 Drill problems manipulating data structures

 Writing pseudocode solutions

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 78

Book, Calculator, and Notes

The exam is closed book

You can bring a calculator if you want

You can bring a limited set of notes:

 One 3x5 index card (both sides)

 Must be handwritten (no typing!)

 You must turn in the card with your exam

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 79

Preparing for the Exam

Quiz section tomorrow is a review

 Come with questions for David

We might do an exam review session

 Only if you show interest

Previous exams available for review

 Look for the link on midterm information

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 80

Kate's General Exam Advice

Get a good night's sleep

Eat some breakfast

Read through the exam before you start

Write down partial work

Remember the class is curved at the end

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 81

PRACTICE PROBLEMS

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 82

Improving Linked Lists

For reasons beyond your control, you have
to work with a very large linked list. You
will be doing many finds, inserts, and
deletes. Although you cannot stop using a
linked list, you are allowed to modify the
linked structure to improve performance.

What can you do?

June 27, 2012 CSE 332 Data Abstractions, Summer 2012 83

Depth Traversal of a Tree

One way to list the nodes of a BST is the
depth traversal:

 List the root

 List the root's two children

 List the root's children's children, etc.

How would you implement this traversal?

How would you handle null children?

What is the big-O of your solution?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 84

Nth smallest element in a B Tree

For a B Tree, you want to implement a
function FindSmallestKey(i) which returns
the ith smallest key in the tree.

Describe a pseudocode solution.

What is the run-time of your code?

Is it dependent on L, M, and/or n?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 85

Hashing a Checkerboad

One way to speed up Game AIs is to hash
and store common game states. In the case
of checkers, how would you store the game
state of:

 The 8x8 board

 The 12 red pieces (single men or kings)

 The 12 black pieces (single men or kings)

Can your solution generalize to more complex
games like chess?

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 86

