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HASH TABLES 

The national data structure of the Netherlands 
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Hash Tables 

A hash table is an array of some fixed size 

Basic idea: 

 

 

 

 

 

 
 

The goal: 
 

Aim for constant-time find, insert, and delete "on 
average" under reasonable assumptions 

        0 

        

⁞ 

size -1 

hash function: 

index = h(key) 

hash table 

key space (e.g., integers, strings) 
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An Ideal Hash Functions 

 Is fast to compute 

 Rarely hashes two keys to the same index 

 Known as collisions 

 Zero collisions often impossible in theory but 
reasonably achievable in practice 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 4 

        0 
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size -1 

hash function: 

index = h(key) 

key space (e.g., integers, strings) 



What to Hash? 

We will focus on two most common things to 
hash: ints and strings 
 

If you have objects with several fields, it is 
usually best to  hash most of the "identifying 
fields" to avoid collisions: 
 

class Person {  

 String firstName, middleName, lastName; 

 Date birthDate;  

 … 

} 
 

An inherent trade-off: 

hashing-time vs. collision-avoidance 
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Hashing Integers 

key space = integers 

 

Simple hash function:  

  h(key) = key % TableSize 

 Client: f(x) = x 

 Library: g(x) = f(x) % TableSize 

 Fairly fast and natural 
 

Example: 

 TableSize = 10 

 Insert keys 7, 18, 41, 34, 10 
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Hashing non-integer keys 

If keys are not ints, the client must provide a 
means to convert the key to an int 

 

Programming Trade-off: 

 Calculation speed 

 Avoiding distinct keys hashing to same ints 
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Hashing Strings 

Key space K = s0s1s2…sk-1  
where si are chars:  si  [0, 256] 

 

Some choices: Which ones best avoid collisions? 
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h K = s0  % TableSize 

h K =  si

k−1

i=0

 % TableSize 

h K =  si ∙ 37
𝑖

k−1

i=0

 % TableSize 



Combining Hash Functions 
A few rules of thumb / tricks: 

1. Use all 32 bits (be careful with negative numbers) 
 

2. Use different overlapping bits for different parts of the hash  

 This is why a factor of 37i works better than 256i 

 Example: "abcde" and "ebcda" 
 

3. When smashing two hashes into one hash, use bitwise-xor 

 bitwise-and produces too many 0 bits 

 bitwise-or produces too many 1 bits 
 

4. Rely on expertise of others; consult books and other 

resources for standard hashing functions 
 

5. Advanced: If keys are known ahead of time, a perfect hash 

can be calculated 
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COLLISION RESOLUTION 

Calling a State Farm agent is not an option… 
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Collision Avoidance 

With (x%TableSize), number of collisions depends on 

 the ints inserted 

 TableSize 
 

Larger table-size tends to help, but not always 

 Example: 70, 24, 56, 43, 10 
with TableSize = 10 and TableSize = 60 

 

Technique: Pick table size to be prime. Why? 

 Real-life data tends to have a pattern,  

 "Multiples of 61" are probably less likely than 
"multiples of 60" 

 Some collision strategies do better with prime size 
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Collision Resolution 

Collision:  

When two keys map to the same location 
in the hash table 

 

We try to avoid it, but the number of keys 
always exceeds the table size 

 

Ergo, hash tables generally must support 
some form of collision resolution 
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Flavors of Collision Resolution 

Separate Chaining 

 

Open Addressing 

 Linear Probing 

 Quadratic Probing 

 Double Hashing 
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Terminology Warning 

We and the book use the terms 

 "chaining" or "separate chaining" 

 "open addressing" 
 

Very confusingly, others use the terms 

 "open hashing" for "chaining" 

 "closed hashing" for "open addressing" 
 

We also do trees upside-down 
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Separate Chaining 
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0 / 

1 / 

2 / 

3 / 

4 / 

5 / 

6 / 

7 / 

8 / 

9 / 

All keys that map to the same  
table location are kept in a linked 
list (a.k.a. a "chain" or "bucket") 

 

 

As easy as it sounds 

 

 

Example:  
 insert 10, 22, 86, 12, 42  
 with h(x) = x % 10 



Separate Chaining 
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Separate Chaining 
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Separate Chaining 
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Separate Chaining 
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Separate Chaining 
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Thoughts on Separate Chaining 

Worst-case time for find? 

 Linear 

 But only with really bad luck or bad hash function 

 Not worth avoiding (e.g., with balanced trees at each bucket) 

 Keep small number of items in each bucket 

 Overhead of tree balancing not worthwhile for small n 
 

Beyond asymptotic complexity, some "data-structure 
engineering" can improve constant factors 

 Linked list, array, or a hybrid 

 Insert at end or beginning of list  

 Sorting the lists gains and loses performance 

 Splay-like: Always move item to front of list 
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Rigorous Separate Chaining Analysis 

The load factor, , of a hash table is calculated as  

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
 

where n is the number of items currently in the table 
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Load Factor? 
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Load Factor? 
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Rigorous Separate Chaining Analysis 

The load factor, , of a hash table is calculated as  

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
 

where n is the number of items currently in the table 
 

Under chaining, the average number of elements per 
bucket is ___ 
 

So if some inserts are followed by random finds, then 
on average: 

 Each unsuccessful find compares against ___ items 

 Each successful find compares against ___ items 
 

How big should TableSize be?? 
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Rigorous Separate Chaining Analysis 

The load factor, , of a hash table is calculated as  

𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
 

where n is the number of items currently in the table 
 

Under chaining, the average number of elements per 
bucket is  
 

So if some inserts are followed by random finds, then 
on average: 

 Each unsuccessful find compares against  items 

 Each successful find compares against  items 

 If  is low, find and insert likely to be O(1) 

 We like to keep  around 1 for separate chaining 
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Separate Chaining Deletion 

Not too bad and quite easy 

 Find in table 

 Delete from bucket 

 

Similar run-time as insert 

 Sensitive to underlying 
bucket structure 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell  

 No linked lists or buckets 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell (no linked 
list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell  
(no linked list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell  
(no linked list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell  
(no linked list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 
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Open Addressing: Linear Probing 

Separate chaining does not use all the 
space in the table. Why not use it? 

 Store directly in the array cell  
(no linked list or buckets) 

 

How to deal with collisions? 

If h(key) is already full,  

try (h(key) + 1) % TableSize.  If full, 

try (h(key) + 2) % TableSize.  If full, 

try (h(key) + 3) % TableSize.  If full… 

 

Example: insert 38, 19, 8, 79, 10 
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Load Factor? 
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𝜆 =
𝑛

𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒
= ? =
5

10
= 0.5 

Can the load factor when using 
linear probing ever exceed 1.0? 
 
Nope!! 



Open Addressing in General 

This is one example of open addressing 
 

Open addressing means resolving collisions by trying 
a sequence of other positions in the table 
 

Trying the next spot is called probing 

 We just did linear probing 
h(key) + i) % TableSize 

 In general have some probe function f and use              
h(key) + f(i) % TableSize 

 

Open addressing does poorly with high load factor  

 So we want larger tables 

 Too many probes means we lose our O(1) 
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Open Addressing: Other Operations 

insert finds an open table position using a probe 
function 
 

What about find? 

 Must use same probe function to "retrace the 
trail" for the data 

 Unsuccessful search when reach empty position 
 

What about delete? 

 Must use "lazy" deletion.  Why? 

 
 Marker indicates "data was here, keep on probing" 
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Primary Clustering 

It turns out linear probing is a bad idea, even  
though the probe function is quick to compute  
(which is a good thing) 

 This tends to produce  
clusters, which lead to  
long probe sequences 

 This is called primary 
clustering 

 We saw the start of a  
cluster in our linear  
probing example 
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Analysis of Linear Probing 

Trivial fact:  
For any  < 1, linear probing will find an empty slot 

 We are safe from an infinite loop unless table is full 
 

Non-trivial facts (we won’t prove these): 

Average # of probes given load factor  

 For an unsuccessful search as TableSize → ∞: 
1

2
1 +

1

(1 − 𝜆)2
 

 

 For an successful search as TableSize → ∞:  
1

2
1 +

1

(1 − 𝜆)
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Analysis in Chart Form 

Linear-probing performance degrades rapidly as 
the table gets full 

 The Formula does assumes a "large table" but 
the point remains 

 

 

 

 

 

 

Note that separate chaining performance is linear 
in  and has no trouble with  > 1 
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Open Addressing: Quadratic Probing 

We can avoid primary clustering by changing the 
probe function from just i to f(i) 

(h(key) + f(i)) % TableSize 
 

For quadratic probing, f(i) = i2: 

0th probe: (h(key) + 0) % TableSize 

1st probe: (h(key) + 1) % TableSize 

2nd probe: (h(key) + 4) % TableSize 

3rd probe:  (h(key) + 9) % TableSize 

… 

ith probe: (h(key) + i2) % TableSize 
 

Intuition: Probes quickly "leave the neighborhood" 
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Quadratic Probing Example 
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Quadratic Probing Example 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 42 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 89 

TableSize = 10 

insert(89) 

insert(18) 



Quadratic Probing Example 

TableSize = 10 

insert(89) 

insert(18) 

insert(49) 
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Quadratic Probing Example 

TableSize = 10 

insert(89) 

insert(18) 

insert(49) 

49 % 10 = 9 collision! 

(49 + 1) % 10 = 0 

insert(58) 
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Quadratic Probing Example 

TableSize = 10 

insert(89) 

insert(18) 

insert(49) 

insert(58) 

58 % 10 = 8 collision! 

(58 + 1) % 10 = 9 collision! 

(58 + 4) % 10 = 2 

insert(79) 
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Quadratic Probing Example 

TableSize = 10 

insert(89) 

insert(18) 

insert(49) 

insert(58) 

insert(79) 

79 % 10 = 9 collision! 

(79 + 1) % 10 = 0 collision! 

(79 + 4) % 10 = 3 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 46 

0 49 

1 

2 58 

3 79 

4 

5 

6 

7 

8 18 

9 89 



Another Quadratic Probing Example 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 47 

0 

1 

2 

3 

4 

5 

6 

TableSize = 7 
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40   (40 % 7 = 5) 
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Another Quadratic Probing Example 
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Another Quadratic Probing Example 
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Another Quadratic Probing Example 
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Another Quadratic Probing Example 
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Another Quadratic Probing Example 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 52 

0 48 

1 

2 5 

3 55 

4 

5 40 

6 76 

TableSize = 7 

Insert: 

76                (76 % 7 = 6) 

40   (40 % 7 = 5) 

48   (48 % 7 = 6) 
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Another Quadratic Probing Example 
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TableSize = 7 

Insert: 

76                (76 % 7 = 6) 

40   (40 % 7 = 5) 

48   (48 % 7 = 6) 

5   (5 % 7 = 5) 

55   (55 % 7 = 6) 

47   (47 % 7 = 5) 

(47 + 1) % 7 = 6 collision! 

(47 + 4) % 7 = 2 collision!  

(47 + 9) % 7 = 0 collision! 

(47 + 16) % 7 = 0 collision! 

(47 + 25) % 7 = 2 collision! 

 

Will we ever get 
a 1 or 4?!? 



Another Quadratic Probing Example 
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insert(47) will always fail here. Why? 

 

For all n, (5 + n2) % 7 is 0, 2, 5, or 6 

Proof uses induction and  

(5 + n2) % 7 = (5 + (n - 7)2) % 7 

In fact, for all c and k,  

(c + n2) % k = (c + (n - k)2) % k 

 

 

 

 

 



From Bad News to Good News 

After TableSize quadratic probes, we cycle 

through the same indices 
 

The good news:  

 For prime T and 0  i, j  T/2 where i  j, 

(h(key) + i2) % T  (h(key) + j2) % T 

 If TableSize is prime and  < ½, quadratic 

probing will find an empty slot in at most 

TableSize/2 probes 

 If you keep  < ½, no need to detect cycles as 

we just saw 
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Clustering Reconsidered 

Quadratic probing does not suffer from primary 
clustering as the quadratic nature quickly escapes 
the neighborhood 
 

But it is no help if keys initially hash the same index 

 Any 2 keys that hash to the same value will have 
the same series of moves after that 

 Called secondary clustering 
 

We can avoid secondary clustering with a probe 
function that depends on the key: double hashing 
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Open Addressing: Double Hashing 

Idea:   

Given two good hash functions h and g, it is very 
unlikely that for some key, h(key) == g(key) 

Ergo, why not probe using g(key)? 
 

For double hashing, f(i) = i ⋅ g(key): 

0th probe: (h(key) + 0 ⋅ g(key)) % TableSize 

1st probe: (h(key) + 1 ⋅ g(key)) % TableSize 

2nd probe: (h(key) + 2 ⋅ g(key)) % TableSize 

… 

ith probe: (h(key) + i ⋅ g(key)) % TableSize 
 

Crucial Detail:  

We must make sure that g(key) cannot be 0 
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33 

147 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33  g(33) = 1 + 3 mod 9 = 4 

147  

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33  

147  g(147) = 1 + 14 mod 9 = 6 

43 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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Double Hashing 

Insert these values into the hash table in this 
order.  Resolve any collisions with double hashing: 

13 

28 

33  

147  g(147) = 1 + 14 mod 9 = 6 

43  g(43) = 1 + 4 mod 9 = 5 

 

T = 10 (TableSize) 

Hash Functions: 

   h(key) = key mod T 

   g(key) = 1 + ((key/T) mod (T-1))    
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We have a problem: 
3 + 0 = 3 3 + 5 = 8 3 + 10 = 13 
 3 + 15 = 18 3 + 20 = 23  



Double Hashing Analysis 

Because each probe is "jumping" by g(key) each 
time, we should ideally "leave the neighborhood" and 
"go different places from the same initial collision" 
 

But, as in quadratic probing, we could still have a 
problem where we are not "safe" due to an infinite 
loop despite room in table 
 

This cannot happen in at least one case: 

For primes p and q such that 2 < q < p 

h(key) = key % p 

g(key) = q – (key % q) 
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Summarizing Collision Resolution 

Separate Chaining is easy 

 find, delete proportional to load factor on average 

 insert can be constant if just push on front of list 

 

Open addressing uses probing, has clustering issues 
as it gets full but still has reasons for its use: 

 Easier data representation 

 Less memory allocation 

 Run-time overhead for list nodes (but an array 
implementation could be faster) 
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REHASHING 

When you make hash from hash leftovers… 
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Rehashing 

As with array-based stacks/queues/lists 

 If table gets too full, create a bigger table and 
copy everything 

 Less helpful to shrink a table that is underfull 

 

With chaining, we get to decide what "too full" 
means 

 Keep load factor reasonable (e.g., < 1)? 

 Consider average or max size of non-empty chains 

 

For open addressing, half-full is a good rule of thumb 
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Rehashing 

What size should we choose? 

 Twice-as-big? 

 Except that won’t be prime! 

 

We go twice-as-big but guarantee prime 

 Implement by hard coding a list of prime numbers  

 You probably will not grow more than 20-30 times 
and can then calculate after that if necessary 
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Rehashing 
Can we copy all data to the same indices in the new table? 

 Will not work; we calculated the index based on TableSize 
 

Rehash Algorithm: 

Go through old table 

Do standard insert for each item into new table 
 

Resize is an O(n) operation,  

 Iterate over old table: O(n) 

 n inserts / calls to the hash function: n ⋅ O(1) = O(n) 
 

Is there some way to avoid all those hash function calls? 

 Space/time tradeoff: Could store h(key) with each data item 

 Growing the table is still O(n); only helps by a constant factor 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 69 



IMPLEMENTING HASHING 

Reality is never as clean-cut as theory 
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Hashing and Comparing 

Our use of int key can lead to us overlooking a 
critical detail 

 We do perform the initial hash on E  

 While chaining/probing, we compare to E which 
requires equality testing (compare == 0) 
 

A hash table needs a hash function and a comparator 

 In Project 2, you will use two function objects 

 The Java library uses a more object-oriented approach:  
each object has an equals method and a hashCode 
method: 
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class Object {  

  boolean equals(Object o) {…} 

  int hashCode() {…} 

  … 

} 



Equal Objects Must Hash the Same 

The Java library (and your project hash table) make 
a very important assumption that clients must satisfy 
 

Object-oriented way of saying it: 

If a.equals(b), then we must require  

a.hashCode()==b.hashCode() 
 

Function object way of saying it: 

If c.compare(a,b) == 0, then we must require 

h.hash(a) == h.hash(b) 
 

If you ever override equals 

 You need to override hashCode also in a consistent way 

 See CoreJava book, Chapter 5 for other "gotchas" with equals 

 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 72 



Comparable/Comparator Rules 

We have not emphasized important "rules" 
about comparison for: 
 all our dictionaries 

 sorting (next major topic) 
 

Comparison must impose a consistent, 
total ordering: 

For all a, b, and c: 

 If compare(a,b) < 0, then compare(b,a) > 0 

 If compare(a,b) == 0, then compare(b,a) == 0 

 If compare(a,b) < 0 and compare(b,c) < 0,  
then compare(a,c) < 0 
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A Generally Good hashCode() 

int result = 17; // start at a prime 
 

foreach field f 

   int fieldHashcode = 

     boolean: (f ? 1: 0) 

     byte, char, short, int: (int) f 

     long: (int) (f ^ (f >>> 32)) 

     float: Float.floatToIntBits(f) 

     double: Double.doubleToLongBits(f), then above 

     Object: object.hashCode( ) 
 

      result = 31 * result + fieldHashcode;  

return result; 
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Final Word on Hashing 
The hash table is one of the most important data structures 

 Efficient find, insert, and delete 

 Operations based on sorted order are not so efficient 

 Useful in many, many real-world applications 

 Popular topic for job interview questions 
 

Important to use a good hash function 

 Good distribution of key hashs 

 Not overly expensive to calculate (bit shifts good!) 
 

Important to keep hash table at a good size 

 Keep TableSize a prime number 

 Set a preferable  depending on type of hashtable 
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MIDTERM EXAM 

Are you ready… for an exam? 
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The Midterm 

It is next Wednesday, July 18 

It will take up the entire class period 
 

It will cover everything up through today: 

 Algorithmic analysis, Big-O, Recurrences 

 Heaps and Priority Queues 

 Stacks, Queues, Arrays, Linked Lists, etc. 

 Dictionaries 

 Regular BSTs, Balanced Trees, and B-Trees 

 Hash Tables 
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The Midterm 

The exam consists of 10 problems 

 Total points possible is 110 

 Your score will be out of 100 

 Yes, you could score as well as 110/100 
 

Types of Questions: 

 Some calculations 

 Drill problems manipulating data structures 

 Writing pseudocode solutions 
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Book, Calculator, and Notes 

The exam is closed book 
 

You can bring a calculator if you want 
 

You can bring a limited set of notes: 

 One 3x5 index card (both sides) 

 Must be handwritten (no typing!) 

 You must turn in the card with your exam 

 

 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 79 



Preparing for the Exam 

Quiz section tomorrow is a review 

 Come with questions for David 

 

We might do an exam review session 

 Only if you show interest 

 

Previous exams available for review 

 Look for the link on midterm information 
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Kate's General Exam Advice 

Get a good night's sleep  

Eat some breakfast 

Read through the exam before you start 

Write down partial work 

Remember the class is curved at the end 

July 9, 2012 CSE 332 Data Abstractions, Summer 2012 81 



PRACTICE PROBLEMS  
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Improving Linked Lists 

For reasons beyond your control, you have 
to work with a very large linked list. You 
will be doing many finds, inserts, and 
deletes. Although you cannot stop using a 
linked list, you are allowed to modify the 
linked structure to improve performance. 

What can you do? 
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Depth Traversal of a Tree 

One way to list the nodes of a BST is the 
depth traversal: 

 List the root 

 List the root's two children 

 List the root's children's children, etc. 

How would you implement this traversal? 

How would you handle null children? 

What is the big-O of your solution? 
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Nth smallest element in a B Tree 

For a B Tree, you want to implement a 
function FindSmallestKey(i) which returns 
the ith smallest key in the tree.  

Describe a pseudocode solution. 

What is the run-time of your code?  

Is it dependent on L, M, and/or n? 
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Hashing a Checkerboad 

One way to speed up Game AIs is to hash 
and store common game states. In the case 
of checkers, how would you store the game 
state of: 

 The 8x8 board 

 The 12 red pieces (single men or kings) 

 The 12 black pieces (single men or kings) 

 

Can your solution generalize to more complex 
games like chess? 
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