
2012-07-15

1

CSE 332 Data Abstractions:

Sorting It All Out

Kate Deibel

Summer 2012

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 1

Where We Are

We have covered stacks, queues, priority
queues, and dictionaries

 Emphasis on providing one element at a time

We will now step away from ADTs and talk about
sorting algorithms

Note that we have already implicitly met sorting

 Priority Queues

 Binary Search and Binary Search Trees

Sorting benefitted and limited ADT performance

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 2

More Reasons to Sort

General technique in computing:

Preprocess the data to make subsequent
operations (not just ADTs) faster

Example: Sort the data so that you can

 Find the kth largest in constant time for any k

 Perform binary search to find elements in
logarithmic time

Sorting's benefits depend on

 How often the data will change

 How much data there is

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 3

Real World versus Computer World

Sorting is a very general demand when dealing
with data—we want it in some order

 Alphabetical list of people

 List of countries ordered by population

Moreover, we have all sorted in the real world

 Some algorithms mimic these approaches

 Others take advantage of computer abilities

Sorting Algorithms have different asymptotic and
constant-factor trade-offs

 No single “best” sort for all scenarios

 Knowing “one way to sort” is not sufficient

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 4

A Comparison Sort Algorithm

We have n comparable elements in an array, and we
want to rearrange them to be in increasing order

Input:

 An array A of data records

 A key value in each data record (maybe many fields)

 A comparison function (must be consistent and
total): Given keys a and b is a<b, a=b, a>b?

Effect:

 Reorganize the elements of A such that for any i and
j such that if i < j then A[i]  A[j]

 Array A must have all the data it started with

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 5

Arrays? Just Arrays?

The algorithms we will talk about will assume
that the data is an array

 Arrays allow direct index referencing

 Arrays are contiguous in memory

But data may come in a linked list

 Some algorithms can be adjusted to work with
linked lists but algorithm performance will
likely change (at least in constant factors)

 May be reasonable to do a O(n) copy to an
array and then back to a linked list

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 6

2012-07-15

2

Further Concepts / Extensions

Stable sorting:

 Duplicate data is possible

 Algorithm does not change duplicate's original ordering

relative to each other

In-place sorting:

 Uses at most O(1) auxiliary space beyond initial array

Non-Comparison Sorting:

 Redefining the concept of comparison to improve speed

Other concepts:

 External Sorting: Too much data to fit in main memory

 Parallel Sorting: When you have multiple processors

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 7

STANDARD COMPARISON
SORT ALGORITHMS

Everyone and their mother's uncle's cousin's barber's
daughter's boyfriend has made a sorting algorithm

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 8

So Many Sorts

Sorting has been one of the most active
topics of algorithm research:

 What happens if we do … instead?

 Can we eke out a slightly better constant time
improvement?

Check these sites out on your own time:

 http://en.wikipedia.org/wiki/Sorting_algorithm

 http://www.sorting-algorithms.com/

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 9

Sorting: The Big Picture

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Bubble Sort
Shell sort

…
Heap sort
Merge sort

Quick sort (avg)
…

Bucket sort
Radix sort

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 10

Horrible
algorithms:

Ω(n2)

Bogo Sort
Stooge Sort

Sorting: The Big Picture

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Bubble Sort
Shell sort

…
Heap sort
Merge sort

Quick sort (avg)
…

Bucket sort
Radix sort

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 11

Horrible
algorithms:

Ω(n2)

Bogo Sort
Stooge Sort

Read about on your own to
learn how not to sort data

Sorting: The Big Picture

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Bubble Sort
Shell sort

…
Heap sort
Merge sort

Quick sort (avg)
…

Bucket sort
Radix sort

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 12

Horrible
algorithms:

Ω(n2)

Bogo Sort
Stooge Sort

2012-07-15

3

Selection Sort
Idea: At step k, find the smallest element among the
 unsorted elements and put it at position k

Alternate way of saying this:

 Find smallest element, put it 1st

 Find next smallest element, put it 2nd

 Find next smallest element, put it 3rd

 …

Loop invariant:
 When loop index is i, the first i elements are the i
 smallest elements in sorted order

Time?

Best: _____ Worst: _____ Average: _____

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 13

Selection Sort
Idea: At step k, find the smallest element among the
 unsorted elements and put it at position k

Alternate way of saying this:

 Find smallest element, put it 1st

 Find next smallest element, put it 2nd

 Find next smallest element, put it 3rd

 …

Loop invariant:
 When loop index is i, the first i elements are the i
 smallest elements in sorted order

Time: Best: O(n2) Worst: O(n2) Average: O(n2)

 Recurrence Relation: T(n) = n + T(N-1), T(1) = 1

 Stable and In-Place

 July 16, 2012 CSE 332 Data Abstractions, Summer 2012 14

Insertion Sort
Idea: At step k, put the kth input element in the correct position
 among the first k elements

Alternate way of saying this:

 Sort first element (this is easy)

 Now insert 2nd element in order

 Now insert 3rd element in order

 Now insert 4th element in order

 …

Loop invariant:
 When loop index is i, first i elements are sorted

Time?

Best: _____ Worst: _____ Average: _____

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 15

Insertion Sort
Idea: At step k, put the kth input element in the correct position
 among the first k elements

Alternate way of saying this:

 Sort first element (this is easy)

 Now insert 2nd element in order

 Now insert 3rd element in order

 Now insert 4th element in order

 …

Loop invariant:
 When loop index is i, first i elements are sorted

Time: Best: O(n) Worst: O(n2) Average: O(n2)

 Stable and In-Place

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 16

Already or
Nearly Sorted Reverse Sorted See Book

Implementing Insertion Sort

There's a trick to doing the insertions
without crazy array reshifting

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 17

void mystery(int[] arr) {

 for(int i = 1; i < arr.length; i++) {

 int tmp = arr[i];

 int j;

 for(j = i; j > 0 && tmp < arr[j-1]; j--)

 arr[j] = arr[j-1];

 arr[j] = tmp;

 }

}

As with heaps, “moving the hole” is faster than
unnecessary swapping (impacts constant factor)

Insertion Sort vs. Selection Sort

They are different algorithms

They solve the same problem

Have the same worst-case and average-case
asymptotic complexity

 Insertion-sort has better best-case
complexity (when input is “mostly sorted”)

Other algorithms are more efficient for larger
arrays that are not already almost sorted

 Insertion sort works well with small arrays

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 18

2012-07-15

4

We Will NOT Cover Bubble Sort

Bubble Sort is not a good algorithm

 Poor asymptotic complexity: O(n2) average

 Not efficient with respect to constant factors

 If it is good at something, some other
algorithm does the same or better

However, Bubble Sort is often taught about

 Some people teach it just because it was
taught to them

 Fun article to read:
Bubble Sort: An Archaeological Algorithmic
Analysis, Owen Astrachan, SIGCSE 2003

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 19

Sorting: The Big Picture

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Bubble Sort
Shell sort

…
Heap sort
Merge sort

Quick sort (avg)
…

Bucket sort
Radix sort

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 20

Horrible
algorithms:

Ω(n2)

Bogo Sort
Stooge Sort

Heap Sort

As you are seeing in Project 2, sorting with a
heap is easy:

buildHeap(…);

for(i=0; i < arr.length; i++)

 arr[i] = deleteMin();

Worst-case running time:

We have the array-to-sort and the heap

 So this is neither an in-place or stable sort

 There’s a trick to make it in-place

O(n log n) Why?

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 21

In-Place Heap Sort

Treat initial array as a heap (via buildHeap)

When you delete the ith element,

Put it at arr[n-i] since that array location is
not part of the heap anymore!

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 22

4 7 5 9 8 6 10 3 2 1

arr[n-i] = deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

sorted part heap part

In-Place Heap Sort

But this reverse sorts… how to fix?

Build a maxHeap instead

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 23

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i] = deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part
arr[n-i] = deleteMax()

"Dictionary Sorts"

We can also use a balanced tree to:
 insert each element: total time O(n log n)

 Repeatedly deleteMin: total time O(n log n)

But this cannot be made in-place, and it
has worse constant factors than heap sort
 Both O(n log n) in worst, best, and average

 Neither parallelizes well

 Heap sort is just plain better

Do NOT even think about trying to sort
with a hash table

 July 16, 2012 CSE 332 Data Abstractions, Summer 2012 24

2012-07-15

5

Divide and Conquer

Very important technique in algorithm design

1. Divide problem into smaller parts

2. Independently solve the simpler parts

 Think recursion

 Or potential parallelism

3. Combine solution of parts to produce
overall solution

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 25

Divide-and-Conquer Sorting

Two great sorting methods are
fundamentally divide-and-conquer

Mergesort: Recursively sort the left half

 Recursively sort the right half

 Merge the two sorted halves

Quicksort: Pick a “pivot” element

 Separate elements by pivot (< and >)

 Recursive on the separations

 Return < pivot, pivot, > pivot]

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 26

Mergesort

To sort array from position lo to position hi:

 If range is 1 element long, it is already sorted!
(our base case)

 Else, split into two halves:

 Sort from lo to (hi+lo)/2

 Sort from (hi+lo)/2 to hi

 Merge the two halves together

Merging takes two sorted parts and sorts everything

 O(n) but requires auxiliary space…

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 27

8 2 9 4 5 3 1 6 a

hi lo

0 1 2 3 4 5 6 7

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 28

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

1 aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 29

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

1 2 aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 30

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

2012-07-15

6

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

1 2 3 aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 31

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

1 2 3 4 aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 32

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

1 2 3 4 5 aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 33

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

1 2 3 4 5 6 aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 34

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

1 2 3 4 5 6 8 aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 35

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

1 2 3 4 5 6 8 9 aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 36

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

2012-07-15

7

Example: Focus on Merging

Start with:

2 4 8 9 1 3 5 6

Merge:

Use 3 “fingers” and
1 more array

1 2 3 4 5 6 8 9 aux

a After recursion:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 37

8 2 9 4 5 3 1 6 a

After merge, we
will copy back to
the original array

1 2 3 4 5 6 8 9 a

Example: Mergesort Recursion

8 2 9 4 5 3 1 6

8 2 1 6 9 4 5 3

8 2

 2 8

 2 4 8 9

 1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

9 4 5 3 1 6

4 9 3 5 1 6

 1 3 5 6

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 38

Mergesort: Time Saving Details

What if the final steps of our merge looked
like this?

Isn't it wasteful to copy to the auxiliary
array just to copy back…

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 39

2 4 5 6 1 3 8 9

1 2 3 4 5 6

Main array

Auxiliary array

Mergesort: Time Saving Details

If left-side finishes first, just stop the
merge and copy back:

If right-side finishes first, copy dregs into
right then copy back:

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 40

copy

first

second

Mergesort: Space Saving Details

Simplest / Worst Implementation:

 Use a new auxiliary array of size (hi-lo) for every merge

Better Implementation

 Use a new auxiliary array of size n for every merge

Even Better Implementation

 Reuse same auxiliary array of size n for every merge

Best Implementation:

 Do not copy back after merge

 Swap usage of the original and auxiliary array (i.e.,
even levels move to auxiliary array, odd levels move
back to original array)

 Will need one copy at end if number of stages is odd

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 41

Swapping Original & Auxiliary Array

First recurse down to lists of size 1

As we return from the recursion, swap between arrays

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 42

Merge by 1

Merge by 2

Merge by 4

Merge by 8

Merge by 16

Copy if Needed

Arguably easier to code without using recursion at all

2012-07-15

8

Mergesort Analysis

Can be made stable and in-place (complex!)

Performance:

To sort n elements, we

 Return immediately if n=1

 Else do 2 subproblems of size n/2 and then

an O(n) merge

 Recurrence relation:

T(1) = c1

T(n) = 2T(n/2) + c2n

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 43

MergeSort Recurrence

For simplicity let constants be 1, no effect on
asymptotic answer

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 44

T(1) = 1

T(n) = 2T(n/2) + n

 = 2(2T(n/4) + n/2) + n

 = 4T(n/4) + 2n

 = 4(2T(n/8) + n/4) + 2n

 = 8T(n/8) + 3n

 … (after k expansions)

 = 2kT(n/2k) + kn

So total is 2kT(n/2k) + kn
where n/2k = 1, i.e., log n = k

That is, 2log n T(1) + n log n

= n + n log n

= O(n log n)

Mergesort Analysis

This recurrence is common enough you just
“know” it’s O(n log n)

Merge sort is relatively easy to intuit (best,
worst, and average):

 The recursion “tree” will have log n height

 At each level we do a total amount of merging
equal to n

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 45

Quicksort

Also uses divide-and-conquer

 Recursively chop into halves

 Instead of doing all the work as we merge together, we
will do all the work as we recursively split into halves

 Unlike MergeSort, does not need auxiliary space

O(n log n) on average, but O(n2) worst-case

 MergeSort is always O(n log n)

 So why use QuickSort at all?

Can be faster than Mergesort

 Believed by many to be faster

 Quicksort does fewer copies and more comparisons, so
it depends on the relative cost of these two operations!

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 46

Quicksort Overview

1. Pick a pivot element

2. Partition all the data into:

A. The elements less than the pivot

B. The pivot

C. The elements greater than the pivot

3. Recursively sort A and C

4. The answer is as simple as “A, B, C”

Seems easy by the details are tricky!

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 47

Quicksort: Think in Terms of Sets

13
81

92

43

65

31 57

26

75
0

S select pivot value

13
81

92

43 65
31

57 26

75
0 S1 S2

partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
QuickSort(S1) and

QuickSort(S2)

13 43 31 57 26 0 65 81 92 75 S

Presto! S is sorted [Weiss]

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 48

2012-07-15

9

Example: Quicksort Recursion

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 element

8 2 9 4 5 3 1 6

5

8
3

1

6 8 9

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 49

Quicksort Details

We have not explained:

 How to pick the pivot element

 Any choice is correct: data will end up sorted

 But we want the two partitions to be about
equal in size

 How to implement partitioning

 In linear time

 In-place

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 50

Pivots

 Best pivot?

 Median

 Halve each time

 Worst pivot?

 Greatest/least element

 Problem of size n - 1

 O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 51

Quicksort: Potential Pivot Rules

When working on range arr[lo] to arr[hi-1]

Pick arr[lo] or arr[hi-1]

 Fast but worst-case occurs with nearly sorted input

Pick random element in the range

 Does as well as any technique

 But random number generation can be slow

 Still probably the most elegant approach

Determine median of entire range

 Takes O(n) time!

Median of 3, (e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2])

 Common heuristic that tends to work well

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 52

Partitioning

Conceptually easy, but hard to correctly code

 Need to partition in linear time in-place

One approach (there are slightly fancier ones):

 Swap pivot with arr[lo]

 Use two fingers i and j, starting at lo+1 and hi-1

 while (i < j)

 if (arr[j] >= pivot) j--

 else if (arr[i] =< pivot) i++

 else swap arr[i] with arr[j]

 Swap pivot with arr[i]

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 53

Quicksort Example

Step One:
Pick Pivot as Median of 3

lo = 0, hi = 10

Step Two: Move Pivot to the lo Position

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 54

6 1 4 9 0 3 5 2 7 8

0 1 2 3 4 5 6 7 8 9

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

2012-07-15

10

Quicksort Example

Now partition in place

Move fingers

Swap

Move fingers

Move pivot

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

This is a short example—you typically have
more than one swap during partition

5 1 4 2 0 3 6 9 7 8

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 55

Quicksort Analysis

Best-case: Pivot is always the median

 T(0)=T(1)=1

 T(n)=2T(n/2) + n linear-time partition

Same recurrence as Mergesort: O(n log n)

Worst-case: Pivot is always smallest or largest

 T(0)=T(1)=1

 T(n) = 1T(n-1) + n

Basically same recurrence as Selection Sort: O(n2)

Average-case (e.g., with random pivot):

 O(n log n) (see text)

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 56

Quicksort Cutoffs

For small n, recursion tends to cost more than a
quadratic sort

 Remember asymptotic complexity is for large n

 Recursive calls add a lot of overhead for small n

Common technique: switch algorithm below a cutoff

 Rule of thumb: use insertion sort for n < 20

Notes:

 Could also use a cutoff for merge sort

 Cutoffs are also the norm with parallel algorithms
(Switch to a sequential algorithm)

 None of this affects asymptotic complexity, just
real-world performance

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 57

Quicksort Cutoff Skeleton

void quicksort(int[] arr, int lo, int hi)

{

 if(hi – lo < CUTOFF)

 insertionSort(arr,lo,hi);

 else

 …

}

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 58

This cuts out the vast majority of the
recursive calls

 Think of the recursive calls to quicksort as a tree

 Trims out the bottom layers of the tree

 Smaller arrays are more likely to be nearly sorted

Linked Lists and Big Data

Mergesort can very nicely work directly on linked lists

 Heapsort and Quicksort do not

 InsertionSort and SelectionSort can too but slower

Mergesort also the sort of choice for external sorting

 Quicksort and Heapsort jump all over the array

 Mergesort scans linearly through arrays

 In-memory sorting of blocks can be combined with
larger sorts

 Mergesort can leverage multiple disks

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 59

Sorting: The Big Picture

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Bubble Sort
Shell sort

…
Heap sort
Merge sort

Quick sort (avg)
…

Bucket sort
Radix sort

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 60

Horrible
algorithms:

Ω(n2)

Bogo Sort
Stooge Sort

2012-07-15

11

How Fast can we Sort?

Heapsort & Mergesort have O(n log n) worst-

case run time

Quicksort has O(n log n) average-case run time

These bounds are all tight, actually (n log n)

So maybe we can dream up another algorithm
with a lower asymptotic complexity, such as O(n)
or O(n log log n)

 This is unfortunately IMPOSSIBLE!

 But why?

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 61

Permutations

Assume we have n elements to sort

 For simplicity, also assume none are equal (i.e., no

duplicates)

 How many permutations of the elements (possible

orderings)?

Example, n=3

a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2]

a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0]

In general, n choices for first, n-1 for next, n-2 for

next, etc.  n(n-1)(n-2)…(1) = n! possible orderings

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 62

Representing Every Comparison Sort

Algorithm must “find” the right answer among n!
possible answers

Starts “knowing nothing” and gains information with
each comparison

 Intuition is that each comparison can, at best,
eliminate half of the remaining possibilities

Can represent this process as a decision tree

 Nodes contain “remaining possibilities”

 Edges are “answers from a comparison”

 This is not a data structure but what our proof uses
to represent “the most any algorithm could know”

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 63

Decision Tree for n = 3

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

a ? b

The leaves contain all the possible orderings of a, b, c
July 16, 2012 CSE 332 Data Abstractions, Summer 2012 64

What the Decision Tree Tells Us

Is a binary tree because

 Each comparison has 2 outcomes

 There are no duplicate elements

 Assumes algorithm does not ask redundant questions

Because any data is possible, any algorithm needs to
ask enough questions to decide among all n! answers

 Every answer is a leaf (no more questions to ask)

 So the tree must be big enough to have n! leaves

 Running any algorithm on any input will at best
correspond to one root-to-leaf path in the decision tree

 So no algorithm can have worst-case running time
better than the height of the decision tree

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 65

Decision Tree for n = 3

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

a ? b

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 66

possible
orders

actual
order

2012-07-15

12

Where are We
Proven: No comparison sort can have worst-case better than
the height of a binary tree with n! leaves

 Turns out average-case is same asymptotically

 So how tall is a binary tree with n! leaves?

Now: Show a binary tree with n! leaves has height Ω(n log n)

 n log n is the lower bound, the height must be at least this

 It could be more (in other words, a comparison sorting
algorithm could take longer but can not be faster)

 Factorial function grows very quickly

Conclude that: (Comparison) Sorting is Ω(n log n)

 This is an amazing computer-science result: proves all the
clever programming in the world can’t sort in linear time!

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 67

Lower Bound on Height

 The height of a binary tree with L leaves is at least log2 L

 So the height of our decision tree, h:

 h  log2 (n!) property of
binary trees

 = log2 (n*(n-1)*(n-2)…(2)(1)) definition of factorial

 = log2 n + log2 (n-1) + … + log2 1 property of
logarithms

  log2 n + log2 (n-1) + … + log2 (n/2) keep first n/2
terms

  (n/2) log2 (n/2) each of the n/2 terms left is
 log2 (n/2)

  (n/2)(log2 n - log2 2) property of logarithms

  (1/2)nlog2 n – (1/2)n arithmetic

 “=“  (n log n)

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 68

Lower Bound on Height

The height of a binary tree with L
leaves is at least log2 L

So the height of our decision tree, h:

h  log2 (n!)

 = log2 (n*(n-1)*(n-2)…(2)(1))

 = log2 n + log2 (n-1) + … + log2 1

  log2 n + log2 (n-1) + … + log2 (n/2

  (n/2) log2 (n/2)

 = (n/2)(log2 n - log2 2)

  (1/2)nlog2 n – (1/2)n

"=" Ω(n log n)

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 69

BREAKING THE Ω(N LOG N)
BARRIER FOR SORTING

Nothing is every straightforward in computer science…

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 70

Sorting: The Big Picture

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:
(n log n)

Specialized
algorithms:

O(n)

Insertion sort
Selection sort
Bubble Sort
Shell sort

…
Heap sort
Merge sort

Quick sort (avg)
…

Bucket sort
Radix sort

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 71

Horrible
algorithms:

Ω(n2)

Bogo Sort
Stooge Sort

BucketSort (a.k.a. BinSort)
If all values to be sorted are known to be integers
between 1 and K (or any small range),

Create an array of size K

Put each element in its proper bucket (a.ka. bin)

If data is only integers, only need to store the
count of how times that bucket has been used

Output result via linear pass through array of buckets

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 72

count array

1

2

3

4

5

Example:

K=5

Input: (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5)

 Output:

2012-07-15

13

BucketSort (a.k.a. BinSort)
If all values to be sorted are known to be integers
between 1 and K (or any small range),

Create an array of size K

Put each element in its proper bucket (a.ka. bin)

If data is only integers, only need to store the
count of how times that bucket has been used

Output result via linear pass through array of buckets

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 73

count array

1 3

2 1

3 2

4 2

5 3

Example:

K=5

Input: (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5)

 Output:

BucketSort (a.k.a. BinSort)
If all values to be sorted are known to be integers
between 1 and K (or any small range),

Create an array of size K

Put each element in its proper bucket (a.ka. bin)

If data is only integers, only need to store the
count of how times that bucket has been used

Output result via linear pass through array of buckets

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 74

count array

1 3

2 1

3 2

4 2

5 3

Example:

K = 5

Input: (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5)

 Output: (1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 5)

What is the running time?

Analyzing Bucket Sort

Overall: O(n+K)

 Linear in n, but also linear in K

 (n log n) lower bound does not apply because
this is not a comparison sort

Good when K is smaller (or not much larger) than n

 Do not spend time doing comparisons of duplicates

Bad when K is much larger than n

 Wasted space / time during final linear O(K) pass

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 75

Bucket Sort with Data

For data in addition to integer keys, use
list at each bucket

Bucket sort illustrates a more general trick

 Imagine a heap for a small range of
integer priorities

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 76

count array

1

2

3

4

5

Twilight

Harry Potter

Gattaca Star Wars

Radix Sort (originated 1890 census)

Radix = “the base of a number system”

 Examples will use our familiar base 10

 Other implementations may use larger numbers
(e.g., ASCII strings might use 128 or 256)

Idea:

 Bucket sort on one digit at a time

 Number of buckets = radix

 Starting with least significant digit, sort with
Bucket Sort

 Keeping sort stable

 Do one pass per digit

 After k passes, the last k digits are sorted

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 77

Bucket sort by 1’s digit

0 1

721

2 3

3

123

4 5 6 7

537

67

8

478

38

9

9

Input data

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used in
an actual implementation.

Example: Radix Sort: Pass #1

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 78

721
3

123
537
67

478
38
9

After 1st pass

478
537

9
721

3
38

123
67

2012-07-15

14

0

03

09

1 2

721

123

3

537

38

4 5 6

67

7

478

8

9

Example: Radix Sort: Pass #2

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 79

721
3

123
537
67

478
38
9

After 1st pass After 2nd pass

3
9

721
123
537
38
67

478

Bucket sort by 10’s digit

0

003

009

038

067

1

123

2

3

4

478

5

537

6 7

721

8

9

Example: Radix Sort: Pass #3

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 80

3
9

38
67

123
478
537
721

Invariant:
After k passes the low order k digits are sorted.

After 2nd pass After 3rd pass

3
9

721
123
537
38
67

478

Bucket sort by 10’s digit

Analysis
Input size: n

Number of buckets = Radix: B

Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B + n)

Total work is O(P ⋅ (B + n))

Better/worse than comparison sorts? Depends on n

Example: Strings of English letters up to length 15

 15*(52 + n)

 This is less than n log n only if n > 33,000

 Of course, cross-over point depends on constant factors
of the implementations

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 81

Sorting Summary
Simple O(n2) sorts can be fastest for small n

 Selection sort, Insertion sort (is linear for nearly-sorted)

 Both stable and in-place

 Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts

 Heapsort, in-place but not stable nor parallelizable

 Mergesort, not in-place but stable and works as external sort

 Quicksort, in-place but not stable and O(n2) in worst-case
Often fastest, but depends on costs of comparisons/copies

Ω(n log n) worst and average bound for comparison sorting

Non-comparison sorts

 Bucket sort good for small number of key values

 Radix sort uses fewer buckets and more phases

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 82

Last Slide on Sorting… for now…

Best way to sort?

It depends!

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 83

