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Where We Are 

We have covered stacks, queues, priority 
queues, and dictionaries 

 Emphasis on providing one element at a time 
 

We will now step away from ADTs and talk about 
sorting algorithms 
 

Note that we have already implicitly met sorting 

 Priority Queues 

 Binary Search and Binary Search Trees 
 

Sorting benefitted and limited ADT performance  
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More Reasons to Sort 

General technique in computing:  

Preprocess the data to make subsequent 
operations (not just ADTs) faster 

 

Example: Sort the data so that you can 

 Find the kth largest in constant time for any k 

 Perform binary search to find elements in 
logarithmic time 

 

Sorting's benefits depend on  

 How often the data will change 

 How much data there is 
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Real World versus Computer World 

Sorting is a very general demand when dealing 
with data—we want it in some order 

 Alphabetical list of people 

 List of countries ordered by population 
 

Moreover, we have all sorted in the real world 

 Some algorithms mimic these approaches 

 Others take advantage of computer abilities 
 

Sorting Algorithms have different asymptotic and 
constant-factor trade-offs 

 No single “best” sort for all scenarios 

 Knowing “one way to sort” is not sufficient 
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A Comparison Sort Algorithm 

We have n comparable elements in an array, and we 
want to rearrange them to be in increasing order 
 

Input: 

 An array A of data records 

 A key value in each data record (maybe many fields) 

 A comparison function (must be consistent and 
total): Given keys a and b is  a<b, a=b, a>b? 

 

Effect: 

 Reorganize the elements of A such that for any i and 
j such that if  i < j then A[i]  A[j] 

 Array A must have all the data it started with 
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Arrays? Just Arrays? 

The algorithms we will talk about will assume 
that the data is an array 

 Arrays allow direct index referencing 

 Arrays are contiguous in memory 
 

But data may come in a linked list 

 Some algorithms can be adjusted to work with 
linked lists but algorithm performance will 
likely change (at least in constant factors) 

 May be reasonable to do a O(n) copy to an 
array and then back to a linked list 
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Further Concepts / Extensions 

Stable sorting: 

 Duplicate data is possible 

 Algorithm does not change duplicate's original ordering 

relative to each other 
 

In-place sorting: 

 Uses at most O(1) auxiliary space beyond initial array 
 

Non-Comparison Sorting:  

 Redefining the concept of comparison to improve speed 
 

Other concepts: 

 External Sorting: Too much data to fit in main memory 

 Parallel Sorting: When you have multiple processors 
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STANDARD COMPARISON 
SORT ALGORITHMS 

Everyone and their mother's uncle's cousin's barber's 
daughter's boyfriend has made a sorting algorithm 
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So Many Sorts 

Sorting has been one of the most active 
topics of algorithm research: 

 What happens if we do … instead? 

 Can we eke out a slightly better constant time 
improvement? 

 

Check these sites out on your own time: 

 http://en.wikipedia.org/wiki/Sorting_algorithm 

 http://www.sorting-algorithms.com/ 
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Sorting: The Big Picture 

Simple 
algorithms: 

O(n2) 
Fancier 

algorithms: 
O(n log n) 

Comparison 
lower bound: 
(n log n) 

Specialized 
algorithms: 

O(n) 

Insertion sort 
Selection sort 
Bubble Sort 
Shell sort 

… 
Heap sort 
Merge sort 

Quick sort (avg) 
… 

Bucket sort 
Radix sort 
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Horrible  
algorithms: 

Ω(n2) 

Bogo Sort 
Stooge Sort 

Sorting: The Big Picture 

Simple 
algorithms: 

O(n2) 
Fancier 

algorithms: 
O(n log n) 

Comparison 
lower bound: 
(n log n) 

Specialized 
algorithms: 

O(n) 

Insertion sort 
Selection sort 
Bubble Sort 
Shell sort 

… 
Heap sort 
Merge sort 

Quick sort (avg) 
… 

Bucket sort 
Radix sort 
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Horrible  
algorithms: 

Ω(n2) 

Bogo Sort 
Stooge Sort 

Read about on your own to 
learn how not to sort data 

Sorting: The Big Picture 

Simple 
algorithms: 

O(n2) 
Fancier 

algorithms: 
O(n log n) 

Comparison 
lower bound: 
(n log n) 

Specialized 
algorithms: 

O(n) 

Insertion sort 
Selection sort 
Bubble Sort 
Shell sort 

… 
Heap sort 
Merge sort 

Quick sort (avg) 
… 

Bucket sort 
Radix sort 
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Horrible  
algorithms: 

Ω(n2) 

Bogo Sort 
Stooge Sort 
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Selection Sort 
Idea:  At step k, find the smallest element among the 
 unsorted elements and put it at position k 
 

Alternate way of saying this: 

 Find smallest element, put it 1st 

 Find next smallest element, put it 2nd 

 Find next smallest element, put it 3rd 

 … 
 

Loop invariant:  
 When loop index is i, the first i elements are the i 
 smallest elements in sorted order 
 

Time? 

Best: _____     Worst: _____     Average: _____  
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Selection Sort 
Idea:  At step k, find the smallest element among the 
 unsorted elements and put it at position k 
 

Alternate way of saying this: 

 Find smallest element, put it 1st 

 Find next smallest element, put it 2nd 

 Find next smallest element, put it 3rd 

 … 
 

Loop invariant:  
 When loop index is i, the first i elements are the i 
 smallest elements in sorted order 
 

Time: Best: O(n2)     Worst: O(n2)     Average: O(n2)  

 Recurrence Relation: T(n) = n + T(N-1), T(1) = 1 

 Stable and In-Place 
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Insertion Sort 
Idea:  At step k, put the kth input element in the correct position 
 among the first k elements 
 

Alternate way of saying this: 

 Sort first element (this is easy) 

 Now insert 2nd element in order 

 Now insert 3rd element in order 

 Now insert 4th element in order 

 … 
 

Loop invariant:  
 When loop index is i, first i elements are sorted 
 

Time? 

Best: _____     Worst: _____     Average: _____  
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Insertion Sort 
Idea:  At step k, put the kth input element in the correct position 
 among the first k elements 
 

Alternate way of saying this: 

 Sort first element (this is easy) 

 Now insert 2nd element in order 

 Now insert 3rd element in order 

 Now insert 4th element in order 

 … 
 

Loop invariant:  
 When loop index is i, first i elements are sorted 

 

 

Time: Best: O(n)     Worst: O(n2)    Average: O(n2)  

 Stable and In-Place 
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Already or 
Nearly Sorted Reverse Sorted See Book 

Implementing Insertion Sort 

There's a trick to doing the insertions 
without crazy array reshifting 
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void mystery(int[] arr) { 

  for(int i = 1; i < arr.length; i++) { 

     int tmp = arr[i]; 

     int j; 

     for( j = i; j > 0 && tmp < arr[j-1]; j-- ) 

        arr[j] = arr[j-1]; 

     arr[j] = tmp; 

  } 

} 

As with heaps, “moving the hole” is faster than 
unnecessary swapping (impacts constant factor) 

Insertion Sort vs. Selection Sort 

They are different algorithms 
 

They solve the same problem 
 

Have the same worst-case and average-case 
asymptotic complexity 

 Insertion-sort has better best-case 
complexity (when input is “mostly sorted”) 

 

Other algorithms are more efficient for larger 
arrays that are not already almost sorted 

 Insertion sort works well with small arrays  
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We Will NOT Cover Bubble Sort 

Bubble Sort is not a good algorithm 

 Poor asymptotic complexity: O(n2) average 

 Not efficient with respect to constant factors 

 If it is good at something, some other 
algorithm does the same or better 

 

However, Bubble Sort is often taught about 

 Some people teach it just because it was 
taught to them 

 Fun article to read:  
Bubble Sort: An Archaeological Algorithmic 
Analysis, Owen Astrachan, SIGCSE 2003 
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Sorting: The Big Picture 

Simple 
algorithms: 

O(n2) 
Fancier 

algorithms: 
O(n log n) 

Comparison 
lower bound: 
(n log n) 

Specialized 
algorithms: 

O(n) 

Insertion sort 
Selection sort 
Bubble Sort 
Shell sort 

… 
Heap sort 
Merge sort 

Quick sort (avg) 
… 

Bucket sort 
Radix sort 
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Horrible  
algorithms: 

Ω(n2) 

Bogo Sort 
Stooge Sort 

Heap Sort 

As you are seeing in Project 2, sorting with a 
heap is easy: 

buildHeap(…); 

for(i=0; i < arr.length; i++)       

     arr[i] = deleteMin(); 

 

Worst-case running time:  

 

We have the array-to-sort and the heap 

 So this is neither an in-place or stable sort 

 There’s a trick to make it in-place  

O(n log n)  Why? 
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In-Place Heap Sort 

Treat initial array as a heap (via buildHeap) 

When you delete the ith element,  

Put it at arr[n-i] since that array location is 
not part of the heap anymore! 
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4 7 5 9 8 6 10 3 2 1 

arr[n-i] = deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

sorted part heap part 

In-Place Heap Sort 

But this reverse sorts… how to fix? 

Build a maxHeap instead 
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4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i] = deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 
arr[n-i] = deleteMax() 

"Dictionary Sorts" 

We can also use a balanced tree to: 
 insert each element: total time O(n log n) 

 Repeatedly deleteMin: total time O(n log n) 
 

But this cannot be made in-place, and it 
has worse constant factors than heap sort 
 Both O(n log n) in worst, best, and average  

 Neither parallelizes well 

 Heap sort is just plain better 
 

Do NOT even think about trying to sort 
with a hash table 
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Divide and Conquer 

Very important technique in algorithm design 

1. Divide problem into smaller parts 

2. Independently solve the simpler parts 

 Think recursion 

 Or potential parallelism 

3. Combine solution of parts to produce 
overall solution 
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Divide-and-Conquer Sorting 

Two great sorting methods are 
fundamentally divide-and-conquer 
 

Mergesort:  Recursively sort the left half 

 Recursively sort the right half   

 Merge the two sorted halves 
 

Quicksort: Pick a “pivot” element 

 Separate elements by pivot (< and >) 

 Recursive on the separations 

 Return < pivot, pivot, > pivot] 
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Mergesort 

To sort array from position lo to position hi: 

 If range is 1 element long, it is already sorted! 
(our base case) 

 Else, split into two halves:  

 Sort from lo to (hi+lo)/2 

 Sort from (hi+lo)/2 to hi 

 Merge the two halves together 
 

Merging takes two sorted parts and sorts everything 

 O(n) but requires auxiliary space… 
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8 2 9 4 5 3 1 6 a 

hi lo 

0 1 2 3 4 5 6 7 

Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 

Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

1 aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 

Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

1 2 aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 
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Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

1 2 3 aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 

Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

1 2 3 4 aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 

Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

1 2 3 4 5 aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 

Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

1 2 3 4 5 6 aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 

Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

1 2 3 4 5 6 8 aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 

Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

1 2 3 4 5 6 8 9 aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 
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Example: Focus on Merging 

Start with:  

2 4 8 9 1 3 5 6 

Merge:  

Use 3 “fingers” and 
1 more array 

1 2 3 4 5 6 8 9 aux 

a After recursion: 
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8 2 9 4 5 3 1 6 a 

 
After merge, we 
will copy back to 
the original array 

1 2 3 4 5 6 8 9 a 

Example: Mergesort Recursion 

8  2   9   4 5   3   1   6 

8   2 1   6 9   4 5   3 

8     2 

   2   8 

        2   4   8   9 

        1   2   3   4   5   6   8   9 

Merge 

Merge 

Merge 

Divide 

Divide 

Divide 

1 Element 

8 2 9 4 5 3 1 6 

9       4 5      3 1     6 

4    9  3   5  1   6 

      1   3   5   6 
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Mergesort: Time Saving Details 

What if the final steps of our merge looked 
like this? 

 

 

 

 

 

 

Isn't it wasteful to copy to the auxiliary 
array just to copy back… 
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2 4 5 6 1 3 8 9 

1 2 3 4 5 6 

Main array 
 
 
 
 
Auxiliary array 

Mergesort: Time Saving Details 

If left-side finishes first, just stop the 
merge and copy back: 

 

 

 
 

If right-side finishes first, copy dregs into 
right then copy back: 
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copy 

first 

second 

Mergesort: Space Saving Details 

Simplest / Worst Implementation:  

 Use a new auxiliary array of size (hi-lo) for every merge 
 

Better Implementation 

 Use a new auxiliary array of size n for every merge 
 

Even Better Implementation 

 Reuse same auxiliary array of size n for every merge 
 

Best Implementation: 

 Do not copy back after merge  

 Swap usage of the original and auxiliary array (i.e., 
even levels move to auxiliary array, odd levels move 
back to original array) 

 Will need one copy at end if number of stages is odd 
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Swapping Original & Auxiliary Array 

First recurse down to lists of size 1 

As we return from the recursion, swap between arrays 
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Merge by 1 

 
Merge by 2 

 
Merge by 4 

 
Merge by 8 

 
Merge by 16 
 

Copy if Needed 

Arguably easier to code without using recursion at all 
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Mergesort Analysis 

Can be made stable and in-place (complex!) 
 

Performance:  

To sort n elements, we 

 Return immediately if n=1 

 Else do 2 subproblems of size n/2 and then 

an O(n) merge 

 Recurrence relation:  

T(1) = c1 

T(n) = 2T(n/2) + c2n 

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 43 

MergeSort Recurrence 

For simplicity let constants be 1, no effect on 
asymptotic answer 
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T(1) = 1 

T(n) = 2T(n/2) + n 

       = 2(2T(n/4) + n/2) + n 

  = 4T(n/4) + 2n  

  = 4(2T(n/8) + n/4) + 2n  

  = 8T(n/8) + 3n 

  … (after k expansions) 

  = 2kT(n/2k) + kn     

So total is 2kT(n/2k) + kn   
where n/2k = 1, i.e., log n = k    

That is, 2log n T(1) + n log n 

= n + n log n 

= O(n log n) 

Mergesort Analysis 

This recurrence is common enough you just 
“know” it’s O(n log n) 

 

Merge sort is relatively easy to intuit (best, 
worst, and average): 

 The recursion “tree” will have log n height 

 At each level we do a total amount of merging 
equal to n 
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Quicksort 

Also uses divide-and-conquer 

 Recursively chop into halves 

 Instead of doing all the work as we merge together, we 
will do all the work as we recursively split into halves 

 Unlike MergeSort, does not need auxiliary space 
 

O(n log n) on average, but O(n2) worst-case 

 MergeSort is always O(n log n) 

 So why use QuickSort at all? 
 

Can be faster than Mergesort 

 Believed by many to be faster 

 Quicksort does fewer copies and more comparisons, so 
it depends on the relative cost of these two operations! 
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Quicksort Overview 

1. Pick a pivot element 
 

2. Partition all the data into: 

A. The elements less than the pivot 

B. The pivot 

C. The elements greater than the pivot 
 

3. Recursively sort A and C 
 

4. The answer is as simple as “A, B, C”  
 

Seems easy by the details are tricky! 
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Quicksort: Think in Terms of Sets 

13 
81 

92 

43 

65 

31 57 

26 

75 
0 

S select pivot value 

13 
81 

92 

43 65 
31 

57 26 

75 
0 S1 S2 

partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
QuickSort(S1) and 

QuickSort(S2) 

13 43 31 57 26 0 65 81 92 75 S 

Presto!  S is sorted [Weiss] 
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Example: Quicksort Recursion 

2  4   3   1 8   9   6 

2   1 9 4 6 

        2                

   1   2                   

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 

1 element 

8 2 9 4 5 3 1 6 

5 

8 
3 

1 

6   8   9 
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Quicksort Details 

We have not explained: 
 

 How to pick the pivot element 

 Any choice is correct: data will end up sorted 

 But we want the two partitions to be about 
equal in size 

 

 How to implement partitioning 

 In linear time 

 In-place 
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Pivots 

 Best pivot? 

 Median 

 Halve each time 

 

 Worst pivot? 

 Greatest/least element 

 Problem of size n - 1 

 O(n2) 

2  4   3   1 8   9   6 

8 2 9 4 5 3 1 6 

5 

8  2  9  4  5  3  6 

8 2 9 4 5 3 1 6 

1 
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Quicksort: Potential Pivot Rules 

When working on range arr[lo] to arr[hi-1] 
 

Pick arr[lo] or arr[hi-1] 

 Fast but worst-case occurs with nearly sorted input 
 

Pick random element in the range 

 Does as well as any technique 

 But random number generation can be slow 

 Still probably the most elegant approach 
 

Determine median of entire range 

 Takes O(n) time! 
 

Median of 3, (e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]) 

 Common heuristic that tends to work well 
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Partitioning 

Conceptually easy, but hard to correctly code 

 Need to partition in linear time in-place 

 

One approach (there are slightly fancier ones): 

 Swap pivot with arr[lo] 

 Use two fingers i and j, starting at lo+1 and hi-1 

 while (i < j) 

  if (arr[j] >= pivot) j-- 

  else if (arr[i] =< pivot) i++ 

  else swap arr[i] with arr[j] 

 Swap pivot with arr[i] 
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Quicksort Example 

Step One:  
Pick Pivot as Median of 3 

lo = 0, hi = 10 

 

 
 

Step Two: Move Pivot to the lo Position 
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6 1 4 9 0 3 5 2 7 8 

0 1 2 3 4 5 6 7 8 9 

8 1 4 9 0 3 5 2 7 6 

0 1 2 3 4 5 6 7 8 9 
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Quicksort Example 

Now partition in place 
 

 
Move fingers 

 

 
Swap 

 
 

Move fingers 

 
 

Move pivot 
 

6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

This is a short example—you typically have 
more than one swap during partition 

5 1 4 2 0 3 6 9 7 8 

July 16, 2012 CSE 332 Data Abstractions, Summer 2012 55 

Quicksort Analysis 

Best-case: Pivot is always the median 

  T(0)=T(1)=1 

  T(n)=2T(n/2) + n            linear-time partition 

Same recurrence as Mergesort: O(n log n) 
 

Worst-case: Pivot is always smallest or largest  

 T(0)=T(1)=1 

  T(n) = 1T(n-1)  + n    

Basically same recurrence as Selection Sort: O(n2) 
 

Average-case (e.g., with random pivot): 

 O(n log n) (see text) 
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Quicksort Cutoffs 

For small n, recursion tends to cost more than a 
quadratic sort 

 Remember asymptotic complexity is for large n 

 Recursive calls add a lot of overhead for small n 
 

Common technique: switch algorithm below a cutoff 

 Rule of thumb: use insertion sort for n < 20 
 

Notes: 

 Could also use a cutoff for merge sort 

 Cutoffs are also the norm with parallel algorithms 
(Switch to a sequential algorithm) 

 None of this affects asymptotic complexity, just 
real-world performance 
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Quicksort Cutoff Skeleton 

void quicksort(int[] arr, int lo, int hi) 

{ 

  if(hi – lo < CUTOFF) 

     insertionSort(arr,lo,hi); 

  else 

     … 

} 
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This cuts out the vast majority of the 
recursive calls  

 Think of the recursive calls to quicksort as a tree 

 Trims out the bottom layers of the tree 

 Smaller arrays are more likely to be nearly sorted 

 

Linked Lists and Big Data 

Mergesort can very nicely work directly on linked lists 

 Heapsort and Quicksort do not 

 InsertionSort and SelectionSort can too but slower 
 

Mergesort also the sort of choice for external sorting 

 Quicksort and Heapsort jump all over the array 

 Mergesort scans linearly through arrays 

 In-memory sorting of blocks can be combined with 
larger sorts 

 Mergesort can leverage multiple disks 
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Sorting: The Big Picture 

Simple 
algorithms: 

O(n2) 
Fancier 

algorithms: 
O(n log n) 

Comparison 
lower bound: 
(n log n) 

Specialized 
algorithms: 

O(n) 

Insertion sort 
Selection sort 
Bubble Sort 
Shell sort 

… 
Heap sort 
Merge sort 

Quick sort (avg) 
… 

Bucket sort 
Radix sort 
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Horrible  
algorithms: 

Ω(n2) 

Bogo Sort 
Stooge Sort 
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How Fast can we Sort? 

Heapsort & Mergesort have O(n log n) worst-

case run time 
 

Quicksort has O(n log n) average-case run time 
 

These bounds are all tight, actually (n log n) 
 

So maybe we can dream up another algorithm 
with a lower asymptotic complexity, such as O(n) 
or O(n  log log n) 

 This is unfortunately IMPOSSIBLE! 

 But why? 
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Permutations 

Assume we have n elements to sort  

 For simplicity, also assume none are equal (i.e., no 

duplicates) 

 How many permutations of the elements (possible 

orderings)? 

 

Example, n=3 

a[0]<a[1]<a[2] a[0]<a[2]<a[1] a[1]<a[0]<a[2] 

a[1]<a[2]<a[0] a[2]<a[0]<a[1] a[2]<a[1]<a[0] 

 

In general, n choices for first, n-1 for next, n-2 for 

next, etc.  n(n-1)(n-2)…(1) = n! possible orderings 
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Representing Every Comparison Sort 

Algorithm must “find” the right answer among n! 
possible answers 

 

Starts “knowing nothing” and gains information with 
each comparison 

 Intuition is that each comparison can, at best, 
eliminate half of the remaining possibilities 

 

Can represent this process as a decision tree 

 Nodes contain “remaining possibilities” 

 Edges are “answers from a comparison” 

 This is not a data structure but what our proof uses 
to represent “the most any algorithm could know” 
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Decision Tree for n = 3 

a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

a ? b 

The leaves contain all the possible orderings of a, b, c 
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What the Decision Tree Tells Us 

Is a binary tree because  

 Each comparison has 2 outcomes 

 There are no duplicate elements 

 Assumes algorithm does not ask redundant questions 

 

Because any data is possible, any algorithm needs to 
ask enough questions to decide among all n! answers 

 Every answer is a leaf (no more questions to ask) 

 So the tree must be big enough to have n! leaves 

 Running any algorithm on any input will at best  
correspond to one root-to-leaf path in the decision tree 

 So no algorithm can have worst-case running time  
better than the height of the decision tree 
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Decision Tree for n = 3 

a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

a ? b 
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possible  
orders 

actual 
order 
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Where are We 
Proven: No comparison sort can have worst-case better than 
the height of a binary tree with n! leaves 

 Turns out average-case is same asymptotically 

 So how tall is a binary tree with n! leaves? 

 

Now: Show a binary tree with n! leaves has height Ω(n log n) 

 n log n is the lower bound, the height must be at least this 

 It could be more (in other words, a comparison sorting 
algorithm could take longer but can not be faster) 

 Factorial function grows very quickly 

 

Conclude that: (Comparison) Sorting is Ω(n log n) 

 This is an amazing computer-science result: proves all the 
clever programming in the world can’t sort in linear time! 
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Lower Bound on Height 

 The height of a binary tree with L leaves is at least log2 L 
 

 So the height of our decision tree, h: 
 

   h  log2 (n!)                                                  property of 
binary trees 

      = log2 (n*(n-1)*(n-2)…(2)(1))         definition of factorial 

      = log2 n + log2 (n-1) + … + log2 1         property of 
logarithms 

       log2 n + log2 (n-1) + … + log2 (n/2)    keep first n/2 
terms 

        (n/2) log2 (n/2)          each of the n/2 terms left is 
 log2 (n/2) 

   (n/2)(log2 n - log2 2)          property of logarithms 

   (1/2)nlog2 n – (1/2)n       arithmetic 

      “=“  (n log n) 
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Lower Bound on Height 

The height of a binary tree with L  
leaves is at least log2 L 

So the height of our decision tree, h: 

h   log2 (n!) 

 = log2 (n*(n-1)*(n-2)…(2)(1))  

 = log2 n + log2 (n-1) + … + log2 1  

  log2 n + log2 (n-1) + … + log2 (n/2 

   (n/2) log2 (n/2)  

 = (n/2)(log2 n - log2 2)           

  (1/2)nlog2 n – (1/2)n  

"=" Ω(n log n) 
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BREAKING THE Ω(N LOG N) 
BARRIER FOR SORTING 

Nothing is every straightforward in computer science… 
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Sorting: The Big Picture 

Simple 
algorithms: 

O(n2) 
Fancier 

algorithms: 
O(n log n) 

Comparison 
lower bound: 
(n log n) 

Specialized 
algorithms: 

O(n) 

Insertion sort 
Selection sort 
Bubble Sort 
Shell sort 

… 
Heap sort 
Merge sort 

Quick sort (avg) 
… 

Bucket sort 
Radix sort 
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Horrible  
algorithms: 

Ω(n2) 

Bogo Sort 
Stooge Sort 

BucketSort (a.k.a. BinSort) 
If all values to be sorted are known to be integers 
between 1 and K (or any small range),  

Create an array of size K  

Put each element in its proper bucket (a.ka. bin) 

If data is only integers, only need to store the  
count of how times that bucket has been used 

Output result via linear pass through array of buckets 
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count array 

1 

2 

3 

4 

5 

Example:  

K=5 

Input:  (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5) 

  Output: 
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BucketSort (a.k.a. BinSort) 
If all values to be sorted are known to be integers 
between 1 and K (or any small range),  

Create an array of size K  

Put each element in its proper bucket (a.ka. bin) 

If data is only integers, only need to store the  
count of how times that bucket has been used 

Output result via linear pass through array of buckets 
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count array 

1 3 

2 1 

3 2 

4 2 

5 3 

Example:  

K=5 

Input:  (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5) 

  Output: 

BucketSort (a.k.a. BinSort) 
If all values to be sorted are known to be integers 
between 1 and K (or any small range),  

Create an array of size K  

Put each element in its proper bucket (a.ka. bin) 

If data is only integers, only need to store the  
count of how times that bucket has been used 

Output result via linear pass through array of buckets 
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count array 

1 3 

2 1 

3 2 

4 2 

5 3 

Example:  

K = 5 

Input: (5, 1, 3, 4, 3, 2, 1, 1, 5, 4, 5) 

  Output: (1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 5)  

What is the running time? 

Analyzing Bucket Sort 

Overall: O(n+K) 

 Linear in n, but also linear in K 

 (n log n) lower bound does not apply because 
this is not a comparison sort 
 

Good when K is smaller (or not much larger) than n 

 Do not spend time doing comparisons of duplicates 
 

Bad when K is much larger than n 

 Wasted space / time during final linear O(K) pass 
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Bucket Sort with Data 

For data in addition to integer keys, use 
list at each bucket 

 

 

 

 

 

Bucket sort illustrates a more general trick 

 Imagine a heap for a small range of 
integer priorities 
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count array 

1 

2 

3 

4 

5 

Twilight 

Harry Potter 

Gattaca Star Wars 

Radix Sort (originated 1890 census) 

Radix = “the base of a number system” 

 Examples will use our familiar base 10  

 Other implementations may use larger numbers 
(e.g., ASCII strings might use 128 or 256) 
 

Idea: 

 Bucket sort on one digit at a time 

 Number of buckets = radix 

 Starting with least significant digit, sort with 
Bucket Sort 

 Keeping sort stable 

 Do one pass per digit 

 After k passes, the last k digits are sorted 
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Bucket sort by 1’s digit 

0 1 

721 

2 3 

3 

123 

4 5 6 7 

537 

67 

8 

478 

38 

9 

9 

Input data 

This example uses B=10 and base 10 
digits for simplicity of demonstration.  
Larger bucket counts should be used in 
an actual implementation. 

Example: Radix Sort: Pass #1 
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721 
3 

123 
537 
67 

478 
38 
9 

After 1st pass 

478 
537 

9 
721 

3 
38 

123 
67 
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0 

03 

09 

1 2 

721 

123 

 

3 

537 

38 

4 5 6 

67 

7 

478 

8 

 

 

9 

Example: Radix Sort: Pass #2 
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721 
3 

123 
537 
67 

478 
38 
9 

After 1st pass After 2nd pass 

3 
9 

721 
123 
537 
38 
67 

478 

Bucket sort by 10’s digit 

0 

003 

009 

038 

067 

1 

123 

2 

 

 

 

3 

 

 

4 

478 

5 

537 

6 7 

721 

8 
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Example: Radix Sort: Pass #3 
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3 
9 

38 
67 

123 
478 
537 
721 

Invariant: 
After k passes the low order k digits are sorted. 

After 2nd pass After 3rd pass 

3 
9 

721 
123 
537 
38 
67 

478 

Bucket sort by 10’s digit 

Analysis 
Input size: n 

Number of buckets = Radix: B 

Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B + n) 
 

Total work is O(P ⋅ (B + n)) 
 

Better/worse than comparison sorts? Depends on n 
 

Example: Strings of English letters up to length 15 

 15*(52 + n)  

 This is less than n log n only if n > 33,000 

 Of course, cross-over point depends on constant factors 
of the implementations  
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Sorting Summary 
Simple O(n2) sorts can be fastest for small n 

 Selection sort, Insertion sort (is linear for nearly-sorted) 

 Both stable and in-place 

 Good for “below a cut-off” to help divide-and-conquer sorts 
 

O(n log n) sorts 

 Heapsort, in-place but not stable nor parallelizable 

 Mergesort, not in-place but stable and works as external sort 

 Quicksort, in-place but not stable and O(n2) in worst-case 
Often fastest, but depends on costs of comparisons/copies 

 

Ω(n log n) worst and average bound for comparison sorting 
 

Non-comparison sorts 

 Bucket sort good for small number of key values 

 Radix sort uses fewer buckets and more phases 
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Last Slide on Sorting… for now… 

Best way to sort? 

 

It depends! 
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