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GRADES, MIDTERMS, AND IT 
SEEMED LIKE A GOOD IDEA 

Some course stuff and a humorous story 
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The Midterm 

It was too long—I admit that 

 

If it helps, this was the first exam I have 
ever written 

 

Even still, I apologize 
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You All Did Great 

I am more than pleased with your 
performances on the midterm 

 

The points you missed were clearly due to 
time constraints and stresses 

 

You showed me you know the material 

 

Good job! 
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How Grades are Calculated 

Many (if not most) CSE major courses use 
curving to determine final grades 

 Homework and exam grades are used as 
indicators and are adjusted as necessary 

 Example: 
A student who does excellent on 
homework and projects (and goes 
beyond) will get a grade bumped up 
even if his/her exam scores are poorer 
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My Experiences as a Teacher 

Timed exams are problematic 

 Some of the best students I have known did 
not do great on exams 

 

The more examples of student work that one 
sees, the more learning becomes evident 

 Even partial effort/incomplete work tells a lot 

 Unfortunately, this means losing points 
 

The above leads to missing points 

 All students (even myself back in the day) care 
about points 
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My Repeated Mistake 

As a teacher, I should talk more about how 
points get transformed into a final grade 

 

I learned this lesson my first year as a TA… 

 

… and indirectly caused the undergraduate 
 CSE servers to crash 
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It Seemed Like a Good Idea at the Time 

At the annual CS education conference 
(SIGCSE), there is a special panel about 
teaching mistakes and learning from them 

 

I contributed a story at SIGCSE 2009: 

http://faculty.washington.edu/deibel/prese
ntations/sigcse09-good-idea/deibel-
seemed-good-idea-sigcse-2009.ppt 
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My Promises 

I know you will miss points 

 

If you do the work in the class and put in 
the effort, you will earn more than a 
passing grade 

 

As long as you show evidence of learning, 
you will earn a good grade regardless 
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What This Means For You 

Keep up the good work 

 

Do not obsess over points 

 

The final will be less intense 
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BACK TO CSE 332 AND 
GRAPH [THEORY] 

That was fun but you are here for learning… 
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Where We Are 

We have learned about the essential ADTs 
and data structures: 

 Regular and Circular Arrays (dynamic sizing) 

 Linked Lists 

 Stacks, Queues, Priority Queues 

 Heaps 

 Unbalanced and Balanced Search Trees 
 

We have also learned important algorithms 

 Tree traversals 

 Floyd's Method 

 Sorting algorithms 
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Where We Are Going 

Less generalized data structures and ADTs 

 

More on algorithms and related problems 
that require constructing data structures 
to make the solutions efficient 

 

Topics will include: 

 Graphs 

 Parallelism 
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Graphs 

A graph is a formalism for representing 
relationships among items 

 Very general definition  

 Very general concept 
 

A graph is a pair: G = (V, E) 

 A set of vertices, also known  
as nodes: V = {v1,v2,…,vn} 

 A set of edges E = {e1,e2,…,em} 

 Each edge ei is a pair of vertices (vj,vk) 

 An edge "connects" the vertices 
 

Graphs can be directed or undirected 

Han 

Leia 

Luke 

V = {Han,Leia,Luke} 
E = {(Luke,Leia),  
   (Han,Leia),  
   (Leia,Han)} 
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A Graph ADT? 

We can think of graphs as an ADT  

 Operations would inlude isEdge(vj,vk) 

 But it is unclear what the "standard operations" 
would be for such an ADT 

 

Instead we tend to develop algorithms over 
graphs and then use data structures that are 
efficient for those algorithms 
 

Many important problems can be solved by: 

1. Formulating them in terms of graphs 

2. Applying a standard graph algorithm 
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Some Graphs 

For each example, what are the vertices and 
what are the edges? 
 

 Web pages with links 

 Facebook friends 

 "Input data" for the Kevin Bacon game 

 Methods in a program that call each other 

 Road maps 

 Airline routes 

 Family trees 

 Course pre-requisites 
 

Core algorithms that work across such domains 
is why we are CSE 
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Scratching the Surface 

Graphs are a powerful representation and 
have been studied deeply 

 

Graph theory is a major branch of research 
in combinatorics and discrete mathematics 

 

Every branch of computer science involves 
graph theory to some extent 
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GRAPH TERMINOLOGY 

To make formulating graphs easy and standard, 
we have a lot of standard terminology for graphs 
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Undirected Graphs 

In undirected graphs, edges have no specific 
direction 

 Edges are always "two-way" 

 

Thus, (u, v) ∊ E implies (v, u) ∊ E.  

 Only one of these edges needs to be in the set 

 The other is implicit, so normalize how you 
check for it 

 

Degree of a vertex: number of edges 
containing that vertex 

 Put another way: the number of adjacent vertices 
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Directed Graphs 

In directed graphs (or digraphs), edges have direction 

 

 

 

 

Thus, (u, v) ∊ E does not imply (v, u) ∊ E.  
 

Let (u, v)  E mean u → v  

 Call u the source and v the destination 

 In-Degree of a vertex: number of in-bound edges 
(edges where the vertex is the destination) 

 Out-Degree of a vertex: number of out-bound edges 
(edges where the vertex is the source) 
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Self-Edges, Connectedness 

A self-edge a.k.a. a loop edge is of the form (u, u) 

 The use/algorithm usually dictates if a graph has: 

 No self edges 

 Some self edges 

 All self edges 
 

A node can have a(n) degree / in-degree / out-
degree of zero 
 

A graph does not have to be connected  

 Even if every node has non-zero degree 

 More discussion of this to come 
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More Notation 

For a graph G = (V, E): 

 |V| is the number of vertices 

 |E| is the number of edges 

 Minimum? 

 Maximum for undirected? 

 Maximum for directed? 

 

If (u, v) ∊ E , then v is a neighbor of u (i.e., v 
is adjacent to u) 

 Order matters for directed edges: 
u is not adjacent to v unless (v, u)  E 

 
July 23, 2012 CSE 332 Data Abstractions, Summer 2012 22 

A 

B 

C 
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 (B, A), (C, D)} 
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More Notation 

For a graph G = (V, E): 

 |V| is the number of vertices 

 |E| is the number of edges 

 Minimum? 0 

 Maximum for undirected? |V||V+1|/2  O(|V|2) 

 Maximum for directed? |V|2  O(|V|2) 

 

If (u, v) ∊ E , then v is a neighbor of u (i.e., v 
is adjacent to u) 

 Order matters for directed edges: 
u is not adjacent to v unless (v, u)  E 
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Examples Again 

Which would use directed edges?  

Which would have self-edges?  

Which could have 0-degree nodes? 
 

 Web pages with links 

 Facebook friends 

 "Input data" for the Kevin Bacon game 

 Methods in a program that call each other 

 Road maps 

 Airline routes 

 Family trees 

 Course pre-requisites 
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Weighted Graphs 

In a weighted graph, each edge has a weight or cost 

 Typically numeric (ints, decimals, doubles, etc.) 

 Orthogonal to whether graph is directed 

 Some graphs allow negative weights; many do not 
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Examples Again 

What, if anything, might weights represent for 
each of these?  

Do negative weights make sense? 
 

 Web pages with links 

 Facebook friends 

 "Input data" for the Kevin Bacon game 

 Methods in a program that call each other 

 Road maps 

 Airline routes 

 Family trees 

 Course pre-requisites 
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Paths and Cycles 

We say "a path exists from v0 to vn" if there is a 
list of vertices [v0, v1, …, vn] such that (vi,vi+1) ∊ E for 
all 0  i<n.  
 

A cycle is a path that begins and ends at the 
same node (v0==vn) 
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Seattle 

San Francisco 
Dallas 

Chicago 

Salt Lake City 

Example path (that also happens to be a cycle):  

[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle] 



Path Length and Cost 

Path length: Number of edges in a path 

Path cost: Sum of the weights of each edge 
 

Example where  

P= [ Seattle, Salt Lake City, Chicago, Dallas,  
 San Francisco, Seattle] 
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Seattle 

San Francisco Dallas 

Chicago 

Salt Lake City 

3.5 

2 2 

2.5 

3 

2 
2.5 

2.5 

 
length(P) = 5 
cost(P) = 11.5 
 

Length is sometimes  
called "unweighted cost" 



Simple Paths and Cycles 

A simple path repeats no vertices (except the 
first might be the last): 

[Seattle, Salt Lake City, San Francisco, Dallas] 

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle] 

 

A cycle is a path that ends where it begins: 

[Seattle, Salt Lake City, Seattle, Dallas, Seattle] 

 

A simple cycle is a cycle and a simple path: 

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle] 
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Paths and Cycles in Directed Graphs 

Example: 

 

 

 

 

 Is there a path from A to D? 

 

 Does the graph contain any cycles? 

 

 

 

 

 

No 

 

No 
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Undirected Graph Connectivity 

An undirected graph is connected if for all 

pairs of vertices u≠v, there exists a path 
from u to v 

 

 
 

 

An undirected graph is complete,  
or fully connected, if for all pairs  
of vertices u≠v there exists an  
edge from u to v 
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Directed Graph Connectivity 

A directed graph is strongly connected 
if there is a path from every vertex to 
every other vertex 

 

A directed graph is weakly connected 
if there is a path from every vertex to 
every other vertex ignoring direction 
of edges 

 

A direct graph is complete or fully 
connected, if for all pairs of vertices 

u≠v , there exists an edge from u to v 
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Examples Again 

For undirected graphs:  connected?  
For directed graphs:  strongly connected?  
 weakly connected? 

 

 Web pages with links 

 Facebook friends 

 "Input data" for the Kevin Bacon game 

 Methods in a program that call each other 

 Road maps 

 Airline routes 

 Family trees 

 Course pre-requisites 
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Trees as Graphs 

When talking about graphs, we 
say a tree is a graph that is: 

 undirected 

 acyclic 

 connected 
 

All trees are graphs, but NOT all 
graphs are trees 

 

How does this relate to the trees 
we know and "love"? 
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Rooted Trees 

We are more accustomed to rooted trees where: 

 We identify a unique root 

 We think of edges as directed: parent to 
children 

 

Picking a root gives a unique  
rooted tree 

 The tree is simply drawn  
differently and with  
undirected edges 
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Rooted Trees 

We are more accustomed to rooted trees where: 

 We identify a unique root 

 We think of edges as directed: parent to 
children 

 

Picking a root gives a unique  
rooted tree 

 The tree is simply drawn  
differently and with  
undirected edges 
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Directed Acyclic Graphs (DAGs) 

A DAG is a directed graph with no directed cycles 

 Every rooted directed tree is a DAG 

 But not every DAG is a rooted directed tree 

 

 

 
 

 Every DAG is a directed graph 

 But not every directed graph is a DAG 
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Examples Again 

Which of our directed-graph examples do you 
expect to be a DAG? 

 

 Web pages with links 

 Facebook friends 

 "Input data" for the Kevin Bacon game 

 Methods in a program that call each other 

 Road maps 

 Airline routes 

 Family trees 

 Course pre-requisites 
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Density / Sparsity 

Recall:  
 In an undirected graph, 0≤|E|< |V|2 

Recall:  
 In a directed graph, 0≤|E|≤|V|2 

 

So for any graph, |E| is O(|V|2) 

 

Another fact:  
 If an undirected graph is connected, 
 then |E| ≥ |V|-1  (pigeonhole principle) 
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Density / Sparsity 

|E| is often much smaller than its maximum size 
 

We do not always approximate as |E| as O(|V|2) 

 This is a correct bound, but often not tight 
 

If |E| is (|V|2) (the bound is tight), we say the 
graph is dense 

 More sloppily, dense means "lots of edges" 
 

If |E| is O(|V|) we say the graph is sparse 

 More sloppily, sparse means "most possible 
edges missing" 

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 40 



GRAPH DATA STRUCTURES  

Insert humorous statement here 
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What’s the Data Structure? 

Graphs are often useful for lots of data and questions 

 Example: "What’s the lowest-cost path from x to y" 
 

But we need a data structure that represents graphs 
 

Which data structure is "best" can depend on: 

 properties of the graph (e.g., dense versus sparse) 

 the common queries about the graph ("is (u ,v) an 
edge?" vs "what are the neighbors of node u?") 

 

We will discuss two standard graph representations 

 Adjacency Matrix and Adjacency List 

 Different trade-offs, particularly time versus space 
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Adjacency Matrix 

Assign each node a number from 0 to |V|-1 

A |V| x |V| matrix of Booleans (or 0 vs. 1) 

 Then M[u][v] == true means there is an 
edge from u to v 
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Adjacency Matrix Properties 

Running time to: 

 Get a vertex’s out-edges:  

 Get a vertex’s in-edges:  

 Decide if some edge exists:  

 Insert an edge:  

 Delete an edge:  

 

Space requirements: 

 

 

Best for sparse or dense graphs? 
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Adjacency Matrix Properties 

Running time to: 

 Get a vertex’s out-edges:  O(|V|) 

 Get a vertex’s in-edges:  O(|V|) 

 Decide if some edge exists: O(1) 

 Insert an edge:  O(1) 

 Delete an edge:  O(1) 

 

Space requirements: 

O(|V|2) 

 

Best for sparse or dense graphs? dense 
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Adjacency Matrix Properties 

How will the adjacency matrix vary for an 
undirected graph? 

 Will be symmetric about diagonal axis 

 Matrix: Could we save space by using only 
about half the array? 

 

 

 

 

 

 But how would you "get all neighbors"? 
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Adjacency Matrix Properties 

How can we adapt the representation for 
weighted graphs? 

 Instead of Boolean, store a number in each cell 

 Need some value to represent ‘not an edge’ 

 0, -1, or some other value based on how you 
are using the graph 

 Might need to be a separate field if no 
restrictions on weights 
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Adjacency List 

Assign each node a number from 0 to |V|-1 

 An array of length |V| in which each 

entry stores a list of all adjacent vertices 
(e.g., linked list)  

 

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 48 

A 

B 

C 

D 

A 

B 

C 

D 

B / 

A / 

B / 

/ 

D 



Adjacency List Properties 

Running time to: 

 Get a vertex’s out-edges:  
 

 Get a vertex’s in-edges: 
 

 Decide if some edge exists:  
 

 Insert an edge:  
 

 Delete an edge: 
  
 

Space requirements: 
 

Best for sparse or dense graphs?  

 

 July 23, 2012 CSE 332 Data Abstractions, Summer 2012 49 

A 

B 

C 

D 

B / 

A / 

B / 

/ 

D 



Adjacency List Properties 

Running time to: 

 Get a vertex’s out-edges:  
O(d) where d is out-degree of vertex 

 Get a vertex’s in-edges: 
O(|E|) (could keep a second adjacency list for this!) 

 Decide if some edge exists:  
O(d) where d is out-degree of source 

 Insert an edge:  
O(1) (unless you need to check if it’s already there) 

 Delete an edge: 
O(d) where d is out-degree of source 
 

Space requirements: O(|V|+|E|) 
 

Best for sparse or dense graphs? sparse 
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Undirected Graphs 

Adjacency lists also work well for 
undirected graphs with one caveat 

 Put each edge in two lists to support 
efficient "get all neighbors" 
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Which is better? 

Graphs are often sparse 

 Streets form grids 

 Airlines rarely fly to all cities 

 

Adjacency lists should generally be your 
default choice 

 Slower performance compensated by 
greater space savings 
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APPLICATIONS OF 
GRAPHS: TRAVERSALS 

Might be easier to list what isn't a graph application… 
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Application: Moving Around WA State 

What’s the shortest way to get from  
Seattle to Pullman? 
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Application: Moving Around WA State 
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What’s the fastest way to get from  
Seattle to Pullman? 



Application: Reliability of Communication 
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If Wenatchee’s phone exchange goes down, 
can Seattle still talk to Pullman? 



Application: Reliability of Communication 
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If Tacomas’s phone exchange goes down, 
can Olympia still talk to Spokane? 



Applications: Bus Routes Downtown 
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If we’re at 3rd and Pine, how can we get to 
1st and University using Metro?  

How about 4th and Seneca? 



Graph Traversals 

For an arbitrary graph and a starting node v, 
find all nodes reachable from v (i.e., there 

exists a path)  

 Possibly "do something" for each node (print to 
output, set some field, return from iterator, etc.) 

 

Related Problems: 

 Is an undirected graph connected? 

 Is a digraph weakly/strongly connected? 

 For strongly, need a cycle back to starting node 
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Graph Traversals 

Basic Algorithm for Traversals:  

 Select a starting node 

 Make a set of nodes adjacent to current node 

 Visit each node in the set but "mark" each 
nodes after visiting them so you don't revisit 
them (and eventually stop) 

 Repeat above but skip "marked nodes" 
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In Rough Code Form 

 traverseGraph(Node start) { 

 Set pending = emptySet(); 

 pending.add(start) 

    mark start as visited 

    while(pending is not empty) { 

      next = pending.remove() 

  for each node u adjacent to next 

   if(u is not marked) { 

    mark u 

    pending.add(u) 

        } 

  } 

  } 

} 
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Running Time and Options 

Assuming add and remove are O(1), entire 
traversal is O(|E|) if using an adjacency list 

 

The order we traverse depends entirely on how 
add and remove work/are implemented 

 DFS: a stack "depth-first graph search" 

 BFS: a queue "breadth-first graph search" 

 

DFS and BFS are "big ideas" in computer science 

 Depth: recursively explore one part before going 
back to the other parts not yet explored 

 Breadth: Explore areas closer to start node first 
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Recursive DFS, Example with Tree 

A tree is a graph and DFS and BFS are particularly 
easy to "see" in one 

 

 

 

 

 
 

Order processed: A, B, D, E, C, F, G, H 

 This is a "pre-order traversal" for trees 

 The marking is unneeded here but because we 
support arbitrary graphs, we need a means to 
process each node exactly once 
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DFS(Node start) { 

    mark and process start 

    for each node u adjacent to start 

        if u is not marked 

             DFS(u) 

} 



DFS with Stack, Example with Tree 

Order processed: A, C, F, H, G, B, E, D 

 A different order but still a perfectly fine 
traversal of the graph 
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DFS2(Node start) { 

   initialize stack s to hold start 

   mark start as visited 

   while(s is not empty) { 

       next = s.pop() // and "process" 

       for each node u adjacent to next 

           if(u is not marked) 

              mark u and push onto s 

   } 

} 



BFS with Queue, Example with Tree 

Order processed: A, B, C, D, E, F, G, H 

 A "level-order" traversal 
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BFS(Node start) { 

   initialize queue q to hold start 

   mark start as visited 

   while(q is not empty) { 

      next = q.dequeue() // and "process" 

      for each node u adjacent to next 

         if(u is not marked) 

            mark u and enqueue onto q 

   } 

} 



DFS/BFS Comparison 

BFS always finds the shortest path (or 
"optimal solution") from the starting node 
to a target node 

 Storage for BFS can be extremely large 

 A k-nary tree of height h could result in a 
queue size of kh 

 

DFS can use less space in finding a path 

 If longest path in the graph is p and highest 
out-degree is d then DFS stack never has more 
than d⋅p elements 
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Implications 

For large graphs, DFS is hugely more 
memory efficient, if we can limit the 
maximum path length to some fixed d. 

 

If we knew the distance from the start to the 
goal in advance, we could simply not add any 
children to stack after level d 

 

But what if we don’t know d in advance? 
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Iterative Deepening (IDFS) 

Algorithms 

 Try DFS up to recursion of K levels deep.  

 If fails, increment K and start the entire 
search over 

 

Performance: 

 Like BFS, IDFS finds shortest paths 

 Like DFS, IDFS uses less space 

 Some work is repeated but minor 
compared to space savings 
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Saving the Path 

Our graph traversals can answer the standard 
reachability question:  

"Is there a path from node x to node y?" 
 

But what if we want to actually output the path? 
 

Easy:  

 Store the previous node along the path: 
When processing u causes us to add v to the 
search, set v.path field to be u) 

 When you reach the goal, follow path fields back to 
where you started (and then reverse the answer) 

 What's an easy way to do the reversal?  
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A Stack!! 



Example using BFS 

What is a path from Seattle to Austin? 

 Remember marked nodes are not re-enqueued 

 Note shortest paths may not be unique 
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Seattle 

San Francisco 

Dallas 

Salt Lake City 

Chicago 

Austin 

1 

1 

1 

2 

3 

0 



Topological Sort 

Problem: Given a DAG G=(V, E), output all the 
vertices in order such that if no vertex appears 
before any other vertex that has an edge to it 

 

Example input: 

 

 

 

 
 

Example output: 

 142, 126, 143, 311, 331, 332, 312, 341, 351, 
333, 440, 352 
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CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Disclaimer: Do not use for official advising purposes!  
(Implies that CSE 332 is a pre-req for CSE 312 – not true) 



Questions and Comments 

Terminology:  
A DAG represents a partial order and a topological 
sort produces a total order that is consistent with it 
 

Why do we perform topological sorts only on DAGs? 

 Because a cycle means there is no correct answer 
 

Is there always a unique answer? 

 No, there can be one or more answers depending 
on the provided graph 

 

What DAGs have exactly 1 answer? 

 Lists 

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 72 



Uses Topological Sort 

Figuring out how to finish your degree 

 

Computing the order in which to 
recalculate cells in a spreadsheet 

 

Determining the order to compile files with 
dependencies 

 

In general, use a dependency graph to 
find an allowed order of execution  
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Topological Sort: First Approach 

1. Label each vertex with its in-degree 

 Think "write in a field in the vertex" 

 You could also do this with a data structure on 
the side 
 

2. While there are vertices not yet outputted: 

a) Choose a vertex v labeled with in-degree of 0 

b) Output v and "remove it" from the graph 

c) For each vertex u adjacent to v, decrement in-
degree of u 

 - (i.e., u such that (v,u) is in E) 
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Example 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 
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Output: 

Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed?    

In-deg: 



Example 
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CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed?    

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x 

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1 

 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126  



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x 

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1 

                 0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x 

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0       0           0   0 

                 0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x   x 

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0   1   0   0       0   0 

                 0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 

311 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x   x       x 

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0   1   0   0       0   0 

                 0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 

311 

331 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x   x       x   x                    

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0   1   0   0   1   0   0       0 

                 0       0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 

311 

331 

332 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x   x   x   x   x                    

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0   1   0   0   1   0   0       0 

                 0       0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 

311 

331 

332 

312 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x   x   x   x   x       x             

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0   1   0   0   1   0   0       0 

                 0       0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 

311 

331 

332 

312 

341 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x   x   x   x   x       x   x          

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0   1   0   0   1   0   0   0   0 

                 0       0           0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 

311 

331 

332 

312 

341 

351 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x   x   x   x   x   x   x   x          

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0   1   0   0   1   0   0   0   0 

                 0       0           0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 

311 

331 

332 

312 

341 

351 

333 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x   x   x   x   x   x   x   x   x       

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0   1   0   0   1   0   0   0   0 

                 0       0           0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 

311 

331 

332 

312 

341 

351 

333 

 

 

352 

 



Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed? x   x   x   x   x   x   x   x   x   x   x   x    

In-deg:  0   0   2   1   2   1   1   2   1   1   1   1 

                 1   0   1   0   0   1   0   0   0   0 

                 0       0           0 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Output: 

126 

142 

143 

311 

331 

332 

312 

341 

351 

333 

 

 

352 

440 

 



Running Time? 

What is the worst-case running time? 

 Initialization O(|V| + |E|) (assuming adjacency list) 

 Sum of all find-new-vertex O(|V|2) (because each O(|V|)) 

 Sum of all decrements O(|E|) (assuming adjacency list) 

 So total is O(|V|2 + |E|) – not good for a sparse graph! 

labelEachVertexWithItsInDegree(); 
 

for(i=0; i < numVertices; i++) { 

      v = findNewVertexOfDegreeZero(); 

      put v next in output 

      for each w adjacent to v 

         w.indegree--; 

} 
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Doing Better 

Avoid searching for a zero-degree node every time! 

 Keep the “pending” zero-degree nodes in a list, stack, queue, 
bag, or something that gives O(1) add/remove 

 Order we process them affects the output but not  
correctness or efficiency 

 

Using a queue: 

 Label each vertex with its in-degree,  

 Enqueue all 0-degree nodes 

 While queue is not empty 

 v = dequeue() 

 Output v and remove it from the graph 

 For each vertex u adjacent to v, decrement the in-degree 
of u and if new degree is 0, enqueue it 
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Running Time? 

labelAllWithIndegreesAndEnqueueZeros(); 
 

for(i=0; i < numVertices; i++) { 

   v = dequeue(); 

   put v next in output 

   for each w adjacent to v { 

       w.indegree--; 

       if(w.indegree==0)  

          enqueue(w); 

   } 

} 

 Initialization: O(|V| + |E|) (assuming adjacency list) 

 Sum of all enqueues and dequeues: O(|V|) 

 Sum of all decrements: O(|E|) (assuming adjacency list) 

 So total is O(|E| + |V|) – much better for sparse graph! 
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More Graph Algorithms 

Finding a shortest path is one thing 

 What happens when we consider 
weighted edges (as in distances)? 

 

Next time we will discuss shortest path 
algorithms and contributions of a 
curmudgeonly computer scientist 
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