
CSE 332 Data Abstractions:
Graphs and Graph Traversals

Kate Deibel

Summer 2012

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 1

GRADES, MIDTERMS, AND IT
SEEMED LIKE A GOOD IDEA

Some course stuff and a humorous story

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 2

The Midterm

It was too long—I admit that

If it helps, this was the first exam I have
ever written

Even still, I apologize

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 3

You All Did Great

I am more than pleased with your
performances on the midterm

The points you missed were clearly due to
time constraints and stresses

You showed me you know the material

Good job!

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 4

How Grades are Calculated

Many (if not most) CSE major courses use
curving to determine final grades

 Homework and exam grades are used as
indicators and are adjusted as necessary

 Example:
A student who does excellent on
homework and projects (and goes
beyond) will get a grade bumped up
even if his/her exam scores are poorer

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 5

My Experiences as a Teacher

Timed exams are problematic

 Some of the best students I have known did
not do great on exams

The more examples of student work that one
sees, the more learning becomes evident

 Even partial effort/incomplete work tells a lot

 Unfortunately, this means losing points

The above leads to missing points

 All students (even myself back in the day) care
about points

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 6

My Repeated Mistake

As a teacher, I should talk more about how
points get transformed into a final grade

I learned this lesson my first year as a TA…

… and indirectly caused the undergraduate
 CSE servers to crash

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 7

It Seemed Like a Good Idea at the Time

At the annual CS education conference
(SIGCSE), there is a special panel about
teaching mistakes and learning from them

I contributed a story at SIGCSE 2009:

http://faculty.washington.edu/deibel/prese
ntations/sigcse09-good-idea/deibel-
seemed-good-idea-sigcse-2009.ppt

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 8

My Promises

I know you will miss points

If you do the work in the class and put in
the effort, you will earn more than a
passing grade

As long as you show evidence of learning,
you will earn a good grade regardless

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 9

What This Means For You

Keep up the good work

Do not obsess over points

The final will be less intense

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 10

BACK TO CSE 332 AND
GRAPH [THEORY]

That was fun but you are here for learning…

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 11

Where We Are

We have learned about the essential ADTs
and data structures:

 Regular and Circular Arrays (dynamic sizing)

 Linked Lists

 Stacks, Queues, Priority Queues

 Heaps

 Unbalanced and Balanced Search Trees

We have also learned important algorithms

 Tree traversals

 Floyd's Method

 Sorting algorithms

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 12

Where We Are Going

Less generalized data structures and ADTs

More on algorithms and related problems
that require constructing data structures
to make the solutions efficient

Topics will include:

 Graphs

 Parallelism

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 13

Graphs

A graph is a formalism for representing
relationships among items

 Very general definition

 Very general concept

A graph is a pair: G = (V, E)

 A set of vertices, also known
as nodes: V = {v1,v2,…,vn}

 A set of edges E = {e1,e2,…,em}

 Each edge ei is a pair of vertices (vj,vk)

 An edge "connects" the vertices

Graphs can be directed or undirected

Han

Leia

Luke

V = {Han,Leia,Luke}
E = {(Luke,Leia),
 (Han,Leia),
 (Leia,Han)}

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 14

A Graph ADT?

We can think of graphs as an ADT

 Operations would inlude isEdge(vj,vk)

 But it is unclear what the "standard operations"
would be for such an ADT

Instead we tend to develop algorithms over
graphs and then use data structures that are
efficient for those algorithms

Many important problems can be solved by:

1. Formulating them in terms of graphs

2. Applying a standard graph algorithm

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 15

Some Graphs

For each example, what are the vertices and
what are the edges?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

Core algorithms that work across such domains
is why we are CSE

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 16

Scratching the Surface

Graphs are a powerful representation and
have been studied deeply

Graph theory is a major branch of research
in combinatorics and discrete mathematics

Every branch of computer science involves
graph theory to some extent

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 17

GRAPH TERMINOLOGY

To make formulating graphs easy and standard,
we have a lot of standard terminology for graphs

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 18

Undirected Graphs

In undirected graphs, edges have no specific
direction

 Edges are always "two-way"

Thus, (u, v) ∊ E implies (v, u) ∊ E.

 Only one of these edges needs to be in the set

 The other is implicit, so normalize how you
check for it

Degree of a vertex: number of edges
containing that vertex

 Put another way: the number of adjacent vertices

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 19

A

B

C

D

Directed Graphs

In directed graphs (or digraphs), edges have direction

Thus, (u, v) ∊ E does not imply (v, u) ∊ E.

Let (u, v)  E mean u → v

 Call u the source and v the destination

 In-Degree of a vertex: number of in-bound edges
(edges where the vertex is the destination)

 Out-Degree of a vertex: number of out-bound edges
(edges where the vertex is the source)

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 20

or
A

B
C

D

2 edges here

A

B
C

D

Self-Edges, Connectedness

A self-edge a.k.a. a loop edge is of the form (u, u)

 The use/algorithm usually dictates if a graph has:

 No self edges

 Some self edges

 All self edges

A node can have a(n) degree / in-degree / out-
degree of zero

A graph does not have to be connected

 Even if every node has non-zero degree

 More discussion of this to come

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 21

More Notation

For a graph G = (V, E):

 |V| is the number of vertices

 |E| is the number of edges

 Minimum?

 Maximum for undirected?

 Maximum for directed?

If (u, v) ∊ E , then v is a neighbor of u (i.e., v
is adjacent to u)

 Order matters for directed edges:
u is not adjacent to v unless (v, u)  E

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 22

A

B

C

V = { A, B, C, D}
E = { (C, B), (A, B),
 (B, A), (C, D)}

D

More Notation

For a graph G = (V, E):

 |V| is the number of vertices

 |E| is the number of edges

 Minimum? 0

 Maximum for undirected? |V||V+1|/2  O(|V|2)

 Maximum for directed? |V|2  O(|V|2)

If (u, v) ∊ E , then v is a neighbor of u (i.e., v
is adjacent to u)

 Order matters for directed edges:
u is not adjacent to v unless (v, u)  E

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 23

A

B

C

D

Examples Again

Which would use directed edges?

Which would have self-edges?

Which could have 0-degree nodes?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 24

Weighted Graphs

In a weighted graph, each edge has a weight or cost

 Typically numeric (ints, decimals, doubles, etc.)

 Orthogonal to whether graph is directed

 Some graphs allow negative weights; many do not

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 25

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Examples Again

What, if anything, might weights represent for
each of these?

Do negative weights make sense?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 26

Paths and Cycles

We say "a path exists from v0 to vn" if there is a
list of vertices [v0, v1, …, vn] such that (vi,vi+1) ∊ E for
all 0  i<n.

A cycle is a path that begins and ends at the
same node (v0==vn)

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 27

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

Example path (that also happens to be a cycle):

[Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle]

Path Length and Cost

Path length: Number of edges in a path

Path cost: Sum of the weights of each edge

Example where

P= [Seattle, Salt Lake City, Chicago, Dallas,
 San Francisco, Seattle]

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 28

Seattle

San Francisco Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(P) = 5
cost(P) = 11.5

Length is sometimes
called "unweighted cost"

Simple Paths and Cycles

A simple path repeats no vertices (except the
first might be the last):

[Seattle, Salt Lake City, San Francisco, Dallas]

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

A cycle is a path that ends where it begins:

[Seattle, Salt Lake City, Seattle, Dallas, Seattle]

A simple cycle is a cycle and a simple path:

[Seattle, Salt Lake City, San Francisco, Dallas, Seattle]

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 29

Paths and Cycles in Directed Graphs

Example:

 Is there a path from A to D?

 Does the graph contain any cycles?

No

No

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 30

A

B

C

D

Undirected Graph Connectivity

An undirected graph is connected if for all

pairs of vertices u≠v, there exists a path
from u to v

An undirected graph is complete,
or fully connected, if for all pairs
of vertices u≠v there exists an
edge from u to v

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 31

Connected graph Disconnected graph

Directed Graph Connectivity

A directed graph is strongly connected
if there is a path from every vertex to
every other vertex

A directed graph is weakly connected
if there is a path from every vertex to
every other vertex ignoring direction
of edges

A direct graph is complete or fully
connected, if for all pairs of vertices

u≠v , there exists an edge from u to v

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 32

Examples Again

For undirected graphs: connected?
For directed graphs: strongly connected?
 weakly connected?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 33

Trees as Graphs

When talking about graphs, we
say a tree is a graph that is:

 undirected

 acyclic

 connected

All trees are graphs, but NOT all
graphs are trees

How does this relate to the trees
we know and "love"?

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 34

A

B

D E

C

F

H G

Rooted Trees

We are more accustomed to rooted trees where:

 We identify a unique root

 We think of edges as directed: parent to
children

Picking a root gives a unique
rooted tree

 The tree is simply drawn
differently and with
undirected edges

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 35

A

B

D E

C

F

H G

A

B

D E

C

F

H G

Rooted Trees

We are more accustomed to rooted trees where:

 We identify a unique root

 We think of edges as directed: parent to
children

Picking a root gives a unique
rooted tree

 The tree is simply drawn
differently and with
undirected edges

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 36

A

B

D E

C

F

H G

F

G H C

A

B

D E

Directed Acyclic Graphs (DAGs)

A DAG is a directed graph with no directed cycles

 Every rooted directed tree is a DAG

 But not every DAG is a rooted directed tree

 Every DAG is a directed graph

 But not every directed graph is a DAG

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 37

Examples Again

Which of our directed-graph examples do you
expect to be a DAG?

 Web pages with links

 Facebook friends

 "Input data" for the Kevin Bacon game

 Methods in a program that call each other

 Road maps

 Airline routes

 Family trees

 Course pre-requisites

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 38

Density / Sparsity

Recall:
 In an undirected graph, 0≤|E|< |V|2

Recall:
 In a directed graph, 0≤|E|≤|V|2

So for any graph, |E| is O(|V|2)

Another fact:
 If an undirected graph is connected,
 then |E| ≥ |V|-1 (pigeonhole principle)

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 39

Density / Sparsity

|E| is often much smaller than its maximum size

We do not always approximate as |E| as O(|V|2)

 This is a correct bound, but often not tight

If |E| is (|V|2) (the bound is tight), we say the
graph is dense

 More sloppily, dense means "lots of edges"

If |E| is O(|V|) we say the graph is sparse

 More sloppily, sparse means "most possible
edges missing"

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 40

GRAPH DATA STRUCTURES

Insert humorous statement here

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 41

What’s the Data Structure?

Graphs are often useful for lots of data and questions

 Example: "What’s the lowest-cost path from x to y"

But we need a data structure that represents graphs

Which data structure is "best" can depend on:

 properties of the graph (e.g., dense versus sparse)

 the common queries about the graph ("is (u ,v) an
edge?" vs "what are the neighbors of node u?")

We will discuss two standard graph representations

 Adjacency Matrix and Adjacency List

 Different trade-offs, particularly time versus space

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 42

Adjacency Matrix

Assign each node a number from 0 to |V|-1

A |V| x |V| matrix of Booleans (or 0 vs. 1)

 Then M[u][v] == true means there is an
edge from u to v

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 43

A

B

C

D A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix Properties

Running time to:

 Get a vertex’s out-edges:

 Get a vertex’s in-edges:

 Decide if some edge exists:

 Insert an edge:

 Delete an edge:

Space requirements:

Best for sparse or dense graphs?

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 44

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix Properties

Running time to:

 Get a vertex’s out-edges: O(|V|)

 Get a vertex’s in-edges: O(|V|)

 Decide if some edge exists: O(1)

 Insert an edge: O(1)

 Delete an edge: O(1)

Space requirements:

O(|V|2)

Best for sparse or dense graphs? dense

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 45

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

Adjacency Matrix Properties

How will the adjacency matrix vary for an
undirected graph?

 Will be symmetric about diagonal axis

 Matrix: Could we save space by using only
about half the array?

 But how would you "get all neighbors"?

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 46

A B C D

A F T F F

B T F F F

C F T F T

D F F T F

Adjacency Matrix Properties

How can we adapt the representation for
weighted graphs?

 Instead of Boolean, store a number in each cell

 Need some value to represent ‘not an edge’

 0, -1, or some other value based on how you
are using the graph

 Might need to be a separate field if no
restrictions on weights

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 47

Adjacency List

Assign each node a number from 0 to |V|-1

 An array of length |V| in which each

entry stores a list of all adjacent vertices
(e.g., linked list)

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 48

A

B

C

D

A

B

C

D

B /

A /

B /

/

D

Adjacency List Properties

Running time to:

 Get a vertex’s out-edges:

 Get a vertex’s in-edges:

 Decide if some edge exists:

 Insert an edge:

 Delete an edge:

Space requirements:

Best for sparse or dense graphs?

 July 23, 2012 CSE 332 Data Abstractions, Summer 2012 49

A

B

C

D

B /

A /

B /

/

D

Adjacency List Properties

Running time to:

 Get a vertex’s out-edges:
O(d) where d is out-degree of vertex

 Get a vertex’s in-edges:
O(|E|) (could keep a second adjacency list for this!)

 Decide if some edge exists:
O(d) where d is out-degree of source

 Insert an edge:
O(1) (unless you need to check if it’s already there)

 Delete an edge:
O(d) where d is out-degree of source

Space requirements: O(|V|+|E|)

Best for sparse or dense graphs? sparse

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 50

Undirected Graphs

Adjacency lists also work well for
undirected graphs with one caveat

 Put each edge in two lists to support
efficient "get all neighbors"

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 51

A

B

C

D
A

B

C

D

B /

C /

B /

/

D

C /

A /

Which is better?

Graphs are often sparse

 Streets form grids

 Airlines rarely fly to all cities

Adjacency lists should generally be your
default choice

 Slower performance compensated by
greater space savings

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 52

APPLICATIONS OF
GRAPHS: TRAVERSALS

Might be easier to list what isn't a graph application…

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 53

Application: Moving Around WA State

What’s the shortest way to get from
Seattle to Pullman?

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 54

Application: Moving Around WA State

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 55

What’s the fastest way to get from
Seattle to Pullman?

Application: Reliability of Communication

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 56

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

Application: Reliability of Communication

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 57

If Tacomas’s phone exchange goes down,
can Olympia still talk to Spokane?

Applications: Bus Routes Downtown

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 58

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

How about 4th and Seneca?

Graph Traversals

For an arbitrary graph and a starting node v,
find all nodes reachable from v (i.e., there

exists a path)

 Possibly "do something" for each node (print to
output, set some field, return from iterator, etc.)

Related Problems:

 Is an undirected graph connected?

 Is a digraph weakly/strongly connected?

 For strongly, need a cycle back to starting node

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 59

Graph Traversals

Basic Algorithm for Traversals:

 Select a starting node

 Make a set of nodes adjacent to current node

 Visit each node in the set but "mark" each
nodes after visiting them so you don't revisit
them (and eventually stop)

 Repeat above but skip "marked nodes"

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 60

In Rough Code Form

 traverseGraph(Node start) {

 Set pending = emptySet();

 pending.add(start)

 mark start as visited

 while(pending is not empty) {

 next = pending.remove()

 for each node u adjacent to next

 if(u is not marked) {

 mark u

 pending.add(u)

 }

 }

 }

}

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 61

Running Time and Options

Assuming add and remove are O(1), entire
traversal is O(|E|) if using an adjacency list

The order we traverse depends entirely on how
add and remove work/are implemented

 DFS: a stack "depth-first graph search"

 BFS: a queue "breadth-first graph search"

DFS and BFS are "big ideas" in computer science

 Depth: recursively explore one part before going
back to the other parts not yet explored

 Breadth: Explore areas closer to start node first

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 62

Recursive DFS, Example with Tree

A tree is a graph and DFS and BFS are particularly
easy to "see" in one

Order processed: A, B, D, E, C, F, G, H

 This is a "pre-order traversal" for trees

 The marking is unneeded here but because we
support arbitrary graphs, we need a means to
process each node exactly once

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 63

A

B

D E

C

F

H G

DFS(Node start) {

 mark and process start

 for each node u adjacent to start

 if u is not marked

 DFS(u)

}

DFS with Stack, Example with Tree

Order processed: A, C, F, H, G, B, E, D

 A different order but still a perfectly fine
traversal of the graph

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 64

A

B

D E

C

F

H G

DFS2(Node start) {

 initialize stack s to hold start

 mark start as visited

 while(s is not empty) {

 next = s.pop() // and "process"

 for each node u adjacent to next

 if(u is not marked)

 mark u and push onto s

 }

}

BFS with Queue, Example with Tree

Order processed: A, B, C, D, E, F, G, H

 A "level-order" traversal

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 65

A

B

D E

C

F

H G

BFS(Node start) {

 initialize queue q to hold start

 mark start as visited

 while(q is not empty) {

 next = q.dequeue() // and "process"

 for each node u adjacent to next

 if(u is not marked)

 mark u and enqueue onto q

 }

}

DFS/BFS Comparison

BFS always finds the shortest path (or
"optimal solution") from the starting node
to a target node

 Storage for BFS can be extremely large

 A k-nary tree of height h could result in a
queue size of kh

DFS can use less space in finding a path

 If longest path in the graph is p and highest
out-degree is d then DFS stack never has more
than d⋅p elements

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 66

Implications

For large graphs, DFS is hugely more
memory efficient, if we can limit the
maximum path length to some fixed d.

If we knew the distance from the start to the
goal in advance, we could simply not add any
children to stack after level d

But what if we don’t know d in advance?

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 67

Iterative Deepening (IDFS)

Algorithms

 Try DFS up to recursion of K levels deep.

 If fails, increment K and start the entire
search over

Performance:

 Like BFS, IDFS finds shortest paths

 Like DFS, IDFS uses less space

 Some work is repeated but minor
compared to space savings

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 68

Saving the Path

Our graph traversals can answer the standard
reachability question:

"Is there a path from node x to node y?"

But what if we want to actually output the path?

Easy:

 Store the previous node along the path:
When processing u causes us to add v to the
search, set v.path field to be u)

 When you reach the goal, follow path fields back to
where you started (and then reverse the answer)

 What's an easy way to do the reversal?

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 69

A Stack!!

Example using BFS

What is a path from Seattle to Austin?

 Remember marked nodes are not re-enqueued

 Note shortest paths may not be unique

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 70

Seattle

San Francisco

Dallas

Salt Lake City

Chicago

Austin

1

1

1

2

3

0

Topological Sort

Problem: Given a DAG G=(V, E), output all the
vertices in order such that if no vertex appears
before any other vertex that has an edge to it

Example input:

Example output:

 142, 126, 143, 311, 331, 332, 312, 341, 351,
333, 440, 352

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 71

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Disclaimer: Do not use for official advising purposes!
(Implies that CSE 332 is a pre-req for CSE 312 – not true)

Questions and Comments

Terminology:
A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

Why do we perform topological sorts only on DAGs?

 Because a cycle means there is no correct answer

Is there always a unique answer?

 No, there can be one or more answers depending
on the provided graph

What DAGs have exactly 1 answer?

 Lists

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 72

Uses Topological Sort

Figuring out how to finish your degree

Computing the order in which to
recalculate cells in a spreadsheet

Determining the order to compile files with
dependencies

In general, use a dependency graph to
find an allowed order of execution

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 73

Topological Sort: First Approach

1. Label each vertex with its in-degree

 Think "write in a field in the vertex"

 You could also do this with a data structure on
the side

2. While there are vertices not yet outputted:

a) Choose a vertex v labeled with in-degree of 0

b) Output v and "remove it" from the graph

c) For each vertex u adjacent to v, decrement in-
degree of u

 - (i.e., u such that (v,u) is in E)

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 74

Example

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 75

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-deg:

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 76

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 77

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 78

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 79

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 0 0 0

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 80

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 0 0

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 81

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 0 0

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 82

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0

 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 83

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0

 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 84

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0

 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 85

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 86

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

333

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 87

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

333

352

Example

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 88

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

333

352

440

Running Time?

What is the worst-case running time?

 Initialization O(|V| + |E|) (assuming adjacency list)

 Sum of all find-new-vertex O(|V|2) (because each O(|V|))

 Sum of all decrements O(|E|) (assuming adjacency list)

 So total is O(|V|2 + |E|) – not good for a sparse graph!

labelEachVertexWithItsInDegree();

for(i=0; i < numVertices; i++) {

 v = findNewVertexOfDegreeZero();

 put v next in output

 for each w adjacent to v

 w.indegree--;

}

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 89

Doing Better

Avoid searching for a zero-degree node every time!

 Keep the “pending” zero-degree nodes in a list, stack, queue,
bag, or something that gives O(1) add/remove

 Order we process them affects the output but not
correctness or efficiency

Using a queue:

 Label each vertex with its in-degree,

 Enqueue all 0-degree nodes

 While queue is not empty

 v = dequeue()

 Output v and remove it from the graph

 For each vertex u adjacent to v, decrement the in-degree
of u and if new degree is 0, enqueue it

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 90

Running Time?

labelAllWithIndegreesAndEnqueueZeros();

for(i=0; i < numVertices; i++) {

 v = dequeue();

 put v next in output

 for each w adjacent to v {

 w.indegree--;

 if(w.indegree==0)

 enqueue(w);

 }

}

 Initialization: O(|V| + |E|) (assuming adjacency list)

 Sum of all enqueues and dequeues: O(|V|)

 Sum of all decrements: O(|E|) (assuming adjacency list)

 So total is O(|E| + |V|) – much better for sparse graph!

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 91

More Graph Algorithms

Finding a shortest path is one thing

 What happens when we consider
weighted edges (as in distances)?

Next time we will discuss shortest path
algorithms and contributions of a
curmudgeonly computer scientist

July 23, 2012 CSE 332 Data Abstractions, Summer 2012 92

