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Last Time 

We introduced the idea of graphs and their 
associated terminology 
 

Key terms included: 

 Directed versus Undirected 

 Weighted versus Unweighted 

 Cyclic or Acyclic 

 Connected or Disconnected 

 Dense or Sparse 

 Self-loops or not 
 

These are all important concepts to consider 
when implementing a graph data structure 
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Graph Data Structures 

The two most common graph data structures 

 Adjacency Matrix 

 Adjacency List 

 

Whichever is best depends on the type of 
graph, its properties, and what you want to 
do with the graph 
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Adjacency Matrix 

Assign each node a number from 0 to |V|-1 

A |V| x |V| matrix of Booleans (or 0 versus 1) 

 Then M[u][v]==true  an edge exists from u to v 

 This example is for a directed graph 
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Adjacency Matrix Properties 
Run time to get a vertex v’s out-edges? 

 O(|V|)  iterate over v's row 
 

Run time to get a vertex v's in-edges? 

 O(|V|)  iterate over v's column 
 

Run time to decide if an edge (u,v) exists? 

 O(1)  direct lookup of M[u][v] 
 

Run time to insert an edge (u,v)? 

 O(1)  set M[u][v] = true 
 

Run time to delete an edge (u,v)? 

 O(1)  set M[u][v] = false 
 

Space requirements: 

  O(|V|2)  2-dimensional array 
 

Best for sparse or dense graphs? 

  Dense  We have to store every possible edge!! 
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Adjacency Matrix: Undirected Graphs 

How will the adjacency matrix work for an 
undirected graph? 

 Will be symmetric about diagonal axis 

 Save space by using only about half the array? 

 

 

 

 

 

 

 

 But how would you "get all neighbors"? 
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Adjacency Matrix: Weighted Graphs 

How will the adjacency matrix work for a 
weighted graph? 

 Instead of Boolean, store a number in each cell 

 Need some value to represent ‘not an edge’ 

 0, -1, or some other value based on how you are 
using the graph 

 Might need to be a separate field if no 
restrictions on weights 
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Adjacency List 

Assign each node a number from 0 to |V|-1 

 An array of length |V| in which each entry stores a 

list of all adjacent vertices (e.g., linked list)  

 This example is again for a directed graph 
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Adjacency List Properties 
Run time to get a vertex v’s out-edges? 

 O(d)  where d is v's out-degree 
 

Run time to get a vertex v's in-edges? 

 O(|E|)  check every vertex list (or keep a second list for in-edges)  
 

Run time to decide if an edge (u,v) exists? 

 O(d)  where d is u's out-degree 
 

Run time to insert an edge (u,v)? 

 O(1)  unless you need to check if it’s already there 
 

Run time to delete an edge (u,v)? 

 O(d)  where d is u's out-degree 
 

Space requirements: 

  O(|V|+|E|)  vertex array plus edge nodes 
 

Best for sparse or dense graphs? 

  Sparse  Only store the edges needed 
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Adjacency List: Undirected Graphs 

Adjacency lists also work well for undirected 
graphs with one caveat 

 Put each edge in two lists to support efficient "get 
all neighbors" 

 Only an additional O(|E|) space 
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Adjacency List: Weighted Graphs 

Adjacency lists also work well for weighted 
graphs but where do you store the weights? 

 In a matrix?  O(|V|2) space 

 Store a weight at each node in list  O(|E|) space 
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Which is better? 

Graphs are often sparse 

 Streets form grids 

 Airlines rarely fly to all cities 

 

Adjacency lists generally the better choice 

 Slower performance 

 HUGE space savings 
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How Huge of Space Savings? 

Consider this 6x6 city street grid: 

|V| = 36 

|E| = 6╳5╳2 + 6╳5╳2 = 120 
 

Adjacency Matrix: O(|V|2) 

 362 = 1296  
 

Adjacency List: O(|E| + |V|) 

 36 + 2╳120 = 276 (we'll store both in and out-edges) 
 

Savings Factor = 276/1296 = 23/108 ≈ 21% of the space 
 

In general, savings are: 
𝑉 + 𝐸

𝑉2
=  

1

𝑉
+  

𝐸

𝑉2
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Recall that a sparse graph 
has |E|=o(|V|2), strictly 
less than quadratic 



GRAPH APPLICATIONS: 
TRAVERSALS 

Might be easier to list what isn't a graph application… 
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Application: Moving Around WA State 

What’s the shortest way to get from  
Seattle to Pullman? 
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Application: Moving Around WA State 
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What’s the fastest way to get from  
Seattle to Pullman? 



Application: Communication Reliability 
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If Wenatchee’s phone exchange goes down, 
can Seattle still talk to Pullman? 
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If Tacoma’s phone exchange goes down, 
can Olympia still talk to Spokane? 

Application: Communication Reliability 



Applications: Bus Routes Downtown 
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If we’re at 3rd and Pine, how can we get to 
1st and University using Metro?  

How about 4th and Seneca? 



Graph Traversals 

For an arbitrary graph and a starting node v, 
find all nodes reachable from v (i.e., there 

exists a path)  

 Possibly "do something" for each node (print to 
output, set some field, return from iterator, etc.) 

 

Related Problems: 

 Is an undirected graph connected? 

 Is a digraph weakly/strongly connected? 

 For strongly, need a cycle back to starting node 
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Graph Traversals 

Basic Algorithm for Traversals:  

 Select a starting node 

 Make a set of nodes adjacent to current node 

 Visit each node in the set but "mark" each 
nodes after visiting them so you don't revisit 
them (and eventually stop) 

 Repeat above but skip "marked nodes" 
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In Rough Code Form 

 traverseGraph(Node start) { 

 Set pending = emptySet(); 

 pending.add(start) 

    mark start as visited 

    while(pending is not empty) { 

      next = pending.remove() 

  for each node u adjacent to next 

   if(u is not marked) { 

    mark u 

    pending.add(u) 

        } 

  } 

  } 

} 

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 22 



Running Time and Options 

BFS and DFS traversal are both O(|V|+|E|) if 
using and adjacency list 

 Queue/stack insert removes are generally O(1) 

 Adjacency lists make it O(|V|) to find neighboring 
vertices/edges 

 We will mark every node  O(|V|) 

 We will touch every edge at most twice  O(|E|)  

 

Because |E| is generally at least linear to |V|, we 
usually just say BFS/DFS are O(|E|) 

 Recall that in a connected graph |E|≥|V|-1 
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The Order Matters 

The order we traverse depends entirely on how 
add and remove work/are implemented 

 DFS: a stack "depth-first graph search" 

 BFS: a queue "breadth-first graph search" 

 

DFS and BFS are "big ideas" in computer science 

 Depth: recursively explore one part before going 
back to the other parts not yet explored 

 Breadth: Explore areas closer to start node first 
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Recursive DFS, Example with Tree 

A tree is a graph and DFS and BFS are particularly 
easy to "see" in one 

 

 

 

 

 
 

Order processed: A, B, D, E, C, F, G, H 

 This is a "pre-order traversal" for trees 

 The marking is unneeded here but because we 
support arbitrary graphs, we need a means to 
process each node exactly once 
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DFS(Node start) { 

    mark and process start 

    for each node u adjacent to start 

        if u is not marked 

             DFS(u) 

} 



DFS with Stack, Example with Tree 

Order processed: A, C, F, H, G, B, E, D 

 A different order but still a perfectly fine 
traversal of the graph 
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DFS2(Node start) { 

   initialize stack s to hold start 

   mark start as visited 

   while(s is not empty) { 

       next = s.pop() // and "process" 

       for each node u adjacent to next 

           if(u is not marked) 

              mark u and push onto s 

   } 

} 



BFS with Queue, Example with Tree 

Order processed: A, B, C, D, E, F, G, H 

 A "level-order" traversal 
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BFS(Node start) { 

   initialize queue q to hold start 

   mark start as visited 

   while(q is not empty) { 

      next = q.dequeue() // and "process" 

      for each node u adjacent to next 

         if(u is not marked) 

            mark u and enqueue onto q 

   } 

} 



DFS/BFS Comparison 

BFS always finds the shortest path/optimal 
solution from the start vertex to the target 

 Storage for BFS can be extremely large 

 A k-nary tree of height h could result in a queue 
size of kh 

 

DFS can use less space in finding a path 

 If longest path in the graph is p and highest out-
degree is d then DFS stack never has more than 
d⋅p elements 
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Implications 

For large graphs, DFS is more memory 
efficient, if we can limit the maximum path 
length to some fixed d. 

 

If we knew the distance from the start to the 
goal in advance, we could simply not add any 
children to stack after level d 

 

But what if we don’t know d in advance? 
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Iterative Deepening (IDFS) 

Algorithms 

 Try DFS up to recursion of K levels deep.  

 If fail, increment K and start the entire search over 

 

Performance: 

 Like BFS, IDFS finds shortest paths 

 Like DFS, IDFS uses less space 

 Some work is repeated but minor compared to 
space savings 
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Saving the Path 

Our graph traversals can answer the standard 
reachability question:  

"Is there a path from node x to node y?" 
 

But what if we want to actually output the path? 
 

Easy:  

 Store the previous node along the path: 
When processing u causes us to add v to the 
search, set v.path field to be u) 

 When you reach the goal, follow path fields back to 
where you started (and then reverse the answer) 

 What's an easy way to do the reversal?  
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A Stack!! 



Example using BFS 

What is a path from Seattle to Austin? 

 Remember marked nodes are not re-enqueued 

 Note shortest paths may not be unique 
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Topological Sort 

Problem: Given a DAG G=(V, E), output all the 
vertices in order such that if no vertex appears 
before any other vertex that has an edge to it 

 

Example input: 

 

 

 

 
 

Example output: 

 142, 126, 143, 311, 331, 332, 312, 341, 351, 
333, 440, 352 
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CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 

Disclaimer: Do not use for official advising purposes!  
(Implies that CSE 332 is a pre-req for CSE 312 – not true) 



Questions and Comments 

Terminology:  
A DAG represents a partial order and a topological 
sort produces a total order that is consistent with it 
 

Why do we perform topological sorts only on DAGs? 

 Because a cycle means there is no correct answer 
 

Is there always a unique answer? 

 No, there can be one or more answers depending 
on the provided graph 

 

What DAGs have exactly 1 answer? 

 Lists 
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Uses Topological Sort 

Figuring out how to finish your degree 

 

Computing the order in which to 
recalculate cells in a spreadsheet 

 

Determining the order to compile files with 
dependencies 

 

In general, use a dependency graph to 
find an allowed order of execution  
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Topological Sort: First Approach 

1. Label each vertex with its in-degree 

 Think "write in a field in the vertex" 

 You could also do this with a data structure on 
the side 
 

2. While there are vertices not yet outputted: 

a) Choose a vertex v labeled with in-degree of 0 

b) Output v and "remove it" from the graph 

c) For each vertex u adjacent to v, decrement in-
degree of u 

 - (i.e., u such that (v,u) is in E) 
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Example 

CSE 142 CSE 143 

CSE 331 

CSE 311 

CSE 351 CSE 333 

CSE 332 

CSE 341 
CSE 312 

CSE 352 

MATH 
126 

CSE 440 

… 
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Output: 

Node:   126 142 143 311 312 331 332 333 341 351 352 440 

Removed?    

In-deg: 



Example 
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Example 
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Node:   126 142 143 311 312 331 332 333 341 351 352 440 
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Example 
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Running Time? 

What is the worst-case running time? 

 Initialization O(|V| + |E|) (assuming adjacency list) 

 Sum of all find-new-vertex O(|V|2) (because each O(|V|)) 

 Sum of all decrements O(|E|) (assuming adjacency list) 

 So total is O(|V|2 + |E|) – not good for a sparse graph! 

labelEachVertexWithItsInDegree(); 
 

for(i=0; i < numVertices; i++) { 

      v = findNewVertexOfDegreeZero(); 

      put v next in output 

      for each w adjacent to v 

         w.indegree--; 

} 
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Doing Better 

Avoid searching for a zero-degree node every time! 

 Keep the "pending" zero-degree nodes in a list, stack, queue, 
bag, or something that gives O(1) add/remove 

 Order we process them affects the output but not  
correctness or efficiency 

 

Using a queue: 

 Label each vertex with its in-degree,  

 Enqueue all 0-degree nodes 

 While queue is not empty 

 v = dequeue() 

 Output v and remove it from the graph 

 For each vertex u adjacent to v, decrement the in-degree 
of u and if new degree is 0, enqueue it 
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Running Time? 

labelAllWithIndegreesAndEnqueueZeros(); 
 

for(i=0; i < numVertices; i++) { 

   v = dequeue(); 

   put v next in output 

   for each w adjacent to v { 

       w.indegree--; 

       if(w.indegree==0)  

          enqueue(w); 

   } 

} 

 Initialization: O(|V| + |E|) (assuming adjacency list) 

 Sum of all enqueues and dequeues: O(|V|) 

 Sum of all decrements: O(|E|) (assuming adjacency list) 

 So total is O(|E| + |V|) – much better for sparse graph! 

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 53 



What about connectedness? 

What happens if a graph is disconnected? 

 With DFS? 

 With BFS? 

 With Topological Sorting? 

 

All of these can be used to find connected 
components of the graph 

 One just needs to start a new search at 
an unmarked node 
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MOST COMMON TRAVERSAL: 
FINDING SHORTEST PATHS 

Discovered by a most curmudgeonly man…. 
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Finding the Shortest Path 

The graph traversals discussed so far work 
with path length (number of edges)but not 
path cost 

 

Breadth-First Search found minimum path 
length from v to u in time O(|E|+(|V|) 

 

 Actually, can find the minimum path length 
from v to every node   
 Still O(|E|+(|V|) 

 No faster way for a "distinguished" destination 
in the worst-case 
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Finding the Shortest Path 

Question: 

Given a graph G and two vertices v and u, what is 
the shortest path (shortest length) from v to u? 
 

Solution: 

Breadth-First Search starting at u will find minimum 
path length from v to u in time O(|E|+(|V|) 
 

Actually, the search can be easily extended to find 
minimum path length from v to every node   

 Still O(|E|+(|V|) 

 No faster solution (in the worst-case) exists even if 
just focusing on one destination node 
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But That Was Path Length 

Path length is the number of edges in a path 

Path cost is sum of the weight of edges in a path 

 

New Question: 

Given a weighted graph and node v, what is the 
minimum-cost path from v to every node? 

 

We could phrase this as from a node v to u, but it is  
asymptotically no harder than for one destination 

 

Solution: 

Let's try BFS… it worked before, right? 
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Why BFS Will Not Work 

The shortest cost path may not have the 
fewest edges (shortest length) 

 

 

 

 

This happens frequently with airline tickets 

 Which is why I travel through Atlanta all too often 
to get to Kentucky from Seattle 

 

 

500 

100 

100 100 
100 
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Regarding Negative Weights 

Negative edge weights are a can of worms 

 If a cycle is negative, then the shortest path is -∞ 
(just repeat the cycle) 

 

 

 

We will assume that there are no negative 
edge weights 

 Today’s algorithm gives erroneous results if edges 
can be negative 
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Dijkstra’s Algorithm—The Man 

Named after its inventor Edsger 
Dijkstra (1930-2002) 

 

Truly one of the "founders" of 
computer science 

 

This is just one of his many 
contributions 

 

"Computer science is no more about computers 
than astronomy is about telescopes" 
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Dijkstra’s Algorithm—The Idea 

His algorithm is similar to BFS, but 
adapted to handle weights 

 A priority queue will prove useful for 
efficiency 

 Grow set of nodes whose shortest 
distance has been computed 

 Nodes not in the set will have a "best 
distance so far" 
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Dijkstra’s Algorithm—The Cloud 

Initial State: 

 Start node has cost 0  

 All other nodes have cost ∞ 

 

At each step: 

 Pick closest unknown vertex v 

 Add it to the "cloud" of known vertices 

 Update distances for nodes with edges from v 

     A B 

D 
C 

F H 

E 

G 

0 2 4  

4 

1 

12 

 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 5 
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The Algorithm 
1. For each node v≠source,  

Set  v.cost = ∞ and v.known = false 

2. Set source.cost = 0 and source.known = true 

3. While there are unknown nodes in the graph 

a) Select the unknown node v with lowest cost 

b) Mark v as known 

c) For each edge (v, u) with weight w, 

 c1 = v.cost + w       // cost of best path through v to u 

 c2 = u.cost   // cost of best path to u previously known 

 if(c1 < c2)                   // if the path through v is better 

      u.cost = c1 

              u.path = v                 // for computing actual paths 
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Example #1 
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A B 

D 
C 

F H 

E 

G 

0    

 

 

 

 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A 

B 

C 

D 

E 

F 

G 

H 

5 

Order Added to Known Set: 
 



Example #1 
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A B 

D 
C 

F H 

E 

G 

0    

 

 

 

 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A 0 

B ?? 

C ?? 

D ?? 

E ?? 

F ?? 

G ?? 

H ?? 

5 

Order Added to Known Set: 
 



Example #1 
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A B 

D 
C 

F H 

E 

G 

0 2   

4 

1 

 

 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A Y 0 

B  2 A 

C  1 A 

D  4 A 

E ?? 

F ?? 

G ?? 

H ?? 

5 

Order Added to Known Set: 
 
A 



Example #1 
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A B 

D 
C 

F H 

E 

G 

0 2   

4 

1 

12 

 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A Y 0 

B  2 A 

C Y 1 A 

D  4 A 

E  12 C 

F ?? 

G ?? 

H ?? 

5 

Order Added to Known Set: 
 
A, C 



Example #1 
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A B 

D 
C 

F H 

E 

G 

0 2 4  

4 

1 

12 

 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A Y 0 

B Y 2 A 

C Y 1 A 

D  4 A 

E  12 C 

F  4 B 

G ?? 

H ?? 

5 

Order Added to Known Set: 
 
A, C, B 



Example #1 
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A B 

D 
C 

F H 

E 

G 

0 2 4  

4 

1 

12 

 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A Y 0 

B Y 2 A 

C Y 1 A 

D Y 4 A 

E  12 C 

F  4 B 

G ?? 

H ?? 

5 

Order Added to Known Set: 
 
A, C, B, D 



Example #1 
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A B 

D 
C 

F H 

E 

G 

0 2 4 7 

4 

1 

12 

 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A Y 0 

B Y 2 A 

C Y 1 A 

D Y 4 A 

E  12 C 

F Y 4 B 

G ?? 

H  7 F 

5 

Order Added to Known Set: 
 
A, C, B, D, F 



Example #1 
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A B 

D 
C 

F H 

E 

G 

0 2 4 7 

4 

1 

12 

8 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A Y 0 

B Y 2 A 

C Y 1 A 

D Y 4 A 

E  12 C 

F Y 4 B 

G  8 H 

H Y 7 F 

5 

Order Added to Known Set: 
 
A, C, B, D, F, H 



Example #1 
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A B 

D 
C 

F H 

E 

G 

0 2 4 7 

4 

1 

11 

8 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A Y 0 

B Y 2 A 

C Y 1 A 

D Y 4 A 

E  11 G 

F Y 4 B 

G Y 8 H 

H Y 7 F 

5 

Order Added to Known Set: 
 
A, C, B, D, F, H, G 



Example #1 
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A B 

D 
C 

F H 

E 

G 

0 2 4 7 

4 

1 

11 

8 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 

vertex known? cost path 

A Y 0 

B Y 2 A 

C Y 1 A 

D Y 4 A 

E Y 11 G 

F Y 4 B 

G Y 8 H 

H Y 7 F 

5 

Order Added to Known Set: 
 
A, C, B, D, F, H, G, E 



Important Features 

When a vertex is marked known, the cost of 
the shortest path to that node is known 

 The path is also known by following back-pointers 

 

While a vertex is still not known, another 
shorter path to it might still be found 
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Interpreting the Results 

Now that we’re done, how do we get the 
path from, say, A to E? 

A B 

D 
C 

F H 

E 

G 

0 2 4 7 

4 

1 

11 

8 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 5 
vertex known? cost path 

A Y 0 

B Y 2 A 

C Y 1 A 

D Y 4 A 

E Y 11 G 

F Y 4 B 

G Y 8 H 

H Y 7 F 

Order Added to Known Set: 
 
A, C, B, D, F, H, G, E 
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Stopping Short 

How would this have worked differently if we were 
only interested in: 

 the path from A to G? 

 the path from A to E? 

A B 

D 
C 

F H 

E 

G 

0 2 4 7 

4 

1 

11 

8 

2 2 3 

1 10 2 
3 

1 11 

7 

1 

9 

2 

4 5 

vertex known? cost path 

A Y 0 

B Y 2 A 

C Y 1 A 

D Y 4 A 

E Y 11 G 

F Y 4 B 

G Y 8 H 

H Y 7 F 

Order Added to Known Set: 
 
A, C, B, D, F, H, G, E 
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Example #2 

A B 

C 
D 

F 

E 

G 

0  

 

 

 

 

 

2 

1 
2 

vertex known? cost path 

A 0 

B ?? 

C ?? 

D ?? 

E ?? 

F ?? 

G ?? 

5 

1 
1 

1 

2 
6 

5 3 

10 

Order Added to Known Set: 
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Example #2 
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A B 

C 
D 

F 

E 

G 

0  

 

2 

1 

 

 

2 

1 
2 

vertex known? cost path 

A Y 0 

B ?? 

C  2 A 

D  1 A 

E ?? 

F ?? 

G ?? 

5 

1 
1 

1 

2 
6 

5 3 

10 

Order Added to Known Set: 
 
A 



Example #2 

A B 

C 
D 

F 

E 

G 

0 6 

7 

2 

1 

2 

6 

2 

1 
2 

vertex known? cost path 

A Y 0 

B  6 D 

C  2 A 

D Y 1 A 

E  2 D 

F  7 D 

G  6 D 

5 

1 
1 

1 

2 
6 

5 3 

10 

Order Added to Known Set: 
 
A, D 
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Example #2 

A B 

C 
D 

F 

E 

G 

0 6 

4 

2 

1 

2 

6 

2 

1 
2 

vertex known? cost path 

A Y 0 

B  6 D 

C Y 2 A 

D Y 1 A 

E  2 D 

F  4 C 

G  6 D 

5 

1 
1 

1 

2 
6 

5 3 

10 

Order Added to Known Set: 
 
A, D, C 
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Example #2 

A B 

C 
D 

F 

E 

G 

0 3 

4 

2 

1 

2 

6 

2 

1 
2 

vertex known? cost path 

A Y 0 

B  3 E 

C Y 2 A 

D Y 1 A 

E Y 2 D 

F  4 C 

G  6 D 

5 

1 
1 

1 

2 
6 

5 3 

10 

Order Added to Known Set: 
 
A, D, C, E 
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Example #2 

A B 

C 
D 

F 

E 

G 

0 3 

4 

2 

1 

2 

6 

2 

1 
2 

vertex known? cost path 

A Y 0 

B Y 3 E 

C Y 2 A 

D Y 1 A 

E Y 2 D 

F  4 C 

G  6 D 

5 

1 
1 

1 

2 
6 

5 3 

10 

Order Added to Known Set: 
 
A, D, C, E, B 
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Example #2 

A B 

C 
D 

F 

E 

G 

0 3 

4 

2 

1 

2 

6 

2 

1 
2 

vertex known? cost path 

A Y 0 

B Y 3 E 

C Y 2 A 

D Y 1 A 

E Y 2 D 

F Y 4 C 

G  6 D 

5 

1 
1 

1 

2 
6 

5 3 

10 

Order Added to Known Set: 
 
A, D, C, E, B, F 

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 84 



Example #2 

A B 

C 
D 

F 

E 

G 

0 3 

4 

2 

1 

2 

6 

2 

1 
2 

vertex known? cost path 

A Y 0 

B Y 3 E 

C Y 2 A 

D Y 1 A 

E Y 2 D 

F Y 4 C 

G Y 6 D 

5 

1 
1 

1 

2 
6 

5 3 

10 

Order Added to Known Set: 
 
A, D, C, E, B, F, G 
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Example #3 

Y 

X 
1 1 1 1 

90 
80 70 60 50 

How will the best-cost-so-far for Y proceed? 
 
 
Is this expensive? 
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Example #3 

Y 

X 
1 1 1 1 

90 
80 70 60 50 

How will the best-cost-so-far for Y proceed?   
90, 81, 72, 63, 54 
 
Is this expensive?   
No, each edge is processed only once 
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A Greedy Algorithm 

Dijkstra’s algorithm is an example of a 
greedy algorithm:  

 At each step, irrevocably does what 
seems best at that step 

 Once a vertex is in the known set, does not 
go back and readjust its decision 

 Locally optimal 

 Does not always mean globally optimal 
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Where are We? 

Have described Dijkstra’s algorithm 

 For single-source shortest paths in a weighted 
graph (directed or undirected) with no negative-
weight edges 

 

What should we do next? 

 Prove the algorithm is correct 

 Analyze its efficiency 
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Correctness: Rough Intuition 

All "known" vertices have the correct shortest path 

 True initially: shortest path to start node has cost 0 

 If it stays true every time we mark a node as "known", 
then by induction this holds and eventually every vertex 
will be "known" 

 

What we need to prove: 

 When we mark a vertex as "known", we cannot ever 
discover a shorter path later in the algorithm 

 If we could, then the algorithm fails 
 

How we prove it: 

 This holds only because Dijkstra’s algorithm picks the node 
with the next shortest path-so-far 

 The proof is by contradiction… 
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Proof of Correctness (Rough Sketch) 

Suppose v is the next node to be marked known ("added to the cloud") 

The best-known path to v must have only nodes "in the cloud" 

 We have selected it, and we only know about paths through the cloud to a 
node at the edge of the cloud 

Assume the actual shortest path to v is different 

 It is not entirely within the cloud, or else we would know about it 

 So it must use non-cloud nodes. Let w be the first non-cloud node on this path   

 The part of the path up to w is already known and must be shorter than the 
best-known path to v: dw+… < dv  dw < dv  

 Ergo, w should have been picked before v.  Contradiction. 

    The Known 
Cloud 

v Next shortest path from  
inside the known cloud 

w 

Better path 
to v? No! 

Source 

dv 

dw 
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O(|V|2) 

Efficiency, First Approach 

Use pseudocode to determine asymptotic run-time 

 Important: note that each edge is processed only once 

 dijkstra(Graph G, Node start) { 
  for each node: x.cost=infinity, x.known=false 

  start.cost = 0 

  while(not all nodes are known) { 

    b = find unknown node with smallest cost 

    b.known = true 

    for each edge (b,a) in G 

     if(!a.known) 

       if(b.cost + weight((b,a)) < a.cost){ 

         a.cost = b.cost + weight((b,a)) 

         a.path = b 

       } 

} 

O(|V|) 

O(|V|2) 

O(|E|) 
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Improving Asymptotic Running Time 

So far we have an abysmal O(|V|2) 
 

We had a similar "problem" with topological 
sort being O(|V|2) due to each iteration 
looking for the node to process next 

 We solved it with a queue of zero-degree nodes 

 But here we need the lowest-cost node and costs 
can change as we process edges 

 

Solution? 
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Improving Asymptotic Running Time 

We will us a priority queue  

 Hold all unknown nodes 

 Priority will be their current cost 

 

But we need to update costs 

 Priority queue must have a decreaseKey operation 

 For efficiency, each node should maintain a 
reference from to its position in the queue 

 Eliminates need for O(log n) lookup  

 Conceptually simple, but can be a pain to code up 
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dijkstra(Graph G, Node start) { 

 for each node: x.cost=infinity, x.known=false 

 start.cost = 0 

 build-heap with all nodes 

 while(heap is not empty) { 

   b = deleteMin() 

   b.known = true 

   for each edge (b,a) in G 

     if(!a.known) 

       if(b.cost + weight((b,a)) < a.cost){ 

         decreaseKey(a,"new cost – old cost") 

    a.path = b 

       } 

} O(|V|log|V|+|E|log|V|) 

Efficiency, Second Approach 

Use pseudocode to determine asymptotic run-time 

 Note that deleteMin() and decreaseKey() operations are 
independent of each other 

 
O(|V|) 

O(|V|log |V|) 

O(|E|log|V|) 

O(|V|) 
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Dense versus Sparse Again 

First approach: O(|V|2) 

Second approach: O(|V|log|V|+|E|log|V|) 

 

So which is better? 

 Sparse: O(|V|log|V|+|E|log|V|) 

If |E| = Θ(|V|), then O(|E|log|V|) 

 Dense: O(|V|2) 

If |E| = Θ(|V|2), then |E|log|V| > |V|2 

 Neither sparse or dense? 

Second approach still likely to be better 
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But… 

Remember these are worst-case and asymptotic 

 

Priority queue might have worse constant factors 

 

On the other hand, for "normal graphs" 

 We might rarely call decreaseKey 

 We might not percolate far 

 This would make |E|log|V| more like |E| 
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What about connectedness? 

What happens if a graph is disconnected? 

 

Unmarked/unvisited nodes will continue to 
have a cost of infinity 

 Must be careful to do addition correctly: 
∞ + (finite value) = ∞ 

 One speed-up would be to stop once a 
deleteMin() returns ∞ 
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YOU WANT ALL THE 
SHORTEST PATHS? 
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All-Pairs Shortest Path 

Dijkstra's algorithm requires a starting vertex 

 

What if you want to find the shortest path 
between all pairs of vertices in the graph? 

 Run Dijkstra's for each vertex v? 

 Can we do better? Yep 

 

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 100 



Dynamic Programming 

An algorithmic technique that systematically 
records the answers to sub-problems in a 
table and re-uses those recorded results. 
 

Simple Example:  
Calculating the Nth Fibonacci number:
 Fib(N) = Fib(N-1) + Fib(N-2) 

 

Recursion would be insanely expensive,  

But it is cheap if you already know the results 
of prior computations 
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Floyd-Warshall All-Pairs Shortest Path 

Dynamic programming algorithm for finding 
shortest paths between all vertices 
 

Even works for negative edge weights 

 Only meaningful in no negative cycles 

 Can be used to detect such negative cycles 

 Idea: Check to see if there is a path from v to v 
 that has a negative cost 

 

Overall performance:  

 Time:  O(|V|3) 

 Space:  O(|V|2) 
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The Algorithm 

M[u][v] stores the cost of the best path from u to v 

Initialized to cost of edge between M[u][v] 
 

The algorithm: 
for (int k = 1; k =< V; k++) 

  for (int i = 1; i =< V; i++) 

   for (int j = 1; j =< V; j++) 

     if ( M[i][k]+ M[k][j] < M[i][j] ) 

        M[i][j] = M[i][k]+ M[k][j]  
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Invariant:  

After the kth iteration, the matrix M includes the shortest 
path between all pairs that use on only vertices 1..k as 
intermediate vertices in the paths 



1 2 3 4 5 

1 0 2 ∞ -4 ∞ 

2 ∞ 0 -2 1 3 

3 ∞ ∞ 0 ∞ 1 

4 ∞ ∞ ∞ 0 4 

5 ∞ ∞ ∞ ∞ 0 

2 

3 

4 5 

1 

-4 

2 

-2 

1 

3 
1 

4 

Initial state of the matrix: 

Note that non∞edges are 
indicated in some manner,  
such as infinity 
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Floydl-Warshall  

All-Pairs Shortest Path 



1 2 3 4 5 

1 0 2 ∞ -4 ∞ 

2 ∞ 0 -2 1 3 

3 ∞ ∞ 0 ∞ 1 

4 ∞ ∞ ∞ 0 4 

5 ∞ ∞ ∞ ∞ 0 

2 

3 

4 5 

1 

-4 

2 

-2 

1 

3 
1 

4 

k = 1 

M[i][j] =  
   min(M[i][j], M[i][k]+ M[k][j]) 
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Floydl-Warshall  

All-Pairs Shortest Path 



1 2 3 4 5 

1 0 2 0 -4 5 

2 ∞ 0 -2 1 3 

3 ∞ ∞ 0 ∞ 1 

4 ∞ ∞ ∞ 0 4 

5 ∞ ∞ ∞ ∞ 0 

2 

3 

4 5 

1 

-4 

2 

-2 

1 

3 
1 

4 

k = 2 

M[i][j] =  
   min(M[i][j], M[i][k]+ M[k][j]) 
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Floydl-Warshall  

All-Pairs Shortest Path 



1 2 3 4 5 

1 0 2 0 -4 1 

2 ∞ 0 -2 1 -1 

3 ∞ ∞ 0 ∞ 1 

4 ∞ ∞ ∞ 0 4 

5 ∞ ∞ ∞ ∞ 0 

2 

3 

4 5 

1 

-4 

2 

-2 

1 

3 
1 

4 

k = 3 

M[i][j] =  
   min(M[i][j], M[i][k]+ M[k][j]) 
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Floydl-Warshall  

All-Pairs Shortest Path 



1 2 3 4 5 

1 0 2 0 -4 0 

2 ∞ 0 -2 1 -1 

3 ∞ ∞ 0 ∞ 1 

4 ∞ ∞ ∞ 0 4 

5 ∞ ∞ ∞ ∞ 0 

2 

3 

4 5 

1 

-4 

2 

-2 

1 

3 
1 

4 

k = 4 

M[i][j] =  
   min(M[i][j], M[i][k]+ M[k][j]) 
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Floydl-Warshall  

All-Pairs Shortest Path 



1 2 3 4 5 

1 0 2 0 -4 0 

2 ∞ 0 -2 1 -1 

3 ∞ ∞ 0 ∞ 1 

4 ∞ ∞ ∞ 0 4 

5 ∞ ∞ ∞ ∞ 0 

2 

3 

4 5 

1 

-4 

2 

-2 

1 

3 
1 

4 

k = 5 

M[i][j] =  
   min(M[i][j], M[i][k]+ M[k][j]) 
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Floydl-Warshall  

All-Pairs Shortest Path 



What about connectedness? 

What happens if a graph is disconnected? 

 

Floyd-Warshall will still calculate all-pair 
shortest paths.  

 

Some will remain ∞ to indicate that no 
path exists between those vertices 
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What Comes Next? 

In the logical course progression, we would 
study the next graph topic:  

 

Minimum Spanning Trees 

 

They are trees… that span… minimally!! Woo!! 

 

But alas, we need to align lectures with 
projects and homework, so we will instead 

 Start parallelism and concurrency 

 Come back to graphs at the end of the course 
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