
CSE 332 Data Abstractions:
Graphs and Graph Traversals

Kate Deibel

Summer 2012

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 1

Last Time

We introduced the idea of graphs and their
associated terminology

Key terms included:

 Directed versus Undirected

 Weighted versus Unweighted

 Cyclic or Acyclic

 Connected or Disconnected

 Dense or Sparse

 Self-loops or not

These are all important concepts to consider
when implementing a graph data structure

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 2

Graph Data Structures

The two most common graph data structures

 Adjacency Matrix

 Adjacency List

Whichever is best depends on the type of
graph, its properties, and what you want to
do with the graph

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 3

Adjacency Matrix

Assign each node a number from 0 to |V|-1

A |V| x |V| matrix of Booleans (or 0 versus 1)

 Then M[u][v]==true  an edge exists from u to v

 This example is for a directed graph

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 4

A

B

C

D A B C D

A F T F F

B T F F F

C F T F T

D F F F F

F
ro

m

To

Adjacency Matrix Properties
Run time to get a vertex v’s out-edges?

 O(|V|)  iterate over v's row

Run time to get a vertex v's in-edges?

 O(|V|)  iterate over v's column

Run time to decide if an edge (u,v) exists?

 O(1)  direct lookup of M[u][v]

Run time to insert an edge (u,v)?

 O(1)  set M[u][v] = true

Run time to delete an edge (u,v)?

 O(1)  set M[u][v] = false

Space requirements:

 O(|V|2)  2-dimensional array

Best for sparse or dense graphs?

 Dense  We have to store every possible edge!!

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 5

A B C D

A F T F F

B T F F F

C F T F T

D F F F F

F
ro

m

To

Adjacency Matrix: Undirected Graphs

How will the adjacency matrix work for an
undirected graph?

 Will be symmetric about diagonal axis

 Save space by using only about half the array?

 But how would you "get all neighbors"?

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 6

A B C D

A F T F F

B T F F F

C F T F T

D F F T F

A

B

C

D

Adjacency Matrix: Weighted Graphs

How will the adjacency matrix work for a
weighted graph?

 Instead of Boolean, store a number in each cell

 Need some value to represent ‘not an edge’

 0, -1, or some other value based on how you are
using the graph

 Might need to be a separate field if no
restrictions on weights

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 7

A B C D

A 0 3 0 0

B 5 0 0 0

C 0 6 0 7

D 0 0 0 0

A

B

C

D

3

5

6

7

Adjacency List

Assign each node a number from 0 to |V|-1

 An array of length |V| in which each entry stores a

list of all adjacent vertices (e.g., linked list)

 This example is again for a directed graph

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 8

A

B

C

D

A

B

C

D

B /

A /

B /

/

D

Adjacency List Properties
Run time to get a vertex v’s out-edges?

 O(d)  where d is v's out-degree

Run time to get a vertex v's in-edges?

 O(|E|)  check every vertex list (or keep a second list for in-edges)

Run time to decide if an edge (u,v) exists?

 O(d)  where d is u's out-degree

Run time to insert an edge (u,v)?

 O(1)  unless you need to check if it’s already there

Run time to delete an edge (u,v)?

 O(d)  where d is u's out-degree

Space requirements:

 O(|V|+|E|)  vertex array plus edge nodes

Best for sparse or dense graphs?

 Sparse  Only store the edges needed

 July 25, 2012 CSE 332 Data Abstractions, Summer 2012 9

A B /

D /

B A /

C D B /

Adjacency List: Undirected Graphs

Adjacency lists also work well for undirected
graphs with one caveat

 Put each edge in two lists to support efficient "get
all neighbors"

 Only an additional O(|E|) space

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 10

A

B

C

D
A

B

C

D

B /

C

D

C /

B /

A /

Adjacency List: Weighted Graphs

Adjacency lists also work well for weighted
graphs but where do you store the weights?

 In a matrix?  O(|V|2) space

 Store a weight at each node in list  O(|E|) space

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 11

A

B

C

D

B:3 /

/

/

D:7 B:6 /

A:5 A

B

C

D

3

5

6

7

Which is better?

Graphs are often sparse

 Streets form grids

 Airlines rarely fly to all cities

Adjacency lists generally the better choice

 Slower performance

 HUGE space savings

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 12

How Huge of Space Savings?

Consider this 6x6 city street grid:

|V| = 36

|E| = 6╳5╳2 + 6╳5╳2 = 120

Adjacency Matrix: O(|V|2)

 362 = 1296

Adjacency List: O(|E| + |V|)

 36 + 2╳120 = 276 (we'll store both in and out-edges)

Savings Factor = 276/1296 = 23/108 ≈ 21% of the space

In general, savings are:
𝑉 + 𝐸

𝑉2
=

1

𝑉
+

𝐸

𝑉2

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 13

Recall that a sparse graph
has |E|=o(|V|2), strictly
less than quadratic

GRAPH APPLICATIONS:
TRAVERSALS

Might be easier to list what isn't a graph application…

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 14

Application: Moving Around WA State

What’s the shortest way to get from
Seattle to Pullman?

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 15

Application: Moving Around WA State

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 16

What’s the fastest way to get from
Seattle to Pullman?

Application: Communication Reliability

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 17

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 18

If Tacoma’s phone exchange goes down,
can Olympia still talk to Spokane?

Application: Communication Reliability

Applications: Bus Routes Downtown

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 19

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

How about 4th and Seneca?

Graph Traversals

For an arbitrary graph and a starting node v,
find all nodes reachable from v (i.e., there

exists a path)

 Possibly "do something" for each node (print to
output, set some field, return from iterator, etc.)

Related Problems:

 Is an undirected graph connected?

 Is a digraph weakly/strongly connected?

 For strongly, need a cycle back to starting node

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 20

Graph Traversals

Basic Algorithm for Traversals:

 Select a starting node

 Make a set of nodes adjacent to current node

 Visit each node in the set but "mark" each
nodes after visiting them so you don't revisit
them (and eventually stop)

 Repeat above but skip "marked nodes"

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 21

In Rough Code Form

 traverseGraph(Node start) {

 Set pending = emptySet();

 pending.add(start)

 mark start as visited

 while(pending is not empty) {

 next = pending.remove()

 for each node u adjacent to next

 if(u is not marked) {

 mark u

 pending.add(u)

 }

 }

 }

}

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 22

Running Time and Options

BFS and DFS traversal are both O(|V|+|E|) if
using and adjacency list

 Queue/stack insert removes are generally O(1)

 Adjacency lists make it O(|V|) to find neighboring
vertices/edges

 We will mark every node  O(|V|)

 We will touch every edge at most twice  O(|E|)

Because |E| is generally at least linear to |V|, we
usually just say BFS/DFS are O(|E|)

 Recall that in a connected graph |E|≥|V|-1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 23

The Order Matters

The order we traverse depends entirely on how
add and remove work/are implemented

 DFS: a stack "depth-first graph search"

 BFS: a queue "breadth-first graph search"

DFS and BFS are "big ideas" in computer science

 Depth: recursively explore one part before going
back to the other parts not yet explored

 Breadth: Explore areas closer to start node first

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 24

Recursive DFS, Example with Tree

A tree is a graph and DFS and BFS are particularly
easy to "see" in one

Order processed: A, B, D, E, C, F, G, H

 This is a "pre-order traversal" for trees

 The marking is unneeded here but because we
support arbitrary graphs, we need a means to
process each node exactly once

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 25

A

B

D E

C

F

H G

DFS(Node start) {

 mark and process start

 for each node u adjacent to start

 if u is not marked

 DFS(u)

}

DFS with Stack, Example with Tree

Order processed: A, C, F, H, G, B, E, D

 A different order but still a perfectly fine
traversal of the graph

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 26

A

B

D E

C

F

H G

DFS2(Node start) {

 initialize stack s to hold start

 mark start as visited

 while(s is not empty) {

 next = s.pop() // and "process"

 for each node u adjacent to next

 if(u is not marked)

 mark u and push onto s

 }

}

BFS with Queue, Example with Tree

Order processed: A, B, C, D, E, F, G, H

 A "level-order" traversal

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 27

A

B

D E

C

F

H G

BFS(Node start) {

 initialize queue q to hold start

 mark start as visited

 while(q is not empty) {

 next = q.dequeue() // and "process"

 for each node u adjacent to next

 if(u is not marked)

 mark u and enqueue onto q

 }

}

DFS/BFS Comparison

BFS always finds the shortest path/optimal
solution from the start vertex to the target

 Storage for BFS can be extremely large

 A k-nary tree of height h could result in a queue
size of kh

DFS can use less space in finding a path

 If longest path in the graph is p and highest out-
degree is d then DFS stack never has more than
d⋅p elements

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 28

Implications

For large graphs, DFS is more memory
efficient, if we can limit the maximum path
length to some fixed d.

If we knew the distance from the start to the
goal in advance, we could simply not add any
children to stack after level d

But what if we don’t know d in advance?

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 29

Iterative Deepening (IDFS)

Algorithms

 Try DFS up to recursion of K levels deep.

 If fail, increment K and start the entire search over

Performance:

 Like BFS, IDFS finds shortest paths

 Like DFS, IDFS uses less space

 Some work is repeated but minor compared to
space savings

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 30

Saving the Path

Our graph traversals can answer the standard
reachability question:

"Is there a path from node x to node y?"

But what if we want to actually output the path?

Easy:

 Store the previous node along the path:
When processing u causes us to add v to the
search, set v.path field to be u)

 When you reach the goal, follow path fields back to
where you started (and then reverse the answer)

 What's an easy way to do the reversal?

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 31

A Stack!!

Example using BFS

What is a path from Seattle to Austin?

 Remember marked nodes are not re-enqueued

 Note shortest paths may not be unique

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 32

Seattle

San Francisco

Dallas

Salt Lake City

Chicago

Austin

1

1

1

2

3

0

Topological Sort

Problem: Given a DAG G=(V, E), output all the
vertices in order such that if no vertex appears
before any other vertex that has an edge to it

Example input:

Example output:

 142, 126, 143, 311, 331, 332, 312, 341, 351,
333, 440, 352

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 33

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Disclaimer: Do not use for official advising purposes!
(Implies that CSE 332 is a pre-req for CSE 312 – not true)

Questions and Comments

Terminology:
A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

Why do we perform topological sorts only on DAGs?

 Because a cycle means there is no correct answer

Is there always a unique answer?

 No, there can be one or more answers depending
on the provided graph

What DAGs have exactly 1 answer?

 Lists

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 34

Uses Topological Sort

Figuring out how to finish your degree

Computing the order in which to
recalculate cells in a spreadsheet

Determining the order to compile files with
dependencies

In general, use a dependency graph to
find an allowed order of execution

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 35

Topological Sort: First Approach

1. Label each vertex with its in-degree

 Think "write in a field in the vertex"

 You could also do this with a data structure on
the side

2. While there are vertices not yet outputted:

a) Choose a vertex v labeled with in-degree of 0

b) Output v and "remove it" from the graph

c) For each vertex u adjacent to v, decrement in-
degree of u

 - (i.e., u such that (v,u) is in E)

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 36

Example

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 37

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-deg:

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 38

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed?

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 39

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 40

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 41

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 0 0 0

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 42

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 0 0

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 43

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 0 0

 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 44

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0

 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 45

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0

 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 46

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0

 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 47

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 48

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

333

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 49

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

333

352

Example

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 50

Node: 126 142 143 311 312 331 332 333 341 351 352 440

Removed? x x x x x x x x x x x x

In-deg: 0 0 2 1 2 1 1 2 1 1 1 1

 1 0 1 0 0 1 0 0 0 0

 0 0 0

CSE 142 CSE 143

CSE 331

CSE 311

CSE 351 CSE 333

CSE 332

CSE 341
CSE 312

CSE 352

MATH
126

CSE 440

…

Output:

126

142

143

311

331

332

312

341

351

333

352

440

Running Time?

What is the worst-case running time?

 Initialization O(|V| + |E|) (assuming adjacency list)

 Sum of all find-new-vertex O(|V|2) (because each O(|V|))

 Sum of all decrements O(|E|) (assuming adjacency list)

 So total is O(|V|2 + |E|) – not good for a sparse graph!

labelEachVertexWithItsInDegree();

for(i=0; i < numVertices; i++) {

 v = findNewVertexOfDegreeZero();

 put v next in output

 for each w adjacent to v

 w.indegree--;

}

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 51

Doing Better

Avoid searching for a zero-degree node every time!

 Keep the "pending" zero-degree nodes in a list, stack, queue,
bag, or something that gives O(1) add/remove

 Order we process them affects the output but not
correctness or efficiency

Using a queue:

 Label each vertex with its in-degree,

 Enqueue all 0-degree nodes

 While queue is not empty

 v = dequeue()

 Output v and remove it from the graph

 For each vertex u adjacent to v, decrement the in-degree
of u and if new degree is 0, enqueue it

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 52

Running Time?

labelAllWithIndegreesAndEnqueueZeros();

for(i=0; i < numVertices; i++) {

 v = dequeue();

 put v next in output

 for each w adjacent to v {

 w.indegree--;

 if(w.indegree==0)

 enqueue(w);

 }

}

 Initialization: O(|V| + |E|) (assuming adjacency list)

 Sum of all enqueues and dequeues: O(|V|)

 Sum of all decrements: O(|E|) (assuming adjacency list)

 So total is O(|E| + |V|) – much better for sparse graph!

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 53

What about connectedness?

What happens if a graph is disconnected?

 With DFS?

 With BFS?

 With Topological Sorting?

All of these can be used to find connected
components of the graph

 One just needs to start a new search at
an unmarked node

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 54

MOST COMMON TRAVERSAL:
FINDING SHORTEST PATHS

Discovered by a most curmudgeonly man….

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 55

Finding the Shortest Path

The graph traversals discussed so far work
with path length (number of edges)but not
path cost

Breadth-First Search found minimum path
length from v to u in time O(|E|+(|V|)

 Actually, can find the minimum path length
from v to every node
 Still O(|E|+(|V|)

 No faster way for a "distinguished" destination
in the worst-case

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 56

Finding the Shortest Path

Question:

Given a graph G and two vertices v and u, what is
the shortest path (shortest length) from v to u?

Solution:

Breadth-First Search starting at u will find minimum
path length from v to u in time O(|E|+(|V|)

Actually, the search can be easily extended to find
minimum path length from v to every node

 Still O(|E|+(|V|)

 No faster solution (in the worst-case) exists even if
just focusing on one destination node

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 57

But That Was Path Length

Path length is the number of edges in a path

Path cost is sum of the weight of edges in a path

New Question:

Given a weighted graph and node v, what is the
minimum-cost path from v to every node?

We could phrase this as from a node v to u, but it is
asymptotically no harder than for one destination

Solution:

Let's try BFS… it worked before, right?

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 58

Why BFS Will Not Work

The shortest cost path may not have the
fewest edges (shortest length)

This happens frequently with airline tickets

 Which is why I travel through Atlanta all too often
to get to Kentucky from Seattle

500

100

100 100
100

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 59

Regarding Negative Weights

Negative edge weights are a can of worms

 If a cycle is negative, then the shortest path is -∞
(just repeat the cycle)

We will assume that there are no negative
edge weights

 Today’s algorithm gives erroneous results if edges
can be negative

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 60

A

B

D

C

7

10 5

-11

Dijkstra’s Algorithm—The Man

Named after its inventor Edsger
Dijkstra (1930-2002)

Truly one of the "founders" of
computer science

This is just one of his many
contributions

"Computer science is no more about computers
than astronomy is about telescopes"

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 61

Dijkstra’s Algorithm—The Idea

His algorithm is similar to BFS, but
adapted to handle weights

 A priority queue will prove useful for
efficiency

 Grow set of nodes whose shortest
distance has been computed

 Nodes not in the set will have a "best
distance so far"

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 62

Dijkstra’s Algorithm—The Cloud

Initial State:

 Start node has cost 0

 All other nodes have cost ∞

At each step:

 Pick closest unknown vertex v

 Add it to the "cloud" of known vertices

 Update distances for nodes with edges from v

 A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4 5

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 63

The Algorithm
1. For each node v≠source,

Set v.cost = ∞ and v.known = false

2. Set source.cost = 0 and source.known = true

3. While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known

c) For each edge (v, u) with weight w,

 c1 = v.cost + w // cost of best path through v to u

 c2 = u.cost // cost of best path to u previously known

 if(c1 < c2) // if the path through v is better

 u.cost = c1

 u.path = v // for computing actual paths

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 64

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 65

A B

D
C

F H

E

G

0

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A

B

C

D

E

F

G

H

5

Order Added to Known Set:

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 66

A B

D
C

F H

E

G

0

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

H ??

5

Order Added to Known Set:

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 67

A B

D
C

F H

E

G

0 2

4

1

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B  2 A

C  1 A

D  4 A

E ??

F ??

G ??

H ??

5

Order Added to Known Set:

A

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 68

A B

D
C

F H

E

G

0 2

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B  2 A

C Y 1 A

D  4 A

E  12 C

F ??

G ??

H ??

5

Order Added to Known Set:

A, C

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 69

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D  4 A

E  12 C

F  4 B

G ??

H ??

5

Order Added to Known Set:

A, C, B

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 70

A B

D
C

F H

E

G

0 2 4

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F  4 B

G ??

H ??

5

Order Added to Known Set:

A, C, B, D

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 71

A B

D
C

F H

E

G

0 2 4 7

4

1

12

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B

G ??

H  7 F

5

Order Added to Known Set:

A, C, B, D, F

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 72

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  12 C

F Y 4 B

G  8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 73

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E  11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G

Example #1

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 74

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

5

Order Added to Known Set:

A, C, B, D, F, H, G, E

Important Features

When a vertex is marked known, the cost of
the shortest path to that node is known

 The path is also known by following back-pointers

While a vertex is still not known, another
shorter path to it might still be found

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 75

Interpreting the Results

Now that we’re done, how do we get the
path from, say, A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4 5
vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 76

Stopping Short

How would this have worked differently if we were
only interested in:

 the path from A to G?

 the path from A to E?

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

1 10 2
3

1 11

7

1

9

2

4 5

vertex known? cost path

A Y 0

B Y 2 A

C Y 1 A

D Y 4 A

E Y 11 G

F Y 4 B

G Y 8 H

H Y 7 F

Order Added to Known Set:

A, C, B, D, F, H, G, E

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 77

Example #2

A B

C
D

F

E

G

0

2

1
2

vertex known? cost path

A 0

B ??

C ??

D ??

E ??

F ??

G ??

5

1
1

1

2
6

5 3

10

Order Added to Known Set:

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 78

Example #2

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 79

A B

C
D

F

E

G

0

2

1

2

1
2

vertex known? cost path

A Y 0

B ??

C  2 A

D  1 A

E ??

F ??

G ??

5

1
1

1

2
6

5 3

10

Order Added to Known Set:

A

Example #2

A B

C
D

F

E

G

0 6

7

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B  6 D

C  2 A

D Y 1 A

E  2 D

F  7 D

G  6 D

5

1
1

1

2
6

5 3

10

Order Added to Known Set:

A, D

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 80

Example #2

A B

C
D

F

E

G

0 6

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B  6 D

C Y 2 A

D Y 1 A

E  2 D

F  4 C

G  6 D

5

1
1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 81

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B  3 E

C Y 2 A

D Y 1 A

E Y 2 D

F  4 C

G  6 D

5

1
1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 82

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F  4 C

G  6 D

5

1
1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 83

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G  6 D

5

1
1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B, F

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 84

Example #2

A B

C
D

F

E

G

0 3

4

2

1

2

6

2

1
2

vertex known? cost path

A Y 0

B Y 3 E

C Y 2 A

D Y 1 A

E Y 2 D

F Y 4 C

G Y 6 D

5

1
1

1

2
6

5 3

10

Order Added to Known Set:

A, D, C, E, B, F, G

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 85

Example #3

Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed?

Is this expensive?

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 86

Example #3

Y

X
1 1 1 1

90
80 70 60 50

How will the best-cost-so-far for Y proceed?
90, 81, 72, 63, 54

Is this expensive?
No, each edge is processed only once

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 87

A Greedy Algorithm

Dijkstra’s algorithm is an example of a
greedy algorithm:

 At each step, irrevocably does what
seems best at that step

 Once a vertex is in the known set, does not
go back and readjust its decision

 Locally optimal

 Does not always mean globally optimal

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 88

Where are We?

Have described Dijkstra’s algorithm

 For single-source shortest paths in a weighted
graph (directed or undirected) with no negative-
weight edges

What should we do next?

 Prove the algorithm is correct

 Analyze its efficiency

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 89

Correctness: Rough Intuition

All "known" vertices have the correct shortest path

 True initially: shortest path to start node has cost 0

 If it stays true every time we mark a node as "known",
then by induction this holds and eventually every vertex
will be "known"

What we need to prove:

 When we mark a vertex as "known", we cannot ever
discover a shorter path later in the algorithm

 If we could, then the algorithm fails

How we prove it:

 This holds only because Dijkstra’s algorithm picks the node
with the next shortest path-so-far

 The proof is by contradiction…

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 90

Proof of Correctness (Rough Sketch)

Suppose v is the next node to be marked known ("added to the cloud")

The best-known path to v must have only nodes "in the cloud"

 We have selected it, and we only know about paths through the cloud to a
node at the edge of the cloud

Assume the actual shortest path to v is different

 It is not entirely within the cloud, or else we would know about it

 So it must use non-cloud nodes. Let w be the first non-cloud node on this path

 The part of the path up to w is already known and must be shorter than the
best-known path to v: dw+… < dv  dw < dv

 Ergo, w should have been picked before v. Contradiction.

 The Known
Cloud

v Next shortest path from
inside the known cloud

w

Better path
to v? No!

Source

dv

dw

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 91

O(|V|2)

Efficiency, First Approach

Use pseudocode to determine asymptotic run-time

 Important: note that each edge is processed only once

 dijkstra(Graph G, Node start) {
 for each node: x.cost=infinity, x.known=false

 start.cost = 0

 while(not all nodes are known) {

 b = find unknown node with smallest cost

 b.known = true

 for each edge (b,a) in G

 if(!a.known)

 if(b.cost + weight((b,a)) < a.cost){

 a.cost = b.cost + weight((b,a))

 a.path = b

 }

}

O(|V|)

O(|V|2)

O(|E|)

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 92

Improving Asymptotic Running Time

So far we have an abysmal O(|V|2)

We had a similar "problem" with topological
sort being O(|V|2) due to each iteration
looking for the node to process next

 We solved it with a queue of zero-degree nodes

 But here we need the lowest-cost node and costs
can change as we process edges

Solution?

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 93

Improving Asymptotic Running Time

We will us a priority queue

 Hold all unknown nodes

 Priority will be their current cost

But we need to update costs

 Priority queue must have a decreaseKey operation

 For efficiency, each node should maintain a
reference from to its position in the queue

 Eliminates need for O(log n) lookup

 Conceptually simple, but can be a pain to code up

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 94

dijkstra(Graph G, Node start) {

 for each node: x.cost=infinity, x.known=false

 start.cost = 0

 build-heap with all nodes

 while(heap is not empty) {

 b = deleteMin()

 b.known = true

 for each edge (b,a) in G

 if(!a.known)

 if(b.cost + weight((b,a)) < a.cost){

 decreaseKey(a,"new cost – old cost")

 a.path = b

 }

} O(|V|log|V|+|E|log|V|)

Efficiency, Second Approach

Use pseudocode to determine asymptotic run-time

 Note that deleteMin() and decreaseKey() operations are
independent of each other

O(|V|)

O(|V|log |V|)

O(|E|log|V|)

O(|V|)

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 95

Dense versus Sparse Again

First approach: O(|V|2)

Second approach: O(|V|log|V|+|E|log|V|)

So which is better?

 Sparse: O(|V|log|V|+|E|log|V|)

If |E| = Θ(|V|), then O(|E|log|V|)

 Dense: O(|V|2)

If |E| = Θ(|V|2), then |E|log|V| > |V|2

 Neither sparse or dense?

Second approach still likely to be better

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 96

But…

Remember these are worst-case and asymptotic

Priority queue might have worse constant factors

On the other hand, for "normal graphs"

 We might rarely call decreaseKey

 We might not percolate far

 This would make |E|log|V| more like |E|

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 97

What about connectedness?

What happens if a graph is disconnected?

Unmarked/unvisited nodes will continue to
have a cost of infinity

 Must be careful to do addition correctly:
∞ + (finite value) = ∞

 One speed-up would be to stop once a
deleteMin() returns ∞

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 98

YOU WANT ALL THE
SHORTEST PATHS?

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 99

All-Pairs Shortest Path

Dijkstra's algorithm requires a starting vertex

What if you want to find the shortest path
between all pairs of vertices in the graph?

 Run Dijkstra's for each vertex v?

 Can we do better? Yep

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 100

Dynamic Programming

An algorithmic technique that systematically
records the answers to sub-problems in a
table and re-uses those recorded results.

Simple Example:
Calculating the Nth Fibonacci number:
 Fib(N) = Fib(N-1) + Fib(N-2)

Recursion would be insanely expensive,

But it is cheap if you already know the results
of prior computations

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 101

Floyd-Warshall All-Pairs Shortest Path

Dynamic programming algorithm for finding
shortest paths between all vertices

Even works for negative edge weights

 Only meaningful in no negative cycles

 Can be used to detect such negative cycles

 Idea: Check to see if there is a path from v to v
 that has a negative cost

Overall performance:

 Time: O(|V|3)

 Space: O(|V|2)

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 102

The Algorithm

M[u][v] stores the cost of the best path from u to v

Initialized to cost of edge between M[u][v]

The algorithm:
for (int k = 1; k =< V; k++)

 for (int i = 1; i =< V; i++)

 for (int j = 1; j =< V; j++)

 if (M[i][k]+ M[k][j] < M[i][j])

 M[i][j] = M[i][k]+ M[k][j]

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 103

Invariant:

After the kth iteration, the matrix M includes the shortest
path between all pairs that use on only vertices 1..k as
intermediate vertices in the paths

1 2 3 4 5

1 0 2 ∞ -4 ∞

2 ∞ 0 -2 1 3

3 ∞ ∞ 0 ∞ 1

4 ∞ ∞ ∞ 0 4

5 ∞ ∞ ∞ ∞ 0

2

3

4 5

1

-4

2

-2

1

3
1

4

Initial state of the matrix:

Note that non∞edges are
indicated in some manner,
such as infinity

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 104

Floydl-Warshall

All-Pairs Shortest Path

1 2 3 4 5

1 0 2 ∞ -4 ∞

2 ∞ 0 -2 1 3

3 ∞ ∞ 0 ∞ 1

4 ∞ ∞ ∞ 0 4

5 ∞ ∞ ∞ ∞ 0

2

3

4 5

1

-4

2

-2

1

3
1

4

k = 1

M[i][j] =
 min(M[i][j], M[i][k]+ M[k][j])

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 105

Floydl-Warshall

All-Pairs Shortest Path

1 2 3 4 5

1 0 2 0 -4 5

2 ∞ 0 -2 1 3

3 ∞ ∞ 0 ∞ 1

4 ∞ ∞ ∞ 0 4

5 ∞ ∞ ∞ ∞ 0

2

3

4 5

1

-4

2

-2

1

3
1

4

k = 2

M[i][j] =
 min(M[i][j], M[i][k]+ M[k][j])

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 106

Floydl-Warshall

All-Pairs Shortest Path

1 2 3 4 5

1 0 2 0 -4 1

2 ∞ 0 -2 1 -1

3 ∞ ∞ 0 ∞ 1

4 ∞ ∞ ∞ 0 4

5 ∞ ∞ ∞ ∞ 0

2

3

4 5

1

-4

2

-2

1

3
1

4

k = 3

M[i][j] =
 min(M[i][j], M[i][k]+ M[k][j])

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 107

Floydl-Warshall

All-Pairs Shortest Path

1 2 3 4 5

1 0 2 0 -4 0

2 ∞ 0 -2 1 -1

3 ∞ ∞ 0 ∞ 1

4 ∞ ∞ ∞ 0 4

5 ∞ ∞ ∞ ∞ 0

2

3

4 5

1

-4

2

-2

1

3
1

4

k = 4

M[i][j] =
 min(M[i][j], M[i][k]+ M[k][j])

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 108

Floydl-Warshall

All-Pairs Shortest Path

1 2 3 4 5

1 0 2 0 -4 0

2 ∞ 0 -2 1 -1

3 ∞ ∞ 0 ∞ 1

4 ∞ ∞ ∞ 0 4

5 ∞ ∞ ∞ ∞ 0

2

3

4 5

1

-4

2

-2

1

3
1

4

k = 5

M[i][j] =
 min(M[i][j], M[i][k]+ M[k][j])

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 109

Floydl-Warshall

All-Pairs Shortest Path

What about connectedness?

What happens if a graph is disconnected?

Floyd-Warshall will still calculate all-pair
shortest paths.

Some will remain ∞ to indicate that no
path exists between those vertices

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 110

What Comes Next?

In the logical course progression, we would
study the next graph topic:

Minimum Spanning Trees

They are trees… that span… minimally!! Woo!!

But alas, we need to align lectures with
projects and homework, so we will instead

 Start parallelism and concurrency

 Come back to graphs at the end of the course

July 25, 2012 CSE 332 Data Abstractions, Summer 2012 111

