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Midterm: Question 1d 
What is the tightest bound that you can give for the 
summation  𝑖𝑘𝑛

𝑖=0 ? 
 

This is an important summation to recognize 

k=1   𝑖1𝑛
𝑖=1 = 1 + 2+ 3 +⋯+ 𝑛 =

𝑛(𝑛+1)

2
≈
𝑛2

2
 

k=2   𝑖2𝑛
𝑖=1 = 1 + 4+ 9 +⋯+𝑛

2=
𝑛(𝑛+1)(2𝑛+1)

6
≈
𝑛3

3
 

k=3   𝑖3𝑛
𝑖=1 = 1 + 8+ 27 +⋯+𝑛

3=
𝑛2(𝑛+1)2

4
≈
𝑛4

4
 

k=4   𝑖4𝑛
𝑖=1 = 1 + 16 + 81 +⋯+𝑛

4=
𝑛(𝑛+1)(2𝑛+1)(3𝑛2+3𝑛−1)

30
≈
𝑛5

5
 

 

In general, the sum of the first n integers to the kth power 
is always of the next power up  

 𝑖𝑘
𝑛

𝑖=1

= 1𝑘 + 2𝑘 +3𝑘 ⋯+𝑛𝑘≈
𝑛𝑘+1

𝑘 + 1
= Θ(𝑛𝑘+1) 
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Changing a Major Assumption 

So far most or all of your study of computer science 
has assumed: 
 

ONE THING HAPPENED AT A TIME 
 

Called sequential programming—everything part of 
one sequence 
 

Removing this assumption creates major challenges 
and opportunities 

 Programming: Divide work among threads of execution and 
coordinate among them (i.e., synchronize their work)  

 Algorithms: How can parallel activity provide speed-up (more 
throughput, more work done per unit time) 

 Data structures: May need to support concurrent access 
(multiple threads operating on data at the same time) 
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A Simplified View of History 

Writing correct and efficient multithreaded code is 
often much more difficult than single-threaded code 

 Especially in typical languages like Java and C 

 So we typically stay sequential whenever possible 

 

From roughly 1980-2005, desktop computers got 
exponentially faster at running sequential programs 

 About twice as fast every couple years 

 

But nobody knows how to continue this 

 Increasing clock rate generates too much heat 

 Relative cost of memory access is too high 
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A Simplified View of History 

We knew this was coming, so we looked at 
the idea of using multiple computers at once 

 Computer clusters (e.g., Beowulfs) 

 Distributed computing (e.g., SETI@Home) 
 

These ideas work but are not practical for 
personal machines, but fortunately: 

 We are still making "wires exponentially smaller" 
(per Moore’s "Law") 

 So why not put multiple processors on the same 
chip (i.e., "multicore")? 
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What to do with Multiple Processors? 

Your next computer will likely have 4 processors 

 Wait a few years and it will be 8, 16, 32, … 

 Chip companies decided to do this (not a "law") 

 

What can you do with them? 

 Run multiple different programs at the same time? 

 We already do that with time-slicing with the OS 

 Do multiple things at once in one program? 

 This will be our focus but it is far more difficult 

 We must rethink everything from asymptotic 
complexity to data structure implementations 
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BASIC DEFINITIONS: 
PARALLELISM & CONCURRENCY 

Definitions definitions definitions… are you sick of them yet? 
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Parallelism vs. Concurrency 
Note: These terms are not yet standard but the perspective is essential 

  Many programmers confuse these concepts 

These concepts are related but still different: 

 Common to use threads for both 

 If parallel computations need access to shared resources, 
then the concurrency needs to be managed 

Parallelism:  

   Use extra resources to  

   solve a problem faster 

resources 

Concurrency: 

  Correctly and efficiently manage  

  access to shared resources 

requests work 

resource 
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An Analogy 

CS1 idea: A program is like a recipe for a cook 

 One cook who does one thing at a time! 
 

Parallelism: 

 Have lots of potatoes to slice?  

 Hire helpers, hand out potatoes and knives 

 But too many chefs and you spend all your time 
coordinating 

 

Concurrency: 

 Lots of cooks making different things, but there 
are only 4 stove burners available in the kitchen 

 We want to allow access to all 4 burners, but not 
cause spills or incorrect burner settings 
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Parallelism Example 
Parallelism: Use extra resources to solve a problem faster 
(increasing throughput via simultaneous execution) 

 

Pseudocode  for array sum 

 No ‘FORALL’ construct in Java, but we will see something similar 

 Bad style for reasons we’ll see, but may get roughly 4x speedup 

int sum(int[] arr){ 
  result = new int[4]; 
  len = arr.length; 
  FORALL(i=0; i < 4; i++) { //parallel iterations 
    result[i] = sumRange(arr,i*len/4,(i+1)*len/4); 
  } 
  return result[0]+result[1]+result[2]+result[3]; 
} 
 

int sumRange(int[] arr, int lo, int hi) { 
   result = 0; 
   for(j=lo; j < hi; j++) 
      result += arr[j]; 
   return result; 
} 
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Concurrency Example 
Concurrency: Correctly and efficiently manage access to shared 
resources (from multiple possibly-simultaneous clients) 
 

Pseudocode  for a shared chaining hashtable 

 Prevent bad interleavings (critical ensure correctness) 

 But allow some concurrent access (critical to preserve 
performance) 

 class Hashtable<K,V> { 
   … 
   void insert(K key, V value) { 
      int bucket = …; 
      prevent-other-inserts/lookups in table[bucket] 
      do the insertion 
      re-enable access to arr[bucket] 
   } 
   V lookup(K key) { 
 (similar to insert,  
 but can allow concurrent lookups to same bucket) 
   } 
} 
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Shared Memory with Threads 

The model we will assume is shared memory with 
explicit threads 

 

Old story: A running program has 

 One program counter (the current statement that is 
executing) 

 One call stack (each stack frame holding local 
variables)  

 Objects in the heap created by memory allocation (i.e., 
new) (same name, but no relation to the heap data 
structure) 

 Static fields in the class shared among objects 
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Shared Memory with Threads 

The model we will assume is shared memory with 
explicit threads 

 

New story: 

 A set of threads, each with a program and call stack but 
no access to another thread’s local variables 

 Threads can implicitly share objects and static fields  

 Communication among threads occurs via writing 
values to a shared location that another thread reads 
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Old Story: Single-Threaded 

… 

Heap for all objects  
and static fields 

Call stack with local variables 

Program counter for current statement 

Local variables are primitives or heap references 

pc=… 

…
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New Story: Threads & Shared Memory 

… 

Heap for all objects and static 
fields, shared by all threads 

Threads, each with own unshared  
call stack and "program counter"  

pc=… 

…
 

pc=… 

…
 

pc=… 

…
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Other Parallelism/Concurrency Models 

We will focus on shared memory, but you should know several 
other models exist and have their own advantages 

 

Message-passing:  

 Each thread has its own collection of objects 

 Communication is via explicitly sending/receiving messages 

 Cooks working in separate kitchens, mail around ingredients 
 

Dataflow: 

 Programmers write programs in terms of a DAG.  

 A node executes after all of its predecessors in the graph 

 Cooks wait to be handed results of previous steps 
 

Data parallelism: 

 Have primitives for things like "apply function to every 
element of an array in parallel" 
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FIRST IMPLEMENTATION: 
SHARED MEMORY IN JAVA 

Keep in mind that Java was first released in 1995 
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Our Needs 
To write a shared-memory parallel program, we need new 
primitives from a programming language or library 

 

Ways to create and run multiple things at once 

 We will call these things threads 

 

Ways for threads to share memory  

 Often just have threads with references to the same objects 

 

Ways for threads to coordinate (a.k.a. synchronize) 

 For now, a way for one thread to wait for another to finish 

 Other primitives when we study concurrency 
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Java Basics 
We will first  learn some basics built into Java via the 
provided java.lang.Thread package 

 We will learn a better library for parallel programming 
 

To get a new thread running: 

1. Define a subclass C of java.lang.Thread, 

2. Override the run method 

3. Create an object of class C 

4. Call that object’s start method 
 

start sets off a new thread, using run as its "main" 
 

What if we instead called the run method of C? 

 Just a normal method call in the current thread 
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Parallelism Example: Sum an Array 

Have 4 threads simultaneously sum 1/4 of the array 
 

Approach: 

 Create 4 thread objects, each given a portion of the work 

 Call start() on each thread object to actually run it in parallel 

 Somehow ‘wait’ for threads to finish 

 Add together their 4 answers for the final result 

 

 

 

 

 
 

Warning: This is the inferior first approach, do not do this 

ans0 ans1 ans2 ans3 

ans 
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Creating the Thread Subclass 
class SumThread extends java.lang.Thread { 
 
  int lo; // arguments 
  int hi; 
  int[] arr; 
 
  int ans = 0; // result  
     
  SumThread(int[] a, int l, int h) {  
    lo=l; hi=h; arr=a; 
  } 
 
  public void run() { //override must have this type 
    for(int i=lo; i < hi; i++) 
      ans += arr[i]; 
  } 
} 

Because we override a no-arguments/no-result run, 
we use fields to communicate data across threads 

We will ignore handling 
the case where: 

arr.length % 4 != 0 
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Creating the Threads Wrongly 
class SumThread extends java.lang.Thread { 

  int lo, int hi, int[] arr; // arguments 

  int ans = 0; // result 

  SumThread(int[] a, int l, int h) { … } 

  public void run(){ … } // override 

} 

int sum(int[] arr){ // can be a static method 

  int len = arr.length; 

  int ans = 0; 

  SumThread[] ts = new SumThread[4]; 

  for(int i=0; i < 4; i++) // do parallel computations 

    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 

  for(int i=0; i < 4; i++) // combine results 

    ans += ts[i].ans; 

  return ans; 

} We forgot to start 
the threads!!! 
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Starting Threads but Still Wrong 
int sum(int[] arr){ // can be a static method 

  int len = arr.length; 

  int ans = 0; 

  SumThread[] ts = new SumThread[4]; 

  for(int i=0; i < 4; i++){// do parallel computations 

    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 

    ts[i].start(); // start not run 

  } 

  for(int i=0; i < 4; i++) // combine results 

    ans += ts[i].ans; 

  return ans; 

} 

We start the threads and then 
assume they finish right away!!! 

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 23 

Join: The ‘Wait for Thread’ Method 

The Thread class defines various methods that provide 

primitive operations you could not implement on your own 

 For example: start, which calls run in a new thread 
 

The join method is another such method, essential for 

coordination in this kind of computation 

 Caller blocks until/unless the receiver is done executing 
(meaning its run method returns after its execution) 

 Without join, we would have a ‘race condition’ on ts[i].ans 
in which the variable is read/written simultaneously 

 

This style of parallel programming is called fork/join" 

 If we write in this style, we avoid many concurrency issues 

 But certainly not all of them 
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Third Attempt: Correct in Spirit 
int sum(int[] arr){ // can be a static method 

  int len = arr.length; 

  int ans = 0; 

  SumThread[] ts = new SumThread[4]; 

  for(int i=0; i < 4; i++){// do parallel computations 

    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 

    ts[i].start();  

  } 

  for(int i=0; i < 4; i++) { // combine results 

    ts[i].join(); // wait for helper to finish! 

    ans += ts[i].ans; 

  } 

  return ans; 

} 

Note that there is no guarantee that ts[0] finishes before ts[1] 

 Completion order is nondeterministic  

 Not a concern as our threads do the same amount of work 
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Where is the Shared Memory? 

Fork-join programs tend not to require [thankfully] a 
lot of focus on sharing memory among threads 

 But in languages like Java, there is memory being shared 

 

In our example: 
 lo, hi, arr fields written by "main" thread, read by helper 

thread 

 ans field written by helper thread, read by "main" thread 

 

When using shared memory, the challenge and 
absolute requirement is to avoid race conditions 
 While studying parallelism, we’ll stick with join 

 With concurrency, we’ll learn other ways to synchronize 
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BETTER ALGORITHMS: 
PARALLEL ARRAY SUM 

Keep in mind that Java was first released in 1995 
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A Poor Approach: Reasons 

Our current array sum code is a poor usage of 
parallelism for several reasons 
 

1. Code should be reusable and efficient across platforms 

 "Forward-portable" as core count grows 

 At the very least, we should parameterize the number of 
threads used by the algorithm 

 

 
int sum(int[] arr, int numThreads){ 
  …  // note: shows idea, but has integer-division bug 
  int subLen = arr.length / numThreads; 
  SumThread[] ts = new SumThread[numThreads]; 
  for(int i=0; i < numThreads; i++){ 
   ts[i] = new SumThread(arr,i*subLen,(i+1)*subLen); 
   ts[i].start(); 
  } 
  for(int i=0; i < numThreads; i++) {  
    … 
  } 
  … 

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 28 

A Poor Approach: Reasons 

Our current array sum code is a poor usage of 
parallelism for several reasons 
 

2. We want to use only the processors "available now" 

 Not used by other programs or threads in your program 

 Maybe caller is also using parallelism 

 Available cores can change even while your threads run 

 If 3 processors available and 3 threads would take time X, 
creating 4 threads can have worst-case time of 1.5X 
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// numThreads == numProcessors is bad 
// if some are needed for other things 
int sum(int[] arr, int numThreads){ 
  … 
} 
 

A Poor Approach: Reasons 

Our current array sum code is a poor usage of 
parallelism for several reasons 

 

3. Though unlikely for sum, subproblems may take significantly 

different amounts of time 

 Example: Apply method f to every array element, but 
maybe f is much slower for some data items 

 Example: Determine if a large integer is prime? 

 If we create 4 threads and all the slow data is processed 
by 1 of them, we won’t get nearly a 4x speedup 

 Example of a load imbalance 
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A Better Approach: Counterintuitive 
Although counterintuitive, the better solution is to use a 
lot more threads beyond the number of processors 

 

 

 

 
1. Forward-Portable: Lots of helpers each doing small work 

2. Processors Available: Hand out "work chunks" as you go 

 If 3 processors available and have 100 threads, worst-
case extra time is < 3% (if we ignore constant factors and 
load imbalance) 

3. Load Imbalance: Problem "disappears" 

 Try to ensure that slow threads are scheduled early  

 Variation likely small if pieces of work are also small 

 

 

 

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 31 

ans0 ans1 … ansN 

ans 

But Do Not Be Naïve 
This approach does not provide a free lunch: 

Assume we create 1 thread to process every N elements 

 

 

 

 

 

 

Combining results will require arr.length/N additions 

 As N increases, this becomes linear in size of array  

 Previously we only had 4 pieces, Ө(1) to combine 
 

In the extreme, suppose we create one thread per element 

 Using a loop to combine the results requires N iterations  
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int sum(int[] arr, int N){ 
  … 
  // How many pieces of size N do we have? 
  int numThreads = arr.length / N; 
  SumThread[] ts = new SumThread[numThreads]; 
  … 
} 

A Better Idea: Divide-and-Conquer 

Straightforward to implement 
 

Use parallelism for the recursive calls 

 Halve and make new thread until size is at some cutoff 

 Combine answers in pairs as we return 
 

This starts small but grows threads to fit the problem 
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+ + + + + + + + 

+ + + + 

+ + 
+ 

Divide-and-Conquer 
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public void run(){ // override 
  if(hi – lo < SEQUENTIAL_CUTOFF) 
      for(int i=lo; i < hi; i++) 
       ans += arr[i]; 
  else { 
    SumThread left = new SumThread(arr,lo,(hi+lo)/2); 
    SumThread right= new SumThread(arr,(hi+lo)/2,hi); 
    left.start(); 
    right.start(); 
    left.join(); // don’t move this up a line – why? 
    right.join(); 
    ans = left.ans + right.ans; 
  } 
 } 
} 
 

int sum(int[] arr){  
  SumThread t = new SumThread(arr,0,arr.length); 
  t.run(); 
  return t.ans; 
} 

Divide-and-Conquer Really Works 

The key is to parallelize the result-combining 

 With enough processors,  total time is the tree height: O(log n)  

 This is optimal and exponentially faster than sequential O(n)) 

 But the reality is that we usually have P < O(n) processors 

 

 

 

 
 

 

Still, we will write our parallel algorithms in this style 

 Relies on operations being associative (as with +) 

 But will use a special library engineered for this style 

 It takes care of scheduling the computation well 
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+ + + + + + + + 

+ + + + 

+ + 
+ 

REALITY BITES 

Good movie… speaks to Generation Xers… 
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Being Realistic 
In theory, you can divide down to single elements and then do 
all your result-combining in parallel and get optimal speedup 
 

In practice, creating all those threads and communicating 
amongst them swamps the savings,  
 

To gain better efficiency: 

 Use a sequential cutoff, typically around 500-1000 

 Eliminates almost all of the recursive thread creation 
because it eliminates the bottom levels of the tree 

 This is exactly like quicksort switching to insertion sort  
for small subproblems, but even more important here 

 Be clever and do not create unneeded threads 

 When creating a thread, you are already in another thread 

 Why not use the current thread to do half the work? 

 Cuts the number of threads created by another 2x 
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Halving the Number of Threads 

If a language had built-in support for fork-join parallelism, 
we would expect this hand-optimization to be unnecessary 
 

But the library we are using expects you to do it yourself 

 And the difference is surprisingly substantial 

 But no difference in theory 

 

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 38 

// wasteful: don’t 
SumThread left  = … 
SumThread right = … 

 
// create two threads 
left.start(); 

right.start(); 
left.join();  
right.join(); 

ans=left.ans+right.ans; 

// better: do 
SumThread left  = … 
SumThread right = … 

 
// order of next 4 lines 
// essential – why? 

left.start(); 
right.run(); 
left.join();  

ans=left.ans+right.ans; 

Illustration of Fewer Threads 
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at each step 

Limits of The Java Thread Library 
Even with all this care, Java’s threads are too heavyweight 

 Constant factors, especially space overhead 

 Creating 20,000 Java threads just a bad idea 

 

The ForkJoin Framework is designed/engineered to meet 
the needs of divide-and-conquer fork-join parallelism 

 Included in the Java 7 standard libraries 

 Also available as a downloaded .jar file for Java 6 

 Section will discuss some pragmatics/logistics 

 Similar libraries available for other languages  

 C/C++: Cilk, Intel’s Thread Building Blocks 

 C#: Task Parallel Library 

 Library implementation is an advanced topic 
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Different Terms / Same Basic Ideas 

Don’t subclass Thread 

Don’t override run      

Do not use an ans field 

Do not call start 

Do not just call join 

Do not call run to hand-optimize 

Do not have a topmost call to run 

Do subclass RecursiveTask<V> 

Do override compute 

Do return a V from compute 

Do call fork 

Do call join which returns answer 

Do call compute to hand-optimize 

Do create a pool and call invoke 
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To use the ForkJoin Framework: 
 A little standard set-up code (e.g., create a ForkJoinPool) 
 

The Fundamental Differences: 

See the Dan Grossman's web page for  

"A Beginner’s Introduction to the ForkJoin Framework" 

http://www.cs.washington.edu/homes/djg/teachingMaterials/sp
ac/grossmanSPAC_forkJoinFramework.html 

Final Version in ForkJoin Framework 
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class SumArray extends RecursiveTask<Integer> { 
  int lo; int hi; int[] arr; // arguments 
  SumArray(int[] a, int l, int h) { … } 
  protected Integer compute(){// return answer 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
      int ans = 0; 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
      return ans; 
    } else { 
      SumArray left = new SumArray(arr,lo,(hi+lo)/2); 
      SumArray right= new SumArray(arr,(hi+lo)/2,hi); 
      left.fork(); 
      int rightAns = right.compute(); 
      int leftAns  = left.join();  
      return leftAns + rightAns; 
    } 
  } 
} 
 

static final ForkJoinPool fjPool = new ForkJoinPool(); 
 

int sum(int[] arr){ 
  return fjPool.invoke(new SumArray(arr,0,arr.length)); 
} 

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
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For Comparison: Java Threads Version 
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class SumThread extends java.lang.Thread { 
  int lo; int hi; int[] arr;//fields to know what to do 
  int ans = 0; // for communicating result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
    else { // create 2 threads, each will do ½ the work 
      SumThread left = new SumThread(arr,lo,(hi+lo)/2); 
      SumThread right= new SumThread(arr,(hi+lo)/2,hi); 
      left.start(); 
      right.start(); 
      left.join(); // don’t move this up a line – why? 
      right.join(); 
      ans = left.ans + right.ans; 
    } 
  } 
} 
 

class C { 
 static int sum(int[] arr){  
   SumThread t = new SumThread(arr,0,arr.length); 
   t.run(); // only creates one thread 
   return t.ans; 
 } 
} 

Getting Good Results with ForkJoin 

Sequential threshold 

 Library documentation recommends doing approximately 
100-5000 basic operations in each "piece" of your algorithm 

 

Library needs to "warm up" 

 May see slow results before the Java virtual machine  
re-optimizes the library internals  

 When evaluating speed, loop computations to see the "long-
term benefit" after these optimizations have occurred  

 

Wait until your computer has more processors 

 Seriously, overhead may dominate at 4 processors 

 But parallel programming becoming much more important 
 

Beware memory-hierarchy issues  

 Will not focus on but can be crucial for parallel performance 
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ENOUGH IMPLEMENTATION: 
ANALYZING PARALLEL CODE 

Ah yes… the comfort of mathematics… 
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Key Concepts: Work and Span 

Analyzing parallel algorithms requires considering the 
full range of processors available 

 We parameterize this by letting TP be the running time if P 
processors are available 

 We then calculate two extremes: work and span 
 

Work: T1  How long using only 1 processor  

 Just "sequentialize" the recursive forking 
 

Span: T∞   How long using infinity processors 

 The longest dependence-chain 

 Example: O(log n) for summing an array  

 Notice that having > n/2 processors is no additional help 

 Also called "critical path length" or "computational depth" 
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The DAG 

A program execution using fork and join can be 

seen as a DAG 

 Nodes: Pieces of work  

 Edges: Source must finish before destination starts 
 

A fork "ends a node" and makes 
two outgoing edges 

 New thread 

 Continuation of current thread 
 

A join "ends a node" and makes a  
node with two incoming edges 

 Node just ended 

 Last node of thread joined on 
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Our Simple Examples 
fork and join are very flexible, but divide-and-conquer 

use them in a very basic way: 

 A tree on top of an upside-down tree 
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base cases 

divide  

conquer 
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What Else Looks Like This? 

Summing an array went from O(n) sequential to 
O(log n) parallel (assuming a lot of processors and 

very large n) 

 

 

 

 

 
 

 

Anything that can use results from two halves and 
merge them in O(1) time has the same properties 
and exponential speed-up (in theory) 
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+ + + + + + + + 

+ + + + 

+ + 
+ 

Examples 

 Maximum or minimum element 
 

 Is there an element satisfying some property (e.g., 
is there a 17)? 
 

 Left-most element satisfying some property (e.g., 
first 17) 

 What should the recursive tasks return? 

 How should we merge the results? 
 

 Corners of a rectangle containing all points (a 
"bounding box") 
 

 Counts (e.g., # of strings that start with a vowel) 

 This is just summing with a different base case 
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More Interesting DAGs? 

Of course, the DAGs are not always so simple 
(and neither are the related parallel problems) 

 

Example:  

 Suppose combining two results might be expensive 
enough that we want to parallelize each one 

 Then each node in the inverted tree on the previous 
slide would itself expand into another set of nodes 
for that parallel computation 
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Reductions 

Such computations of this simple form are common 
enough to have a name: reductions (or reduces?) 
 

Produce single answer from collection via an 
associative operator 

 Examples: max, count, leftmost, rightmost, sum, … 

 Non-example: median 
 

Recursive results don’t have to be single numbers or 
strings and can be arrays or objects with fields 

 Example: Histogram of test results  
 

But some things are inherently sequential 

 How we process arr[i] may depend entirely on 
the result of processing arr[i-1] 
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Maps and Data Parallelism 

A map operates on each element of a collection 
independently to create a new collection of the 
same size 

 No combining results 

 For arrays, this is so trivial some hardware has 
direct support (often in graphics cards) 

 

Canonical example: Vector addition 
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int[] vector_add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  result = new int[arr1.length]; 
  FORALL(i=0; i < arr1.length; i++) { 
    result[i] = arr1[i] + arr2[i]; 
  } 
  return result; 
} 

Maps in ForkJoin Framework 
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class VecAdd extends RecursiveAction { 
  int lo; int hi; int[] res; int[] arr1; int[] arr2;    
  VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … } 
  protected void compute(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
 for(int i=lo; i < hi; i++) 
        res[i] = arr1[i] + arr2[i]; 
    } else { 
      int mid = (hi+lo)/2; 
      VecAdd left = new VecAdd(lo,mid,res,arr1,arr2); 
      VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);    
      left.fork(); 
      right.compute(); 
      left.join(); 
    } 
  } 
} 
 

static final ForkJoinPool fjPool = new ForkJoinPool(); 
 

int[] add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  int[] ans = new int[arr1.length]; 
  fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2); 
  return ans; 
} 
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Maps and Reductions 

Maps and reductions are the "workhorses" of 
parallel programming 
 By far the two most important and common patterns 

 We will discuss two more advanced patterns later 

 

We often use maps and reductions to 
describe parallel algorithms 
 We will aim to learn to recognize when an algorithm can 

be written in terms of maps and reductions 

 Programming them then becomes "trivial" with a little 
practice (like how for-loops  are second-nature to you) 
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Digression: MapReduce on Clusters 

You may have heard of Google’s "map/reduce" 

 Or the open-source version Hadoop 
 

Perform maps/reduces on data using many machines 

 The system takes care of distributing the data and managing 
fault tolerance 

 You just write code to map one element and reduce elements 
to a combined result 

 

Separates how to do recursive divide-and-conquer 
from what computation to perform 

 Old idea in higher-order functional programming transferred 
to large-scale distributed computing 

 Complementary approach to database declarative queries 
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Maps and Reductions on Trees 

Work just fine on balanced trees 

 Divide-and-conquer each child 

 Example:  
Finding the minimum element in an unsorted but balanced 
binary tree takes O(log n) time given enough processors 

 

How to do you implement the sequential cut-off? 

 Each node stores number-of-descendants (easy to maintain) 

 Or approximate it (e.g., AVL tree height) 
 

Parallelism also correct for unbalanced trees but you 
obviously do not get much speed-up 
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Linked Lists 

Can you parallelize maps or reduces over linked lists? 

 Example: Increment all elements of a linked list 

 Example: Sum all elements of a linked list 

 

 

 

 

Once again, data structures matter! 
 

For parallelism, balanced trees generally better than 
lists so that we can get to all the data exponentially 
faster O(log n) vs. O(n) 

 Trees have the same flexibility as lists compared to arrays 
(i.e., no shifting for insert or remove) 
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b c d e f 

front back 

Analyzing algorithms 

Like all algorithms, parallel algorithms should be: 

 Correct  

 Efficient 
 

For our algorithms so far, their correctness is 
"obvious" so we’ll focus on efficiency 

 Want asymptotic bounds 

 Want to analyze the algorithm without regard to a 
specific number of processors 

 The key "magic" of the ForkJoin Framework is getting 
expected run-time performance asymptotically optimal 
for the available number of processors 

 Ergo we analyze algorithms assuming this guarantee 
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Connecting to Performance 
Recall: TP = run time if P processors are available 
 

We can also think of this in terms of the program's DAG 
 

Work = T1 = sum of run-time of all nodes in the DAG 

 Note: costs are on the nodes not the edges 

 That lonely processor does everything 

 Any topological sort is a legal execution 

 O(n) for simple maps and reductions 
 

Span = T∞ = run-time of most-expensive path in  DAG 

 Note: costs are on the nodes not the edges 

 Our infinite army can do everything that is ready to be 
done but still has to wait for earlier results 

 O(log n) for simple maps and reductions 
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Some More Terms 
Speed-up on P processors: T1 / TP   

 

Perfect linear speed-up: If speed-up is P as we vary P  

 Means we get full benefit for each additional processor:  
as in doubling P halves running time 

 Usually our goal 

 Hard to get (sometimes impossible) in practice 
 

Parallelism is the maximum possible speed-up: T1/T∞ 

 At some point, adding processors won’t help 

 What that point is depends on the span 
 

Parallel algorithms is about decreasing span 
without increasing work too much 
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Optimal TP: Thanks ForkJoin library 
So we know T1 and T∞ but we want TP  (e.g., P=4) 
 

Ignoring memory-hierarchy issues (caching), TP cannot 

 Less than T1 / P     why not? 

 Less than T∞         why not? 
 

So an asymptotically optimal execution would be: 

TP  =  O((T1 / P) + T∞) 

First term dominates for small P, second for large P 
 

The ForkJoin Framework gives an expected-time 
guarantee of asymptotically optimal!  

 Expected time because it flips coins when scheduling 

 How? For an advanced course (few need to know) 

 Guarantee requires a few assumptions about your code… 

 
July 30, 2012 CSE 332 Data Abstractions, Summer 2012 62 

Division of Responsibility 

Our job as ForkJoin Framework users: 

 Pick a good parallel algorithm and implement it 

 Its execution creates a DAG of things to do 

 Make all the nodes small(ish) and approximately 
equal amount of work 

 

The framework-writer’s job: 

 Assign work to available processors to avoid idling 

 Keep constant factors low 

 Give the expected-time optimal guarantee 
assuming framework-user did his/her job 

TP  =  O((T1 / P) + T∞) 
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Examples: TP  =  O((T1 / P) + T∞) 

Algorithms seen so far (e.g., sum an array): 

If T1 = O(n) and T∞= O(log n) 

 TP  =  O(n/P + log n) 
 

Suppose instead: 

If T1 = O(n2) and T∞= O(n) 

 TP  =  O(n2/P + n) 
 

Of course, these expectations ignore any 
overhead or memory issues 
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AMDAHL’S LAW 

Things are going so smoothly…  

Parallelism is awesome… 

Hello stranger, what's your name? 

Murphy? Oh @!♪%★$☹*!!! 

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 65 

Amdahl’s Law (mostly bad news) 

In practice, much of our programming 
typically has parts that parallelize well 

 Maps/reductions over arrays and trees  
 

And also parts that don’t parallelize at all 

 Reading a linked list 

 Getting/loading input  

 Doing computations based on previous step 
 

To understand the implications, consider this: 

"Nine women cannot make a baby in one month" 
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Amdahl’s Law (mostly bad news) 

Let work (time to run on 1 processor) be 1 unit time 
 

If S is the portion of execution that cannot be 
parallelized, then we can define T1 as: 

    T1 = S + (1-S) = 1 
 

If we get perfect linear speedup on the parallel 
portion, then we can define TP as: 

TP = S + (1-S)/P 
 

Thus,  the overall speedup with P processors is 
(Amdahl’s Law): 

T1 / TP  = 1 / (S + (1-S)/P)   
 

And the parallelism (infinite processors) is: 

T1 / T∞  = 1 / S 
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Why this is such bad news 

Amdahl’s Law: T1 / TP  = 1 / (S + (1-S)/P)     

  T1 / T∞  = 1 / S 
 

Suppose 33% of a program is sequential 

 Then a billion processors won’t give a speedup over 3 
 

Suppose you miss the good old days (1980-2005) where 
12 years or so was long enough to get 100x speedup 

 Now suppose in 12 years, clock speed is the same but 
you get 256 processors instead of just 1 

 For the 256 cores to gain ≥100x speedup, we need 

 100  1 / (S + (1-S)/256) 

 Which means S  .0061 or 99.4% of the algorithm must 
be perfectly parallelizable!! 
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A Plot You Have To See 
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A Plot You Have To See (Zoomed In) 
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All is not lost 

Amdahl’s Law is a bummer! 

 Doesn’t mean additional processors are worthless!! 
 

We can always search for new parallel algorithms 

 We will see that some tasks may seem inherently 
sequential but can be parallelized 

 

We can also change the problems we’re trying to 
solve or pursue new problems 

 Example: Video games/CGI use parallelism   

 But not for rendering 10-year-old graphics faster 

 They are rendering more beautiful(?) monsters 
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A Final Word on Moore and Amdahl 

Although we call both of their work laws, they 
are very different entities 
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Very different but incredibly important in the 
design of computer systems 

Amdahl’s Law is a mathematical theorem 

 Diminishing returns of adding more processors 

Moore’s "Law" is an observation about the 
progress of the semiconductor industry: 

 Transistor density doubles every ≈18 months 
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Welcome to the Parallel World 

We will continue to explore this topic and 
its implications 
 

In fact, the next class will consist of 16 
lectures presented simultaneously 

 I promise there are no concurrency 
issues with your brain 

 It is up to you to parallelize your brain 
before then 

 

The interpreters and captioner should 
attempt to grow more limbs as well 
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