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Midterm: Question 1d 
What is the tightest bound that you can give for the 
summation  𝑖𝑘𝑛

𝑖=0 ? 
 

This is an important summation to recognize 

k=1   𝑖1𝑛
𝑖=1 = 1 + 2 + 3 +⋯+ 𝑛 =

𝑛(𝑛+1)

2
≈
𝑛2

2
 

k=2   𝑖2𝑛
𝑖=1 = 1 + 4 + 9 +⋯+𝑛

2=
𝑛(𝑛+1)(2𝑛+1)

6
≈
𝑛3

3
 

k=3   𝑖3𝑛
𝑖=1 = 1 + 8 + 27 +⋯+𝑛

3=
𝑛2(𝑛+1)2

4
≈
𝑛4

4
 

k=4   𝑖4𝑛
𝑖=1 = 1 + 16 + 81 +⋯+𝑛

4=
𝑛(𝑛+1)(2𝑛+1)(3𝑛2+3𝑛−1)

30
≈
𝑛5

5
 

 

In general, the sum of the first n integers to the kth power 
is always of the next power up  

 𝑖𝑘
𝑛

𝑖=1

= 1𝑘 + 2𝑘 +3𝑘 ⋯+𝑛𝑘≈
𝑛𝑘+1

𝑘 + 1
= Θ(𝑛𝑘+1) 
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Changing a Major Assumption 

So far most or all of your study of computer science 
has assumed: 
 

ONE THING HAPPENED AT A TIME 
 

Called sequential programming—everything part of 
one sequence 
 

Removing this assumption creates major challenges 
and opportunities 

 Programming: Divide work among threads of execution and 
coordinate among them (i.e., synchronize their work)  

 Algorithms: How can parallel activity provide speed-up (more 
throughput, more work done per unit time) 

 Data structures: May need to support concurrent access 
(multiple threads operating on data at the same time) 
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A Simplified View of History 

Writing correct and efficient multithreaded code is 
often much more difficult than single-threaded code 

 Especially in typical languages like Java and C 

 So we typically stay sequential whenever possible 

 

From roughly 1980-2005, desktop computers got 
exponentially faster at running sequential programs 

 About twice as fast every couple years 

 

But nobody knows how to continue this 

 Increasing clock rate generates too much heat 

 Relative cost of memory access is too high 
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A Simplified View of History 

We knew this was coming, so we looked at 
the idea of using multiple computers at once 

 Computer clusters (e.g., Beowulfs) 

 Distributed computing (e.g., SETI@Home) 
 

These ideas work but are not practical for 
personal machines, but fortunately: 

 We are still making "wires exponentially smaller" 
(per Moore’s "Law") 

 So why not put multiple processors on the same 
chip (i.e., "multicore")? 
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What to do with Multiple Processors? 

Your next computer will likely have 4 processors 

 Wait a few years and it will be 8, 16, 32, … 

 Chip companies decided to do this (not a "law") 

 

What can you do with them? 

 Run multiple different programs at the same time? 

 We already do that with time-slicing with the OS 

 Do multiple things at once in one program? 

 This will be our focus but it is far more difficult 

 We must rethink everything from asymptotic 
complexity to data structure implementations 
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BASIC DEFINITIONS: 
PARALLELISM & CONCURRENCY 

Definitions definitions definitions… are you sick of them yet? 
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Parallelism vs. Concurrency 
Note: These terms are not yet standard but the perspective is essential 

  Many programmers confuse these concepts 

These concepts are related but still different: 

 Common to use threads for both 

 If parallel computations need access to shared resources, 
then the concurrency needs to be managed 

Parallelism:  

   Use extra resources to  

   solve a problem faster 

resources 

Concurrency: 

  Correctly and efficiently manage  

  access to shared resources 

requests work 

resource 
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An Analogy 

CS1 idea: A program is like a recipe for a cook 

 One cook who does one thing at a time! 
 

Parallelism: 

 Have lots of potatoes to slice?  

 Hire helpers, hand out potatoes and knives 

 But too many chefs and you spend all your time 
coordinating 

 

Concurrency: 

 Lots of cooks making different things, but there 
are only 4 stove burners available in the kitchen 

 We want to allow access to all 4 burners, but not 
cause spills or incorrect burner settings 
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Parallelism Example 
Parallelism: Use extra resources to solve a problem faster 
(increasing throughput via simultaneous execution) 

 

Pseudocode  for array sum 

 No ‘FORALL’ construct in Java, but we will see something similar 

 Bad style for reasons we’ll see, but may get roughly 4x speedup 

int sum(int[] arr){ 
  result = new int[4]; 
  len = arr.length; 
  FORALL(i=0; i < 4; i++) { //parallel iterations 
    result[i] = sumRange(arr,i*len/4,(i+1)*len/4); 
  } 
  return result[0]+result[1]+result[2]+result[3]; 
} 
 

int sumRange(int[] arr, int lo, int hi) { 
   result = 0; 
   for(j=lo; j < hi; j++) 
      result += arr[j]; 
   return result; 
} 
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Concurrency Example 
Concurrency: Correctly and efficiently manage access to shared 
resources (from multiple possibly-simultaneous clients) 
 

Pseudocode  for a shared chaining hashtable 

 Prevent bad interleavings (critical ensure correctness) 

 But allow some concurrent access (critical to preserve 
performance) 

 class Hashtable<K,V> { 
   … 
   void insert(K key, V value) { 
      int bucket = …; 
      prevent-other-inserts/lookups in table[bucket] 
      do the insertion 
      re-enable access to arr[bucket] 
   } 
   V lookup(K key) { 
 (similar to insert,  
 but can allow concurrent lookups to same bucket) 
   } 
} 
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Shared Memory with Threads 

The model we will assume is shared memory with 
explicit threads 

 

Old story: A running program has 

 One program counter (the current statement that is 
executing) 

 One call stack (each stack frame holding local 
variables)  

 Objects in the heap created by memory allocation (i.e., 
new) (same name, but no relation to the heap data 
structure) 

 Static fields in the class shared among objects 
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Shared Memory with Threads 

The model we will assume is shared memory with 
explicit threads 

 

New story: 

 A set of threads, each with a program and call stack but 
no access to another thread’s local variables 

 Threads can implicitly share objects and static fields  

 Communication among threads occurs via writing 
values to a shared location that another thread reads 
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Old Story: Single-Threaded 

… 

Heap for all objects  
and static fields 

Call stack with local variables 

Program counter for current statement 

Local variables are primitives or heap references 

pc=… 

…
 

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 14 



New Story: Threads & Shared Memory 

… 

Heap for all objects and static 
fields, shared by all threads 

Threads, each with own unshared  
call stack and "program counter"  

pc=… 

…
 

pc=… 

…
 

pc=… 

…
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Other Parallelism/Concurrency Models 

We will focus on shared memory, but you should know several 
other models exist and have their own advantages 

 

Message-passing:  

 Each thread has its own collection of objects 

 Communication is via explicitly sending/receiving messages 

 Cooks working in separate kitchens, mail around ingredients 
 

Dataflow: 

 Programmers write programs in terms of a DAG.  

 A node executes after all of its predecessors in the graph 

 Cooks wait to be handed results of previous steps 
 

Data parallelism: 

 Have primitives for things like "apply function to every 
element of an array in parallel" 
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FIRST IMPLEMENTATION: 
SHARED MEMORY IN JAVA 

Keep in mind that Java was first released in 1995 
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Our Needs 
To write a shared-memory parallel program, we need new 
primitives from a programming language or library 

 

Ways to create and run multiple things at once 

 We will call these things threads 

 

Ways for threads to share memory  

 Often just have threads with references to the same objects 

 

Ways for threads to coordinate (a.k.a. synchronize) 

 For now, a way for one thread to wait for another to finish 

 Other primitives when we study concurrency 
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Java Basics 
We will first  learn some basics built into Java via the 
provided java.lang.Thread package 

 We will learn a better library for parallel programming 
 

To get a new thread running: 

1. Define a subclass C of java.lang.Thread, 

2. Override the run method 

3. Create an object of class C 

4. Call that object’s start method 
 

start sets off a new thread, using run as its "main" 
 

What if we instead called the run method of C? 

 Just a normal method call in the current thread 
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Parallelism Example: Sum an Array 

Have 4 threads simultaneously sum 1/4 of the array 
 

Approach: 

 Create 4 thread objects, each given a portion of the work 

 Call start() on each thread object to actually run it in parallel 

 Somehow ‘wait’ for threads to finish 

 Add together their 4 answers for the final result 

 

 

 

 

 
 

Warning: This is the inferior first approach, do not do this 

ans0 ans1 ans2 ans3 

ans 
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Creating the Thread Subclass 
class SumThread extends java.lang.Thread { 
 
  int lo; // arguments 
  int hi; 
  int[] arr; 
 
  int ans = 0; // result  
     
  SumThread(int[] a, int l, int h) {  
    lo=l; hi=h; arr=a; 
  } 
 
  public void run() { //override must have this type 
    for(int i=lo; i < hi; i++) 
      ans += arr[i]; 
  } 
} 

Because we override a no-arguments/no-result run, 
we use fields to communicate data across threads 

We will ignore handling 
the case where: 

arr.length % 4 != 0 
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Creating the Threads Wrongly 
class SumThread extends java.lang.Thread { 

  int lo, int hi, int[] arr; // arguments 

  int ans = 0; // result 

  SumThread(int[] a, int l, int h) { … } 

  public void run(){ … } // override 

} 

int sum(int[] arr){ // can be a static method 

  int len = arr.length; 

  int ans = 0; 

  SumThread[] ts = new SumThread[4]; 

  for(int i=0; i < 4; i++) // do parallel computations 

    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 

  for(int i=0; i < 4; i++) // combine results 

    ans += ts[i].ans; 

  return ans; 

} We forgot to start 
the threads!!! 
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Starting Threads but Still Wrong 
int sum(int[] arr){ // can be a static method 

  int len = arr.length; 

  int ans = 0; 

  SumThread[] ts = new SumThread[4]; 

  for(int i=0; i < 4; i++){// do parallel computations 

    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 

    ts[i].start(); // start not run 

  } 

  for(int i=0; i < 4; i++) // combine results 

    ans += ts[i].ans; 

  return ans; 

} 

We start the threads and then 
assume they finish right away!!! 
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Join: The ‘Wait for Thread’ Method 

The Thread class defines various methods that provide 

primitive operations you could not implement on your own 

 For example: start, which calls run in a new thread 
 

The join method is another such method, essential for 

coordination in this kind of computation 

 Caller blocks until/unless the receiver is done executing 
(meaning its run method returns after its execution) 

 Without join, we would have a ‘race condition’ on ts[i].ans 
in which the variable is read/written simultaneously 

 

This style of parallel programming is called fork/join" 

 If we write in this style, we avoid many concurrency issues 

 But certainly not all of them 
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Third Attempt: Correct in Spirit 
int sum(int[] arr){ // can be a static method 

  int len = arr.length; 

  int ans = 0; 

  SumThread[] ts = new SumThread[4]; 

  for(int i=0; i < 4; i++){// do parallel computations 

    ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4); 

    ts[i].start();  

  } 

  for(int i=0; i < 4; i++) { // combine results 

    ts[i].join(); // wait for helper to finish! 

    ans += ts[i].ans; 

  } 

  return ans; 

} 

Note that there is no guarantee that ts[0] finishes before ts[1] 

 Completion order is nondeterministic  

 Not a concern as our threads do the same amount of work 
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Where is the Shared Memory? 

Fork-join programs tend not to require [thankfully] a 
lot of focus on sharing memory among threads 

 But in languages like Java, there is memory being shared 

 

In our example: 
 lo, hi, arr fields written by "main" thread, read by helper 

thread 

 ans field written by helper thread, read by "main" thread 

 

When using shared memory, the challenge and 
absolute requirement is to avoid race conditions 
 While studying parallelism, we’ll stick with join 

 With concurrency, we’ll learn other ways to synchronize 
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BETTER ALGORITHMS: 
PARALLEL ARRAY SUM 

Keep in mind that Java was first released in 1995 
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A Poor Approach: Reasons 

Our current array sum code is a poor usage of 
parallelism for several reasons 
 

1. Code should be reusable and efficient across platforms 

 "Forward-portable" as core count grows 

 At the very least, we should parameterize the number of 
threads used by the algorithm 

 

 
int sum(int[] arr, int numThreads){ 
  …  // note: shows idea, but has integer-division bug 
  int subLen = arr.length / numThreads; 
  SumThread[] ts = new SumThread[numThreads]; 
  for(int i=0; i < numThreads; i++){ 
   ts[i] = new SumThread(arr,i*subLen,(i+1)*subLen); 
   ts[i].start(); 
  } 
  for(int i=0; i < numThreads; i++) {  
    … 
  } 
  … 
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A Poor Approach: Reasons 

Our current array sum code is a poor usage of 
parallelism for several reasons 
 

2. We want to use only the processors "available now" 

 Not used by other programs or threads in your program 

 Maybe caller is also using parallelism 

 Available cores can change even while your threads run 

 If 3 processors available and 3 threads would take time X, 
creating 4 threads can have worst-case time of 1.5X 
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// numThreads == numProcessors is bad 
// if some are needed for other things 
int sum(int[] arr, int numThreads){ 
  … 
} 
 



A Poor Approach: Reasons 

Our current array sum code is a poor usage of 
parallelism for several reasons 

 

3. Though unlikely for sum, subproblems may take significantly 

different amounts of time 

 Example: Apply method f to every array element, but 
maybe f is much slower for some data items 

 Example: Determine if a large integer is prime? 

 If we create 4 threads and all the slow data is processed 
by 1 of them, we won’t get nearly a 4x speedup 

 Example of a load imbalance 

 

 

 

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 30 



A Better Approach: Counterintuitive 
Although counterintuitive, the better solution is to use a 
lot more threads beyond the number of processors 

 

 

 

 
1. Forward-Portable: Lots of helpers each doing small work 

2. Processors Available: Hand out "work chunks" as you go 

 If 3 processors available and have 100 threads, worst-
case extra time is < 3% (if we ignore constant factors and 
load imbalance) 

3. Load Imbalance: Problem "disappears" 

 Try to ensure that slow threads are scheduled early  

 Variation likely small if pieces of work are also small 
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ans0 ans1 … ansN 

ans 



But Do Not Be Naïve 
This approach does not provide a free lunch: 

Assume we create 1 thread to process every N elements 

 

 

 

 

 

 

Combining results will require arr.length/N additions 

 As N increases, this becomes linear in size of array  

 Previously we only had 4 pieces, Ө(1) to combine 
 

In the extreme, suppose we create one thread per element 

 Using a loop to combine the results requires N iterations  
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int sum(int[] arr, int N){ 
  … 
  // How many pieces of size N do we have? 
  int numThreads = arr.length / N; 
  SumThread[] ts = new SumThread[numThreads]; 
  … 
} 



A Better Idea: Divide-and-Conquer 

Straightforward to implement 
 

Use parallelism for the recursive calls 

 Halve and make new thread until size is at some cutoff 

 Combine answers in pairs as we return 
 

This starts small but grows threads to fit the problem 
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+ + + + 
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Divide-and-Conquer 
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public void run(){ // override 
  if(hi – lo < SEQUENTIAL_CUTOFF) 
      for(int i=lo; i < hi; i++) 
       ans += arr[i]; 
  else { 
    SumThread left = new SumThread(arr,lo,(hi+lo)/2); 
    SumThread right= new SumThread(arr,(hi+lo)/2,hi); 
    left.start(); 
    right.start(); 
    left.join(); // don’t move this up a line – why? 
    right.join(); 
    ans = left.ans + right.ans; 
  } 
 } 
} 
 

int sum(int[] arr){  
  SumThread t = new SumThread(arr,0,arr.length); 
  t.run(); 
  return t.ans; 
} 



Divide-and-Conquer Really Works 

The key is to parallelize the result-combining 

 With enough processors,  total time is the tree height: O(log n)  

 This is optimal and exponentially faster than sequential O(n)) 

 But the reality is that we usually have P < O(n) processors 

 

 

 

 
 

 

Still, we will write our parallel algorithms in this style 

 Relies on operations being associative (as with +) 

 But will use a special library engineered for this style 

 It takes care of scheduling the computation well 
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REALITY BITES 

Good movie… speaks to Generation Xers… 
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Being Realistic 
In theory, you can divide down to single elements and then do 
all your result-combining in parallel and get optimal speedup 
 

In practice, creating all those threads and communicating 
amongst them swamps the savings,  
 

To gain better efficiency: 

 Use a sequential cutoff, typically around 500-1000 

 Eliminates almost all of the recursive thread creation 
because it eliminates the bottom levels of the tree 

 This is exactly like quicksort switching to insertion sort  
for small subproblems, but even more important here 

 Be clever and do not create unneeded threads 

 When creating a thread, you are already in another thread 

 Why not use the current thread to do half the work? 

 Cuts the number of threads created by another 2x 
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Halving the Number of Threads 

If a language had built-in support for fork-join parallelism, 
we would expect this hand-optimization to be unnecessary 
 

But the library we are using expects you to do it yourself 

 And the difference is surprisingly substantial 

 But no difference in theory 
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// wasteful: don’t 
SumThread left  = … 
SumThread right = … 
 
// create two threads 
left.start(); 
right.start(); 
left.join();  
right.join(); 
ans=left.ans+right.ans; 

// better: do 
SumThread left  = … 
SumThread right = … 
 
// order of next 4 lines 
// essential – why? 
left.start(); 
right.run(); 
left.join();  
ans=left.ans+right.ans; 



Illustration of Fewer Threads 
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Limits of The Java Thread Library 
Even with all this care, Java’s threads are too heavyweight 

 Constant factors, especially space overhead 

 Creating 20,000 Java threads just a bad idea 

 

The ForkJoin Framework is designed/engineered to meet 
the needs of divide-and-conquer fork-join parallelism 

 Included in the Java 7 standard libraries 

 Also available as a downloaded .jar file for Java 6 

 Section will discuss some pragmatics/logistics 

 Similar libraries available for other languages  

 C/C++: Cilk, Intel’s Thread Building Blocks 

 C#: Task Parallel Library 

 Library implementation is an advanced topic 
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Different Terms / Same Basic Ideas 

Don’t subclass Thread 

Don’t override run      

Do not use an ans field 

Do not call start 

Do not just call join 

Do not call run to hand-optimize 

Do not have a topmost call to run 

Do subclass RecursiveTask<V> 

Do override compute 

Do return a V from compute 

Do call fork 

Do call join which returns answer 

Do call compute to hand-optimize 

Do create a pool and call invoke 
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To use the ForkJoin Framework: 
 A little standard set-up code (e.g., create a ForkJoinPool) 
 

The Fundamental Differences: 

See the Dan Grossman's web page for  

"A Beginner’s Introduction to the ForkJoin Framework" 

http://www.cs.washington.edu/homes/djg/teachingMaterials/sp
ac/grossmanSPAC_forkJoinFramework.html 

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html


Final Version in ForkJoin Framework 
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class SumArray extends RecursiveTask<Integer> { 
  int lo; int hi; int[] arr; // arguments 
  SumArray(int[] a, int l, int h) { … } 
  protected Integer compute(){// return answer 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
      int ans = 0; 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
      return ans; 
    } else { 
      SumArray left = new SumArray(arr,lo,(hi+lo)/2); 
      SumArray right= new SumArray(arr,(hi+lo)/2,hi); 
      left.fork(); 
      int rightAns = right.compute(); 
      int leftAns  = left.join();  
      return leftAns + rightAns; 
    } 
  } 
} 
 

static final ForkJoinPool fjPool = new ForkJoinPool(); 
 

int sum(int[] arr){ 
  return fjPool.invoke(new SumArray(arr,0,arr.length)); 
} 



For Comparison: Java Threads Version 
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class SumThread extends java.lang.Thread { 
  int lo; int hi; int[] arr;//fields to know what to do 
  int ans = 0; // for communicating result 
  SumThread(int[] a, int l, int h) { … } 
  public void run(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) 
      for(int i=lo; i < hi; i++) 
        ans += arr[i]; 
    else { // create 2 threads, each will do ½ the work 
      SumThread left = new SumThread(arr,lo,(hi+lo)/2); 
      SumThread right= new SumThread(arr,(hi+lo)/2,hi); 
      left.start(); 
      right.start(); 
      left.join(); // don’t move this up a line – why? 
      right.join(); 
      ans = left.ans + right.ans; 
    } 
  } 
} 
 

class C { 
 static int sum(int[] arr){  
   SumThread t = new SumThread(arr,0,arr.length); 
   t.run(); // only creates one thread 
   return t.ans; 
 } 
} 



Getting Good Results with ForkJoin 

Sequential threshold 

 Library documentation recommends doing approximately 
100-5000 basic operations in each "piece" of your algorithm 

 

Library needs to "warm up" 

 May see slow results before the Java virtual machine  
re-optimizes the library internals  

 When evaluating speed, loop computations to see the "long-
term benefit" after these optimizations have occurred  

 

Wait until your computer has more processors 

 Seriously, overhead may dominate at 4 processors 

 But parallel programming becoming much more important 
 

Beware memory-hierarchy issues  

 Will not focus on but can be crucial for parallel performance 
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ENOUGH IMPLEMENTATION: 
ANALYZING PARALLEL CODE 

Ah yes… the comfort of mathematics… 
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Key Concepts: Work and Span 

Analyzing parallel algorithms requires considering the 
full range of processors available 

 We parameterize this by letting TP be the running time if P 
processors are available 

 We then calculate two extremes: work and span 
 

Work: T1  How long using only 1 processor  

 Just "sequentialize" the recursive forking 
 

Span: T∞   How long using infinity processors 

 The longest dependence-chain 

 Example: O(log n) for summing an array  

 Notice that having > n/2 processors is no additional help 

 Also called "critical path length" or "computational depth" 
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The DAG 

A program execution using fork and join can be 

seen as a DAG 

 Nodes: Pieces of work  

 Edges: Source must finish before destination starts 
 

A fork "ends a node" and makes 
two outgoing edges 

 New thread 

 Continuation of current thread 
 

A join "ends a node" and makes a  
node with two incoming edges 

 Node just ended 

 Last node of thread joined on 
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Our Simple Examples 
fork and join are very flexible, but divide-and-conquer 

use them in a very basic way: 

 A tree on top of an upside-down tree 
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base cases 

divide  

conquer 



What Else Looks Like This? 

Summing an array went from O(n) sequential to 
O(log n) parallel (assuming a lot of processors and 

very large n) 

 

 

 

 

 
 

 

Anything that can use results from two halves and 
merge them in O(1) time has the same properties 
and exponential speed-up (in theory) 
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+ + + + 

+ + 
+ 



Examples 

 Maximum or minimum element 
 

 Is there an element satisfying some property (e.g., 
is there a 17)? 
 

 Left-most element satisfying some property (e.g., 
first 17) 

 What should the recursive tasks return? 

 How should we merge the results? 
 

 Corners of a rectangle containing all points (a 
"bounding box") 
 

 Counts (e.g., # of strings that start with a vowel) 

 This is just summing with a different base case 
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More Interesting DAGs? 

Of course, the DAGs are not always so simple 
(and neither are the related parallel problems) 

 

Example:  

 Suppose combining two results might be expensive 
enough that we want to parallelize each one 

 Then each node in the inverted tree on the previous 
slide would itself expand into another set of nodes 
for that parallel computation 
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Reductions 

Such computations of this simple form are common 
enough to have a name: reductions (or reduces?) 
 

Produce single answer from collection via an 
associative operator 

 Examples: max, count, leftmost, rightmost, sum, … 

 Non-example: median 
 

Recursive results don’t have to be single numbers or 
strings and can be arrays or objects with fields 

 Example: Histogram of test results  
 

But some things are inherently sequential 

 How we process arr[i] may depend entirely on 
the result of processing arr[i-1] 
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Maps and Data Parallelism 

A map operates on each element of a collection 
independently to create a new collection of the 
same size 

 No combining results 

 For arrays, this is so trivial some hardware has 
direct support (often in graphics cards) 

 

Canonical example: Vector addition 
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int[] vector_add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  result = new int[arr1.length]; 
  FORALL(i=0; i < arr1.length; i++) { 
    result[i] = arr1[i] + arr2[i]; 
  } 
  return result; 
} 



Maps in ForkJoin Framework 
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class VecAdd extends RecursiveAction { 
  int lo; int hi; int[] res; int[] arr1; int[] arr2;    
  VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … } 
  protected void compute(){ 
    if(hi – lo < SEQUENTIAL_CUTOFF) { 
 for(int i=lo; i < hi; i++) 
        res[i] = arr1[i] + arr2[i]; 
    } else { 
      int mid = (hi+lo)/2; 
      VecAdd left = new VecAdd(lo,mid,res,arr1,arr2); 
      VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);    
      left.fork(); 
      right.compute(); 
      left.join(); 
    } 
  } 
} 
 

static final ForkJoinPool fjPool = new ForkJoinPool(); 
 

int[] add(int[] arr1, int[] arr2){ 
  assert (arr1.length == arr2.length); 
  int[] ans = new int[arr1.length]; 
  fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2); 
  return ans; 
} 



Maps and Reductions 

Maps and reductions are the "workhorses" of 
parallel programming 
 By far the two most important and common patterns 

 We will discuss two more advanced patterns later 

 

We often use maps and reductions to 
describe parallel algorithms 
 We will aim to learn to recognize when an algorithm can 

be written in terms of maps and reductions 

 Programming them then becomes "trivial" with a little 
practice (like how for-loops  are second-nature to you) 
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Digression: MapReduce on Clusters 

You may have heard of Google’s "map/reduce" 

 Or the open-source version Hadoop 
 

Perform maps/reduces on data using many machines 

 The system takes care of distributing the data and managing 
fault tolerance 

 You just write code to map one element and reduce elements 
to a combined result 

 

Separates how to do recursive divide-and-conquer 
from what computation to perform 

 Old idea in higher-order functional programming transferred 
to large-scale distributed computing 

 Complementary approach to database declarative queries 
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Maps and Reductions on Trees 

Work just fine on balanced trees 

 Divide-and-conquer each child 

 Example:  
Finding the minimum element in an unsorted but balanced 
binary tree takes O(log n) time given enough processors 

 

How to do you implement the sequential cut-off? 

 Each node stores number-of-descendants (easy to maintain) 

 Or approximate it (e.g., AVL tree height) 
 

Parallelism also correct for unbalanced trees but you 
obviously do not get much speed-up 
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Linked Lists 

Can you parallelize maps or reduces over linked lists? 

 Example: Increment all elements of a linked list 

 Example: Sum all elements of a linked list 

 

 

 

 

Once again, data structures matter! 
 

For parallelism, balanced trees generally better than 
lists so that we can get to all the data exponentially 
faster O(log n) vs. O(n) 

 Trees have the same flexibility as lists compared to arrays 
(i.e., no shifting for insert or remove) 
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Analyzing algorithms 

Like all algorithms, parallel algorithms should be: 

 Correct  

 Efficient 
 

For our algorithms so far, their correctness is 
"obvious" so we’ll focus on efficiency 

 Want asymptotic bounds 

 Want to analyze the algorithm without regard to a 
specific number of processors 

 The key "magic" of the ForkJoin Framework is getting 
expected run-time performance asymptotically optimal 
for the available number of processors 

 Ergo we analyze algorithms assuming this guarantee 
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Connecting to Performance 
Recall: TP = run time if P processors are available 
 

We can also think of this in terms of the program's DAG 
 

Work = T1 = sum of run-time of all nodes in the DAG 

 Note: costs are on the nodes not the edges 

 That lonely processor does everything 

 Any topological sort is a legal execution 

 O(n) for simple maps and reductions 
 

Span = T∞ = run-time of most-expensive path in  DAG 

 Note: costs are on the nodes not the edges 

 Our infinite army can do everything that is ready to be 
done but still has to wait for earlier results 

 O(log n) for simple maps and reductions 
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Some More Terms 
Speed-up on P processors: T1 / TP   

 

Perfect linear speed-up: If speed-up is P as we vary P  

 Means we get full benefit for each additional processor:  
as in doubling P halves running time 

 Usually our goal 

 Hard to get (sometimes impossible) in practice 
 

Parallelism is the maximum possible speed-up: T1/T∞ 

 At some point, adding processors won’t help 

 What that point is depends on the span 
 

Parallel algorithms is about decreasing span 
without increasing work too much 
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Optimal TP: Thanks ForkJoin library 
So we know T1 and T∞ but we want TP  (e.g., P=4) 
 

Ignoring memory-hierarchy issues (caching), TP cannot 

 Less than T1 / P     why not? 

 Less than T∞         why not? 
 

So an asymptotically optimal execution would be: 

TP  =  O((T1 / P) + T∞) 

First term dominates for small P, second for large P 
 

The ForkJoin Framework gives an expected-time 
guarantee of asymptotically optimal!  

 Expected time because it flips coins when scheduling 

 How? For an advanced course (few need to know) 

 Guarantee requires a few assumptions about your code… 
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Division of Responsibility 

Our job as ForkJoin Framework users: 

 Pick a good parallel algorithm and implement it 

 Its execution creates a DAG of things to do 

 Make all the nodes small(ish) and approximately 
equal amount of work 

 

The framework-writer’s job: 

 Assign work to available processors to avoid idling 

 Keep constant factors low 

 Give the expected-time optimal guarantee 
assuming framework-user did his/her job 

TP  =  O((T1 / P) + T∞) 
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Examples: TP  =  O((T1 / P) + T∞) 

Algorithms seen so far (e.g., sum an array): 

If T1 = O(n) and T∞= O(log n) 

 TP  =  O(n/P + log n) 
 

Suppose instead: 

If T1 = O(n2) and T∞= O(n) 

 TP  =  O(n2/P + n) 
 

Of course, these expectations ignore any 
overhead or memory issues 
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AMDAHL’S LAW 

Things are going so smoothly…  

Parallelism is awesome… 

Hello stranger, what's your name? 

Murphy? Oh @!♪%★$☹*!!! 
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Amdahl’s Law (mostly bad news) 

In practice, much of our programming 
typically has parts that parallelize well 

 Maps/reductions over arrays and trees  
 

And also parts that don’t parallelize at all 

 Reading a linked list 

 Getting/loading input  

 Doing computations based on previous step 
 

To understand the implications, consider this: 

"Nine women cannot make a baby in one month" 
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Amdahl’s Law (mostly bad news) 

Let work (time to run on 1 processor) be 1 unit time 
 

If S is the portion of execution that cannot be 
parallelized, then we can define T1 as: 

    T1 = S + (1-S) = 1 
 

If we get perfect linear speedup on the parallel 
portion, then we can define TP as: 

TP = S + (1-S)/P 
 

Thus,  the overall speedup with P processors is 
(Amdahl’s Law): 

T1 / TP  = 1 / (S + (1-S)/P)   
 

And the parallelism (infinite processors) is: 

T1 / T∞  = 1 / S 
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Why this is such bad news 

Amdahl’s Law: T1 / TP  = 1 / (S + (1-S)/P)     

  T1 / T∞  = 1 / S 
 

Suppose 33% of a program is sequential 

 Then a billion processors won’t give a speedup over 3 
 

Suppose you miss the good old days (1980-2005) where 
12 years or so was long enough to get 100x speedup 

 Now suppose in 12 years, clock speed is the same but 
you get 256 processors instead of just 1 

 For the 256 cores to gain ≥100x speedup, we need 

 100  1 / (S + (1-S)/256) 

 Which means S  .0061 or 99.4% of the algorithm must 
be perfectly parallelizable!! 
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A Plot You Have To See 
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A Plot You Have To See (Zoomed In) 
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All is not lost 

Amdahl’s Law is a bummer! 

 Doesn’t mean additional processors are worthless!! 
 

We can always search for new parallel algorithms 

 We will see that some tasks may seem inherently 
sequential but can be parallelized 

 

We can also change the problems we’re trying to 
solve or pursue new problems 

 Example: Video games/CGI use parallelism   

 But not for rendering 10-year-old graphics faster 

 They are rendering more beautiful(?) monsters 

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 71 



A Final Word on Moore and Amdahl 

Although we call both of their work laws, they 
are very different entities 
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Very different but incredibly important in the 
design of computer systems 

Amdahl’s Law is a mathematical theorem 

 Diminishing returns of adding more processors 

Moore’s "Law" is an observation about the 
progress of the semiconductor industry: 

 Transistor density doubles every ≈18 months 



Welcome to the Parallel World 

We will continue to explore this topic and 
its implications 
 

In fact, the next class will consist of 16 
lectures presented simultaneously 

 I promise there are no concurrency 
issues with your brain 

 It is up to you to parallelize your brain 
before then 

 

The interpreters and captioner should 
attempt to grow more limbs as well 
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