
CSE 332 Data Abstractions:

Introduction to Parallelism
and Concurrency

Kate Deibel

Summer 2012

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 1

Midterm: Question 1d
What is the tightest bound that you can give for the
summation 𝑖𝑘𝑛

𝑖=0 ?

This is an important summation to recognize

k=1 𝑖1𝑛
𝑖=1 = 1 + 2 + 3 +⋯+ 𝑛 =

𝑛(𝑛+1)

2
≈
𝑛2

2

k=2 𝑖2𝑛
𝑖=1 = 1 + 4 + 9 +⋯+𝑛

2=
𝑛(𝑛+1)(2𝑛+1)

6
≈
𝑛3

3

k=3 𝑖3𝑛
𝑖=1 = 1 + 8 + 27 +⋯+𝑛

3=
𝑛2(𝑛+1)2

4
≈
𝑛4

4

k=4 𝑖4𝑛
𝑖=1 = 1 + 16 + 81 +⋯+𝑛

4=
𝑛(𝑛+1)(2𝑛+1)(3𝑛2+3𝑛−1)

30
≈
𝑛5

5

In general, the sum of the first n integers to the kth power
is always of the next power up

 𝑖𝑘
𝑛

𝑖=1

= 1𝑘 + 2𝑘 +3𝑘 ⋯+𝑛𝑘≈
𝑛𝑘+1

𝑘 + 1
= Θ(𝑛𝑘+1)

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 2

Changing a Major Assumption

So far most or all of your study of computer science
has assumed:

ONE THING HAPPENED AT A TIME

Called sequential programming—everything part of
one sequence

Removing this assumption creates major challenges
and opportunities

 Programming: Divide work among threads of execution and
coordinate among them (i.e., synchronize their work)

 Algorithms: How can parallel activity provide speed-up (more
throughput, more work done per unit time)

 Data structures: May need to support concurrent access
(multiple threads operating on data at the same time)

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 3

A Simplified View of History

Writing correct and efficient multithreaded code is
often much more difficult than single-threaded code

 Especially in typical languages like Java and C

 So we typically stay sequential whenever possible

From roughly 1980-2005, desktop computers got
exponentially faster at running sequential programs

 About twice as fast every couple years

But nobody knows how to continue this

 Increasing clock rate generates too much heat

 Relative cost of memory access is too high

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 4

A Simplified View of History

We knew this was coming, so we looked at
the idea of using multiple computers at once

 Computer clusters (e.g., Beowulfs)

 Distributed computing (e.g., SETI@Home)

These ideas work but are not practical for
personal machines, but fortunately:

 We are still making "wires exponentially smaller"
(per Moore’s "Law")

 So why not put multiple processors on the same
chip (i.e., "multicore")?

 July 30, 2012 CSE 332 Data Abstractions, Summer 2012 5

What to do with Multiple Processors?

Your next computer will likely have 4 processors

 Wait a few years and it will be 8, 16, 32, …

 Chip companies decided to do this (not a "law")

What can you do with them?

 Run multiple different programs at the same time?

 We already do that with time-slicing with the OS

 Do multiple things at once in one program?

 This will be our focus but it is far more difficult

 We must rethink everything from asymptotic
complexity to data structure implementations

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 6

BASIC DEFINITIONS:
PARALLELISM & CONCURRENCY

Definitions definitions definitions… are you sick of them yet?

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 7

Parallelism vs. Concurrency
Note: These terms are not yet standard but the perspective is essential

 Many programmers confuse these concepts

These concepts are related but still different:

 Common to use threads for both

 If parallel computations need access to shared resources,
then the concurrency needs to be managed

Parallelism:

 Use extra resources to

 solve a problem faster

resources

Concurrency:

 Correctly and efficiently manage

 access to shared resources

requests work

resource

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 8

An Analogy

CS1 idea: A program is like a recipe for a cook

 One cook who does one thing at a time!

Parallelism:

 Have lots of potatoes to slice?

 Hire helpers, hand out potatoes and knives

 But too many chefs and you spend all your time
coordinating

Concurrency:

 Lots of cooks making different things, but there
are only 4 stove burners available in the kitchen

 We want to allow access to all 4 burners, but not
cause spills or incorrect burner settings

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 9

Parallelism Example
Parallelism: Use extra resources to solve a problem faster
(increasing throughput via simultaneous execution)

Pseudocode for array sum

 No ‘FORALL’ construct in Java, but we will see something similar

 Bad style for reasons we’ll see, but may get roughly 4x speedup

int sum(int[] arr){
 result = new int[4];
 len = arr.length;
 FORALL(i=0; i < 4; i++) { //parallel iterations
 result[i] = sumRange(arr,i*len/4,(i+1)*len/4);
 }
 return result[0]+result[1]+result[2]+result[3];
}

int sumRange(int[] arr, int lo, int hi) {
 result = 0;
 for(j=lo; j < hi; j++)
 result += arr[j];
 return result;
}

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 10

Concurrency Example
Concurrency: Correctly and efficiently manage access to shared
resources (from multiple possibly-simultaneous clients)

Pseudocode for a shared chaining hashtable

 Prevent bad interleavings (critical ensure correctness)

 But allow some concurrent access (critical to preserve
performance)

 class Hashtable<K,V> {
 …
 void insert(K key, V value) {
 int bucket = …;
 prevent-other-inserts/lookups in table[bucket]
 do the insertion
 re-enable access to arr[bucket]
 }
 V lookup(K key) {
 (similar to insert,
 but can allow concurrent lookups to same bucket)
 }
}

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 11

Shared Memory with Threads

The model we will assume is shared memory with
explicit threads

Old story: A running program has

 One program counter (the current statement that is
executing)

 One call stack (each stack frame holding local
variables)

 Objects in the heap created by memory allocation (i.e.,
new) (same name, but no relation to the heap data
structure)

 Static fields in the class shared among objects

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 12

Shared Memory with Threads

The model we will assume is shared memory with
explicit threads

New story:

 A set of threads, each with a program and call stack but
no access to another thread’s local variables

 Threads can implicitly share objects and static fields

 Communication among threads occurs via writing
values to a shared location that another thread reads

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 13

Old Story: Single-Threaded

…

Heap for all objects
and static fields

Call stack with local variables

Program counter for current statement

Local variables are primitives or heap references

pc=…

…

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 14

New Story: Threads & Shared Memory

…

Heap for all objects and static
fields, shared by all threads

Threads, each with own unshared
call stack and "program counter"

pc=…

…

pc=…

…

pc=…

…

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 15

Other Parallelism/Concurrency Models

We will focus on shared memory, but you should know several
other models exist and have their own advantages

Message-passing:

 Each thread has its own collection of objects

 Communication is via explicitly sending/receiving messages

 Cooks working in separate kitchens, mail around ingredients

Dataflow:

 Programmers write programs in terms of a DAG.

 A node executes after all of its predecessors in the graph

 Cooks wait to be handed results of previous steps

Data parallelism:

 Have primitives for things like "apply function to every
element of an array in parallel"

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 16

FIRST IMPLEMENTATION:
SHARED MEMORY IN JAVA

Keep in mind that Java was first released in 1995

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 17

Our Needs
To write a shared-memory parallel program, we need new
primitives from a programming language or library

Ways to create and run multiple things at once

 We will call these things threads

Ways for threads to share memory

 Often just have threads with references to the same objects

Ways for threads to coordinate (a.k.a. synchronize)

 For now, a way for one thread to wait for another to finish

 Other primitives when we study concurrency

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 18

Java Basics
We will first learn some basics built into Java via the
provided java.lang.Thread package

 We will learn a better library for parallel programming

To get a new thread running:

1. Define a subclass C of java.lang.Thread,

2. Override the run method

3. Create an object of class C

4. Call that object’s start method

start sets off a new thread, using run as its "main"

What if we instead called the run method of C?

 Just a normal method call in the current thread

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 19

Parallelism Example: Sum an Array

Have 4 threads simultaneously sum 1/4 of the array

Approach:

 Create 4 thread objects, each given a portion of the work

 Call start() on each thread object to actually run it in parallel

 Somehow ‘wait’ for threads to finish

 Add together their 4 answers for the final result

Warning: This is the inferior first approach, do not do this

ans0 ans1 ans2 ans3

ans

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 20

Creating the Thread Subclass
class SumThread extends java.lang.Thread {

 int lo; // arguments
 int hi;
 int[] arr;

 int ans = 0; // result

 SumThread(int[] a, int l, int h) {
 lo=l; hi=h; arr=a;
 }

 public void run() { //override must have this type
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 }
}

Because we override a no-arguments/no-result run,
we use fields to communicate data across threads

We will ignore handling
the case where:

arr.length % 4 != 0

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 21

Creating the Threads Wrongly
class SumThread extends java.lang.Thread {

 int lo, int hi, int[] arr; // arguments

 int ans = 0; // result

 SumThread(int[] a, int l, int h) { … }

 public void run(){ … } // override

}

int sum(int[] arr){ // can be a static method

 int len = arr.length;

 int ans = 0;

 SumThread[] ts = new SumThread[4];

 for(int i=0; i < 4; i++) // do parallel computations

 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

 for(int i=0; i < 4; i++) // combine results

 ans += ts[i].ans;

 return ans;

} We forgot to start
the threads!!!

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 22

Starting Threads but Still Wrong
int sum(int[] arr){ // can be a static method

 int len = arr.length;

 int ans = 0;

 SumThread[] ts = new SumThread[4];

 for(int i=0; i < 4; i++){// do parallel computations

 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

 ts[i].start(); // start not run

 }

 for(int i=0; i < 4; i++) // combine results

 ans += ts[i].ans;

 return ans;

}

We start the threads and then
assume they finish right away!!!

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 23

Join: The ‘Wait for Thread’ Method

The Thread class defines various methods that provide

primitive operations you could not implement on your own

 For example: start, which calls run in a new thread

The join method is another such method, essential for

coordination in this kind of computation

 Caller blocks until/unless the receiver is done executing
(meaning its run method returns after its execution)

 Without join, we would have a ‘race condition’ on ts[i].ans
in which the variable is read/written simultaneously

This style of parallel programming is called fork/join"

 If we write in this style, we avoid many concurrency issues

 But certainly not all of them

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 24

Third Attempt: Correct in Spirit
int sum(int[] arr){ // can be a static method

 int len = arr.length;

 int ans = 0;

 SumThread[] ts = new SumThread[4];

 for(int i=0; i < 4; i++){// do parallel computations

 ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

 ts[i].start();

 }

 for(int i=0; i < 4; i++) { // combine results

 ts[i].join(); // wait for helper to finish!

 ans += ts[i].ans;

 }

 return ans;

}

Note that there is no guarantee that ts[0] finishes before ts[1]

 Completion order is nondeterministic

 Not a concern as our threads do the same amount of work

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 25

Where is the Shared Memory?

Fork-join programs tend not to require [thankfully] a
lot of focus on sharing memory among threads

 But in languages like Java, there is memory being shared

In our example:
 lo, hi, arr fields written by "main" thread, read by helper

thread

 ans field written by helper thread, read by "main" thread

When using shared memory, the challenge and
absolute requirement is to avoid race conditions
 While studying parallelism, we’ll stick with join

 With concurrency, we’ll learn other ways to synchronize

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 26

BETTER ALGORITHMS:
PARALLEL ARRAY SUM

Keep in mind that Java was first released in 1995

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 27

A Poor Approach: Reasons

Our current array sum code is a poor usage of
parallelism for several reasons

1. Code should be reusable and efficient across platforms

 "Forward-portable" as core count grows

 At the very least, we should parameterize the number of
threads used by the algorithm

int sum(int[] arr, int numThreads){
 … // note: shows idea, but has integer-division bug
 int subLen = arr.length / numThreads;
 SumThread[] ts = new SumThread[numThreads];
 for(int i=0; i < numThreads; i++){
 ts[i] = new SumThread(arr,i*subLen,(i+1)*subLen);
 ts[i].start();
 }
 for(int i=0; i < numThreads; i++) {
 …
 }
 …

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 28

A Poor Approach: Reasons

Our current array sum code is a poor usage of
parallelism for several reasons

2. We want to use only the processors "available now"

 Not used by other programs or threads in your program

 Maybe caller is also using parallelism

 Available cores can change even while your threads run

 If 3 processors available and 3 threads would take time X,
creating 4 threads can have worst-case time of 1.5X

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 29

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numThreads){
 …
}

A Poor Approach: Reasons

Our current array sum code is a poor usage of
parallelism for several reasons

3. Though unlikely for sum, subproblems may take significantly

different amounts of time

 Example: Apply method f to every array element, but
maybe f is much slower for some data items

 Example: Determine if a large integer is prime?

 If we create 4 threads and all the slow data is processed
by 1 of them, we won’t get nearly a 4x speedup

 Example of a load imbalance

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 30

A Better Approach: Counterintuitive
Although counterintuitive, the better solution is to use a
lot more threads beyond the number of processors

1. Forward-Portable: Lots of helpers each doing small work

2. Processors Available: Hand out "work chunks" as you go

 If 3 processors available and have 100 threads, worst-
case extra time is < 3% (if we ignore constant factors and
load imbalance)

3. Load Imbalance: Problem "disappears"

 Try to ensure that slow threads are scheduled early

 Variation likely small if pieces of work are also small

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 31

ans0 ans1 … ansN

ans

But Do Not Be Naïve
This approach does not provide a free lunch:

Assume we create 1 thread to process every N elements

Combining results will require arr.length/N additions

 As N increases, this becomes linear in size of array

 Previously we only had 4 pieces, Ө(1) to combine

In the extreme, suppose we create one thread per element

 Using a loop to combine the results requires N iterations

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 32

int sum(int[] arr, int N){
 …
 // How many pieces of size N do we have?
 int numThreads = arr.length / N;
 SumThread[] ts = new SumThread[numThreads];
 …
}

A Better Idea: Divide-and-Conquer

Straightforward to implement

Use parallelism for the recursive calls

 Halve and make new thread until size is at some cutoff

 Combine answers in pairs as we return

This starts small but grows threads to fit the problem

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 33

+ + + + + + + +

+ + + +

+ +
+

Divide-and-Conquer

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 34

public void run(){ // override
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else {
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}

int sum(int[] arr){
 SumThread t = new SumThread(arr,0,arr.length);
 t.run();
 return t.ans;
}

Divide-and-Conquer Really Works

The key is to parallelize the result-combining

 With enough processors, total time is the tree height: O(log n)

 This is optimal and exponentially faster than sequential O(n))

 But the reality is that we usually have P < O(n) processors

Still, we will write our parallel algorithms in this style

 Relies on operations being associative (as with +)

 But will use a special library engineered for this style

 It takes care of scheduling the computation well

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 35

+ + + + + + + +

+ + + +

+ +
+

REALITY BITES

Good movie… speaks to Generation Xers…

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 36

Being Realistic
In theory, you can divide down to single elements and then do
all your result-combining in parallel and get optimal speedup

In practice, creating all those threads and communicating
amongst them swamps the savings,

To gain better efficiency:

 Use a sequential cutoff, typically around 500-1000

 Eliminates almost all of the recursive thread creation
because it eliminates the bottom levels of the tree

 This is exactly like quicksort switching to insertion sort
for small subproblems, but even more important here

 Be clever and do not create unneeded threads

 When creating a thread, you are already in another thread

 Why not use the current thread to do half the work?

 Cuts the number of threads created by another 2x

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 37

Halving the Number of Threads

If a language had built-in support for fork-join parallelism,
we would expect this hand-optimization to be unnecessary

But the library we are using expects you to do it yourself

 And the difference is surprisingly substantial

 But no difference in theory

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 38

// wasteful: don’t
SumThread left = …
SumThread right = …

// create two threads
left.start();
right.start();
left.join();
right.join();
ans=left.ans+right.ans;

// better: do
SumThread left = …
SumThread right = …

// order of next 4 lines
// essential – why?
left.start();
right.run();
left.join();
ans=left.ans+right.ans;

Illustration of Fewer Threads

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 39

+
8

+
 9

+
10

+
 11

+
12

+
 13

+
14

+
 15 +

4
+
 5

+
6

+
 7
 +

3

+
 2

+
1

+
5

+
 3

+
6

+
 2

+
7

+
 4

+
8

+
 1 +

3
+
 2

+
4

+
 1
 +

2

+
 1

+
1

Two new threads
at each step and only
leaves do much work)

1 new thread
at each step

Limits of The Java Thread Library
Even with all this care, Java’s threads are too heavyweight

 Constant factors, especially space overhead

 Creating 20,000 Java threads just a bad idea

The ForkJoin Framework is designed/engineered to meet
the needs of divide-and-conquer fork-join parallelism

 Included in the Java 7 standard libraries

 Also available as a downloaded .jar file for Java 6

 Section will discuss some pragmatics/logistics

 Similar libraries available for other languages

 C/C++: Cilk, Intel’s Thread Building Blocks

 C#: Task Parallel Library

 Library implementation is an advanced topic

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 40

Different Terms / Same Basic Ideas

Don’t subclass Thread

Don’t override run

Do not use an ans field

Do not call start

Do not just call join

Do not call run to hand-optimize

Do not have a topmost call to run

Do subclass RecursiveTask<V>

Do override compute

Do return a V from compute

Do call fork

Do call join which returns answer

Do call compute to hand-optimize

Do create a pool and call invoke

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 41

To use the ForkJoin Framework:
 A little standard set-up code (e.g., create a ForkJoinPool)

The Fundamental Differences:

See the Dan Grossman's web page for

"A Beginner’s Introduction to the ForkJoin Framework"

http://www.cs.washington.edu/homes/djg/teachingMaterials/sp
ac/grossmanSPAC_forkJoinFramework.html

http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html
http://www.cs.washington.edu/homes/djg/teachingMaterials/spac/grossmanSPAC_forkJoinFramework.html

Final Version in ForkJoin Framework

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 42

class SumArray extends RecursiveTask<Integer> {
 int lo; int hi; int[] arr; // arguments
 SumArray(int[] a, int l, int h) { … }
 protected Integer compute(){// return answer
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 int ans = 0;
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 return ans;
 } else {
 SumArray left = new SumArray(arr,lo,(hi+lo)/2);
 SumArray right= new SumArray(arr,(hi+lo)/2,hi);
 left.fork();
 int rightAns = right.compute();
 int leftAns = left.join();
 return leftAns + rightAns;
 }
 }
}

static final ForkJoinPool fjPool = new ForkJoinPool();

int sum(int[] arr){
 return fjPool.invoke(new SumArray(arr,0,arr.length));
}

For Comparison: Java Threads Version

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 43

class SumThread extends java.lang.Thread {
 int lo; int hi; int[] arr;//fields to know what to do
 int ans = 0; // for communicating result
 SumThread(int[] a, int l, int h) { … }
 public void run(){
 if(hi – lo < SEQUENTIAL_CUTOFF)
 for(int i=lo; i < hi; i++)
 ans += arr[i];
 else { // create 2 threads, each will do ½ the work
 SumThread left = new SumThread(arr,lo,(hi+lo)/2);
 SumThread right= new SumThread(arr,(hi+lo)/2,hi);
 left.start();
 right.start();
 left.join(); // don’t move this up a line – why?
 right.join();
 ans = left.ans + right.ans;
 }
 }
}

class C {
 static int sum(int[] arr){
 SumThread t = new SumThread(arr,0,arr.length);
 t.run(); // only creates one thread
 return t.ans;
 }
}

Getting Good Results with ForkJoin

Sequential threshold

 Library documentation recommends doing approximately
100-5000 basic operations in each "piece" of your algorithm

Library needs to "warm up"

 May see slow results before the Java virtual machine
re-optimizes the library internals

 When evaluating speed, loop computations to see the "long-
term benefit" after these optimizations have occurred

Wait until your computer has more processors

 Seriously, overhead may dominate at 4 processors

 But parallel programming becoming much more important

Beware memory-hierarchy issues

 Will not focus on but can be crucial for parallel performance

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 44

ENOUGH IMPLEMENTATION:
ANALYZING PARALLEL CODE

Ah yes… the comfort of mathematics…

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 45

Key Concepts: Work and Span

Analyzing parallel algorithms requires considering the
full range of processors available

 We parameterize this by letting TP be the running time if P
processors are available

 We then calculate two extremes: work and span

Work: T1 How long using only 1 processor

 Just "sequentialize" the recursive forking

Span: T∞ How long using infinity processors

 The longest dependence-chain

 Example: O(log n) for summing an array

 Notice that having > n/2 processors is no additional help

 Also called "critical path length" or "computational depth"

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 46

The DAG

A program execution using fork and join can be

seen as a DAG

 Nodes: Pieces of work

 Edges: Source must finish before destination starts

A fork "ends a node" and makes
two outgoing edges

 New thread

 Continuation of current thread

A join "ends a node" and makes a
node with two incoming edges

 Node just ended

 Last node of thread joined on

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 47

Our Simple Examples
fork and join are very flexible, but divide-and-conquer

use them in a very basic way:

 A tree on top of an upside-down tree

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 48

base cases

divide

conquer

What Else Looks Like This?

Summing an array went from O(n) sequential to
O(log n) parallel (assuming a lot of processors and

very large n)

Anything that can use results from two halves and
merge them in O(1) time has the same properties
and exponential speed-up (in theory)

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 49

+ + + + + + + +

+ + + +

+ +
+

Examples

 Maximum or minimum element

 Is there an element satisfying some property (e.g.,
is there a 17)?

 Left-most element satisfying some property (e.g.,
first 17)

 What should the recursive tasks return?

 How should we merge the results?

 Corners of a rectangle containing all points (a
"bounding box")

 Counts (e.g., # of strings that start with a vowel)

 This is just summing with a different base case

 July 30, 2012 CSE 332 Data Abstractions, Summer 2012 50

More Interesting DAGs?

Of course, the DAGs are not always so simple
(and neither are the related parallel problems)

Example:

 Suppose combining two results might be expensive
enough that we want to parallelize each one

 Then each node in the inverted tree on the previous
slide would itself expand into another set of nodes
for that parallel computation

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 51

Reductions

Such computations of this simple form are common
enough to have a name: reductions (or reduces?)

Produce single answer from collection via an
associative operator

 Examples: max, count, leftmost, rightmost, sum, …

 Non-example: median

Recursive results don’t have to be single numbers or
strings and can be arrays or objects with fields

 Example: Histogram of test results

But some things are inherently sequential

 How we process arr[i] may depend entirely on
the result of processing arr[i-1]

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 52

Maps and Data Parallelism

A map operates on each element of a collection
independently to create a new collection of the
same size

 No combining results

 For arrays, this is so trivial some hardware has
direct support (often in graphics cards)

Canonical example: Vector addition

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 53

int[] vector_add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 result = new int[arr1.length];
 FORALL(i=0; i < arr1.length; i++) {
 result[i] = arr1[i] + arr2[i];
 }
 return result;
}

Maps in ForkJoin Framework

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 54

class VecAdd extends RecursiveAction {
 int lo; int hi; int[] res; int[] arr1; int[] arr2;
 VecAdd(int l,int h,int[] r,int[] a1,int[] a2){ … }
 protected void compute(){
 if(hi – lo < SEQUENTIAL_CUTOFF) {
 for(int i=lo; i < hi; i++)
 res[i] = arr1[i] + arr2[i];
 } else {
 int mid = (hi+lo)/2;
 VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
 VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);
 left.fork();
 right.compute();
 left.join();
 }
 }
}

static final ForkJoinPool fjPool = new ForkJoinPool();

int[] add(int[] arr1, int[] arr2){
 assert (arr1.length == arr2.length);
 int[] ans = new int[arr1.length];
 fjPool.invoke(new VecAdd(0,arr.length,ans,arr1,arr2);
 return ans;
}

Maps and Reductions

Maps and reductions are the "workhorses" of
parallel programming
 By far the two most important and common patterns

 We will discuss two more advanced patterns later

We often use maps and reductions to
describe parallel algorithms
 We will aim to learn to recognize when an algorithm can

be written in terms of maps and reductions

 Programming them then becomes "trivial" with a little
practice (like how for-loops are second-nature to you)

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 55

Digression: MapReduce on Clusters

You may have heard of Google’s "map/reduce"

 Or the open-source version Hadoop

Perform maps/reduces on data using many machines

 The system takes care of distributing the data and managing
fault tolerance

 You just write code to map one element and reduce elements
to a combined result

Separates how to do recursive divide-and-conquer
from what computation to perform

 Old idea in higher-order functional programming transferred
to large-scale distributed computing

 Complementary approach to database declarative queries

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 56

Maps and Reductions on Trees

Work just fine on balanced trees

 Divide-and-conquer each child

 Example:
Finding the minimum element in an unsorted but balanced
binary tree takes O(log n) time given enough processors

How to do you implement the sequential cut-off?

 Each node stores number-of-descendants (easy to maintain)

 Or approximate it (e.g., AVL tree height)

Parallelism also correct for unbalanced trees but you
obviously do not get much speed-up

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 57

Linked Lists

Can you parallelize maps or reduces over linked lists?

 Example: Increment all elements of a linked list

 Example: Sum all elements of a linked list

Once again, data structures matter!

For parallelism, balanced trees generally better than
lists so that we can get to all the data exponentially
faster O(log n) vs. O(n)

 Trees have the same flexibility as lists compared to arrays
(i.e., no shifting for insert or remove)

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 58

b c d e f

front back

Analyzing algorithms

Like all algorithms, parallel algorithms should be:

 Correct

 Efficient

For our algorithms so far, their correctness is
"obvious" so we’ll focus on efficiency

 Want asymptotic bounds

 Want to analyze the algorithm without regard to a
specific number of processors

 The key "magic" of the ForkJoin Framework is getting
expected run-time performance asymptotically optimal
for the available number of processors

 Ergo we analyze algorithms assuming this guarantee

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 59

Connecting to Performance
Recall: TP = run time if P processors are available

We can also think of this in terms of the program's DAG

Work = T1 = sum of run-time of all nodes in the DAG

 Note: costs are on the nodes not the edges

 That lonely processor does everything

 Any topological sort is a legal execution

 O(n) for simple maps and reductions

Span = T∞ = run-time of most-expensive path in DAG

 Note: costs are on the nodes not the edges

 Our infinite army can do everything that is ready to be
done but still has to wait for earlier results

 O(log n) for simple maps and reductions

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 60

Some More Terms
Speed-up on P processors: T1 / TP

Perfect linear speed-up: If speed-up is P as we vary P

 Means we get full benefit for each additional processor:
as in doubling P halves running time

 Usually our goal

 Hard to get (sometimes impossible) in practice

Parallelism is the maximum possible speed-up: T1/T∞

 At some point, adding processors won’t help

 What that point is depends on the span

Parallel algorithms is about decreasing span
without increasing work too much

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 61

Optimal TP: Thanks ForkJoin library
So we know T1 and T∞ but we want TP (e.g., P=4)

Ignoring memory-hierarchy issues (caching), TP cannot

 Less than T1 / P why not?

 Less than T∞ why not?

So an asymptotically optimal execution would be:

TP = O((T1 / P) + T∞)

First term dominates for small P, second for large P

The ForkJoin Framework gives an expected-time
guarantee of asymptotically optimal!

 Expected time because it flips coins when scheduling

 How? For an advanced course (few need to know)

 Guarantee requires a few assumptions about your code…

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 62

Division of Responsibility

Our job as ForkJoin Framework users:

 Pick a good parallel algorithm and implement it

 Its execution creates a DAG of things to do

 Make all the nodes small(ish) and approximately
equal amount of work

The framework-writer’s job:

 Assign work to available processors to avoid idling

 Keep constant factors low

 Give the expected-time optimal guarantee
assuming framework-user did his/her job

TP = O((T1 / P) + T∞)

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 63

Examples: TP = O((T1 / P) + T∞)

Algorithms seen so far (e.g., sum an array):

If T1 = O(n) and T∞= O(log n)

 TP = O(n/P + log n)

Suppose instead:

If T1 = O(n2) and T∞= O(n)

 TP = O(n2/P + n)

Of course, these expectations ignore any
overhead or memory issues

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 64

AMDAHL’S LAW

Things are going so smoothly…

Parallelism is awesome…

Hello stranger, what's your name?

Murphy? Oh @!♪%★$☹*!!!

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 65

Amdahl’s Law (mostly bad news)

In practice, much of our programming
typically has parts that parallelize well

 Maps/reductions over arrays and trees

And also parts that don’t parallelize at all

 Reading a linked list

 Getting/loading input

 Doing computations based on previous step

To understand the implications, consider this:

"Nine women cannot make a baby in one month"

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 66

Amdahl’s Law (mostly bad news)

Let work (time to run on 1 processor) be 1 unit time

If S is the portion of execution that cannot be
parallelized, then we can define T1 as:

 T1 = S + (1-S) = 1

If we get perfect linear speedup on the parallel
portion, then we can define TP as:

TP = S + (1-S)/P

Thus, the overall speedup with P processors is
(Amdahl’s Law):

T1 / TP = 1 / (S + (1-S)/P)

And the parallelism (infinite processors) is:

T1 / T∞ = 1 / S

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 67

Why this is such bad news

Amdahl’s Law: T1 / TP = 1 / (S + (1-S)/P)

 T1 / T∞ = 1 / S

Suppose 33% of a program is sequential

 Then a billion processors won’t give a speedup over 3

Suppose you miss the good old days (1980-2005) where
12 years or so was long enough to get 100x speedup

 Now suppose in 12 years, clock speed is the same but
you get 256 processors instead of just 1

 For the 256 cores to gain ≥100x speedup, we need

 100 1 / (S + (1-S)/256)

 Which means S .0061 or 99.4% of the algorithm must
be perfectly parallelizable!!

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 68

A Plot You Have To See

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 69

0

50

100

150

200

250

0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

Percentage of Code that is Sequential

1 Processor 4 Processors 16 Processors 64 Processors 256 Processors

Speedup for 1, 4, 16, 64, and 256 Processors
T1 / TP = 1 / (S + (1-S)/P)

A Plot You Have To See (Zoomed In)

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 70

0

20

40

60

80

100

0.00% 2.00% 4.00% 6.00% 8.00% 10.00%

Percentage of Code that is Sequential

1 Processor 4 Processors 16 Processors 64 Processors 256 Processors

Speedup for 1, 4, 16, 64, and 256 Processors
T1 / TP = 1 / (S + (1-S)/P)

All is not lost

Amdahl’s Law is a bummer!

 Doesn’t mean additional processors are worthless!!

We can always search for new parallel algorithms

 We will see that some tasks may seem inherently
sequential but can be parallelized

We can also change the problems we’re trying to
solve or pursue new problems

 Example: Video games/CGI use parallelism

 But not for rendering 10-year-old graphics faster

 They are rendering more beautiful(?) monsters

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 71

A Final Word on Moore and Amdahl

Although we call both of their work laws, they
are very different entities

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 72

Very different but incredibly important in the
design of computer systems

Amdahl’s Law is a mathematical theorem

 Diminishing returns of adding more processors

Moore’s "Law" is an observation about the
progress of the semiconductor industry:

 Transistor density doubles every ≈18 months

Welcome to the Parallel World

We will continue to explore this topic and
its implications

In fact, the next class will consist of 16
lectures presented simultaneously

 I promise there are no concurrency
issues with your brain

 It is up to you to parallelize your brain
before then

The interpreters and captioner should
attempt to grow more limbs as well

July 30, 2012 CSE 332 Data Abstractions, Summer 2012 73

