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Making Connections 
You have a set of nodes (numbered 1-9) on a 
network. You are given a sequence of 
pairwise connections between them: 

 

3-5     4-2     1-6     5-7     4-8     3-7 

 

Q: Are nodes 2 and 4 connected?  Indirectly? 

Q: How about nodes 3 and 8? 

Q: Are any of the paired connections 
 redundant due to indirect connections? 

Q: How many sub-networks do you have? 
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Making Connections 

Start: 

3-5 

4-2 

1-6 

5-7 

4-8 

3-7 

{1} {2} {3} {4} {5} {6} {7} {8} {9} 

{1} {2} {3, 5} {4} {6} {7} {8} {9} 

{1} {2, 4} {3, 5} {6} {7} {8} {9} 

{1, 6} {2, 4} {3, 5} {7} {8} {9} 

{1, 6} {2, 4} {3, 5, 7} {8} {9} 

{1, 6} {2, 4, 8} {3, 5, 7} {9} 

no change  
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Answering these questions is much easier if we 
create disjoint sets of nodes that are connected: 

Making Connections 
Let's ask the questions again. 

 

3-5     4-2     1-6     5-7     4-8     3-7 

⇓ 

{1, 6} {2, 4, 8} {3, 5, 7} {9} 

 

Q: Are nodes 2 and 4 connected?  Indirectly? 

Q: How about nodes 3 and 8? 

Q: Are any of the paired connections 
 redundant due to indirect connections? 

Q: How many sub-networks do you have? 
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Disjoint Set Union-Find ADT 

Separate elements into disjoint sets 

 If set x ≠ y then x ⋂ y = ∅ (i.e. no shared elements) 
 

Each set has a name (usually an element in the set) 
 

union(x,y): take the union of the sets x and y (x ⋃ y) 

 Given sets: {3,5,7} , {4,2,8}, {9}, {1,6} 

 union(5,1)  {3,5,7,1,6}, {4,2,8}, {9},  
 

find(x): return the name of the set containing x. 

 Given sets: {3,5,7,1,6}, {4,2,8}, {9},  

 find(1) returns 5 

 find(4) returns 8 
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Disjoint Set Union-Find Performance 

Believe it or not: 

 We can do Union in constant time.  

 We can get Find to be amortized 
constant time with worst case O(log n) 
for an individual Find operation 

 

Let's see how… 
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FIRST, LET'S GET LOST 

Beware of Minotaurs 
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What Makes a Good Maze? 

 We can get from any room to any other 
room (connected) 

 There is just one simple path between 
any two rooms (no loops) 

 The maze is not a simple pattern 
(random) 
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Making a Maze 

A high-level algorithm for a random maze is easy: 

 Start with a grid  

 Pick Start and Finish 

 Randomly erase edges 

START 

FINISH 
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The Middle of the Algorithm 

So far, we've knocked down  
several walls while others  
still remain. 

Consider the walls between A  
and B and C and D 

 Which walls can we knock  
down and maintain both  

our connectedness and  
our no cycles properties? 

How do we do this efficiently? 

 

A 

B 

D 

C 
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Maze Algorithm: Number the Cells 

Number each cell and treat as disjoint sets: 

 S ={ {1}, {2}, {3}, {4},… {36} } 

Create a set of all edges between cells: 

 W ={ (1,2), (1,7), (2,8), (2,3), … } 60 walls total. 

 
1 2 3 4 5 6 

7 8 9 10 11 12 

13 14 15 16 17 18 

19 20 21 22 23 24 

25 26 27 28 29 30 

31 32 33 34 35 36 

START 

FINISH 
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Maze Algorithm: Building with DSUF 

Algorithm sketch: 

 Choose a wall at random. 

 Erase wall if the neighbors are in disjoint 
sets (this avoids creating cycles) 

 Take union of those cell's sets 

 Repeat until there is only one set 

 Every cell is thus reachable from every 
other cell 
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The Secret To Why This Works 

Notice that a connected, acyclic maze is 
actually a Hidden Tree 

 

 

 

 

 

 

 

This suggests how we should implement the 
Disjoint Set Union-Find ADT 
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START 

FINISH IMPLEMENTING DSUF 
WITH UP TREES 

I promise the first twenty minutes of this section will not 
be the saddest trees you have ever seen… 

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 14 

Up Trees for Disjoin Set Union-Find 

Up trees  

 Notes point to parent, not children 

 Thus only one pointer per node 
 

In a DSUF 

 Each disjoint set is its own up tree 

 The root of the tree is the name for the disjoint set 

 
1 2 3 4 5 6 7 Initial State 

1 

4 

3 After Unions 

2 5 

6 

7 
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Find Operation 

find(x): follow x to the root and return the 
 root (the name of the disjoint set) 

find(1) = 1 

find(3) = 3 

find(4) = 1 

find(6) = 7 

1 

4 

3 

5 

7 

2 

6 
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Find Operation 

union(i,j): assuming i and j are roots, point 
 root i to root j 

 

 

 

 

 
 

What if i or j is not a root? 

 Run a find on i and j first and use the 
returned values for the joining 
 

Why do we join roots and not just the nodes? 

 

union(1,7) 
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1 

4 

3 

5 

7 

2 

6 

1 

4 

3 

5 

7 

2 

6 

Simple Implementation 

Once again, it is better to implement a tree 
using an array than with node objects 

 Leave up[0] empty (or # of disjoint sets) 

 up[x] = i means node x's parent is node i 

 up[x] = 0 means x is a root 

 
1 

4 

3 

2 5 

6 

7 

0 7 0 1 7 2 0 up 

1 2 3 4 5 6 7 
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Performance 

Using array-based up trees, what is the cost for 

 union(i,j)? 

 find(x)? 

 

union(i,j) is O(1) if i and j are roots 

 Otherwise depends on cost of find 

 

find(x) is O(n) in worst-case 

 What does the worst-case look like? 
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1 

4 

2 

6 

5 

3 

7 

Performance – Doing Better 

The problem is that up trees get too tall 
 

In order to make DSUF perform as we 
promised, we need to improve both our 
union and find algorithms: 

 Weighted Union 

 Path Compression 
 

Only with BOTH of these will we get find to 
average-case O(log n) and amortized O(1)  
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Weighted Union 

Instead of arbitrarily joining two roots, always point 
the smaller tree to the root of the larger tree 

 Each up tree has a weight (number of nodes) 

 The idea is to limit the height of each up tree 

 Trees with more nodes tend to be deeper 

Union by rank or height are similar ideas but more 
complicated to implement 
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union(1,7) 

1 

4 

3 

5 

7 

2 

6 

3 

1 

4 

5 

7 

2 

6 

2 1 4 1 6 

Weighted Union Implementation 

We can just use an additional array to store 
weights of the roots… 
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1 

4 

3 

5 

7 

2 

6 

2 1 4 

0 7 0 1 7 2 0 up 

1 2 3 4 5 6 7 

2 1 4 weight 

Weighted Union Implementation 

… or we use negative numbers to represent 
 roots and their weights  
 

But generally, saving O(n) space is not critical 
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1 

4 

3 

5 

7 

2 

6 

2 1 4 

-2 7 -1 1 7 2 -4 up 

1 2 3 4 5 6 7 

Weighted Union Performance 

Weighted union gives us guaranteed worst-
case O(log n) for find 

 The union rule prevents linear up trees 

 Convince yourself that it will produce at 
worst a fairly balanced binary tree 

 

However, we promised ourselves O(1) 

amortized time for find 

 Weighted union does not give us enough 

 Average-case is still O(log n) 
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Motivating Path Compression 

Recall splay trees 

 To speed up later finds, we moved searched for 
nodes to the root  

 Also improved performance for finding other nodes  

 Can we do something similar here? 

 

Yes, but we cannot move the node to the root 

 Roots are the names of the disjoint set 

 Plus, we want to move associated nodes up at the 
same time 

 Why not move all nodes touched in a find to point 
directly to the root? 
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Path Compression 

On a find operation point all the nodes on the 
search path directly to the root 

 Keep a stack/queue as you traverse up 

 Then empty to the stack/queue to repoint 
each stored node to the root 
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find(3) 

8 

7 

2 

6 

4 3 

9 5 

1 

8 

7 

2 6 

4 

9 5 

1 

3 

Digression: Ackermann Function 

The Ackermann function is a recursive function that 
grows exceptionally fast 

 

𝐴 𝑥, 𝑦 =  

 𝑦 + 1,  𝑥 = 0

 𝐴 𝑥 − 1,1 ,  𝑦 = 0

 𝐴 𝑥 − 1,𝐴(𝑥, 𝑦 − 1) ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

If ack 𝑥 = 𝐴 𝑥, 𝑥 , then the first few values are: 
𝑎𝑐𝑘 0 = 1 
𝑎𝑐𝑘 1 = 3 
𝑎𝑐𝑘 2 = 7 
𝑎𝑐𝑘 3 = 61 

𝑎𝑐𝑘 4 = 22
265536

− 3 (WOW!!) 
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Digression: Inverse Ackermann 
Just as fast as the Ackermann function grows, its inverse, 
𝑎𝑐𝑘−1 𝑛 , grows veeeeeeeerrrrrrrrrrrryyyyy slowly 
 

In fact, 𝑎𝑐𝑘−1 𝑛  grows more slowly than the following: 

 Let log(k) n = log (log (log … (log n))) 

 
 Then, let log* n = minimum k such that log(k) n  1 
 

How fast does log* n grow?  

log* (2) = 1 

log* (4) = 2 

log* (16) = 3 

log* (65536) = 4 

log* (265536) = 5   (a 20,000 digit number!) 

log* (2265536
) = 6 

 

k logs 

Optimized Disjoint Set Union-Find 

Tarjan (1984) proved that m weighted union and find 
with path compression operations on a set of n 
elements have worst case complexity O(m·ack-1(n)) 

 For all practical purposes this is amortized 
constant time as ack-1(n) < 5 for reasonable n 

 

More generally, the total cost of m finds (with at 
most n-1 unions—why?), the total work is: O(m+n) 

 Again, this is O(1) amortized with O(1) worst-case 
for union and O(log n) worst-case for find 

 One can also show that any implementation of find 
and union cannot both be worst-case O(1) 

 

 

 

MINIMUM SPANNING 
TREES 

With no surprise, DSUF will be very useful here 
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General Problem: Spanning a Graph 

A simple problem: Given a connected graph G=(V,E), 
find a minimal subset of the edges such that the 
graph is still connected 

 A graph G2=(V,E2) such that G2 is connected and 
removing any edge from E2 makes G2 disconnected 
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Observations 

1. Any solution to this problem is a tree 

 Recall a tree does not need a root; just means acyclic 

 For any cycle, could remove an edge and still be connected 

 We usually just call the solutions spanning trees 
 

2. Solution not unique unless original graph was 
already a tree 
 

3. Problem ill-defined if original graph not connected 

 We can find a spanning tree per connected component of 
the graph 

 This is often called a spanning forest 
 

4. A tree with |V| nodes has |V|-1 edges 

 This every spanning tree solution has |V|-1 edges 
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We Saw This Earlier 

Our acyclic maze consisted of a tree that 
touched ever square of the grid 
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START 

FINISH 

Motivation 

A spanning tree connects all the nodes with as few 
edges as possible 
 

Example: A “phone tree” so everybody gets the  
message and no unnecessary calls get made 

 Bad example since would prefer a balanced tree 
 

In most compelling uses, we have a weighted 
undirected graph and want a tree of least total cost  

 Minimize electrical wiring for a house or wires on a chip 

 Minimize road network if you cared about asphalt cost 
 

This is the minimum spanning tree problem 

 Will do that next, after intuition from the simpler case 
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Finding Unweighted Spanning Trees 

Different algorithmic approaches to the 
spanning-tree problem: 

1. Do a graph traversal (e.g., depth-first search, but 
any traversal will do) and keep track of edges that 
form a tree 

2. or, iterate through edges and add to output any 
edge that doesn’t create a cycle 
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Spanning Tree via DFS 

Correctness:  
DFS reaches each node. We add one edge to connect it to the 
already visited nodes. Order affects result, not correctness. 
 

Time: O(|E|) 
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spanning_tree(Graph G) { 

  for each node i: i.marked = false 

  for some node i: f(i) 

} 

f(Node i) { 

  i.marked = true 

  for each j adjacent to i: 

   if(!j.marked) { 

      add(i,j) to output 

      f(j) // DFS 

    } 

}  
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DFS Spanning Tree Example 

Stack 

f(1) 1 

2 

3 

4 

5 

6 

7 

Output: 
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DFS Spanning Tree Example 

Stack 

f(1) 

f(2) 

1 

2 

3 

4 

5 

6 

7 

Output:  (1,2) 
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DFS Spanning Tree Example 

Stack 

f(1) 

f(2) 

f(7) 

1 

2 

3 

4 

5 

6 

7 
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Output: (1,2), (2,7) 

DFS Spanning Tree Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

1 

2 

3 

4 

5 

6 

7 
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Output: (1,2), (2,7), (7,5) 

DFS Spanning Tree Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

f(4) 

1 

2 

3 

4 

5 

6 

7 

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 41 

Output: (1,2), (2,7), (7,5), (5,4) 

DFS Spanning Tree Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

f(4) 

f(3) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (2,7), (7,5), (5,4), 
 (4,3) 
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DFS Spanning Tree Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

f(4) 

f(3) 

f(6) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (2,7), (7,5), (5,4), 
 (4,3), (5,6) 
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DFS Spanning Tree Example 

Stack 

f(1) 

f(2) 

f(7) 

f(5) 

f(4)  f(6) 

f(3) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (2,7), (7,5), (5,4), 
 (4,3), (5,6) 
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Second Approach 

Iterate through edges; output any edge that does 
not create a cycle 

 

Correctness (hand-wavy): 

 Goal is to build an acyclic connected graph 

 When we add an edge, it adds a vertex to the tree 
(or else it would have created a cycle) 

 The graph is connected, we consider all edges 

 

Efficiency: 

 Depends on how quickly you can detect cycles 

 Reconsider after the example 
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Example 

Edges in some arbitrary order: 

 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), 
(2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 
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Output: 

Example 

Edges in some arbitrary order: 

   (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), 
(2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 
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Output: (1,2) 

Example 

Edges in some arbitrary order: 

   (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), 
(2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 
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Output: (1,2), (3,4)  
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Example 

Edges in some arbitrary order: 

   (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), 
(2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 
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Output: (1,2), (3,4), (5,6)  

Example 

Edges in some arbitrary order: 

   (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), 
(2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 
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Output: (1,2), (3,4), (5,6), (5,7) 

Example 

Edges in some arbitrary order: 

   (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), 
(2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5) 

Example 

Edges in some arbitrary order: 

   (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), 
(2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 52 

Output: (1,2), (3,4), (5,6), (5,7), (1,5)  

Example 

Edges in some arbitrary order: 

   (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), 
(2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 
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Output: (1,2), (3,4), (5,6), (5,7), (1,5)  

Example 

Edges in some arbitrary order: 

   (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), 
(2,7), (2,3), (4,5), (4,7) 

1 

2 

3 

4 

5 

6 

7 

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)  

Can stop once we  
have |V|-1 edges 
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Cycle Detection 

To decide if an edge could form a cycle is 
O(|V|) because we may need to traverse all 
edges already in the output 

 So overall algorithm would be O(|V||E|) 
 

But it is faster way to use the DSUF ADT 

 Initially, each vertex is in its own 1-element set 

 find(u): what set contains u?  

 union(u,v): combine the sets containing u and v 
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Using Disjoint-Set to Detect Cycles 

Invariant:  
u and v are connected in output-so-far if and only 
if u and v in the same set 

 

Algorithm: 

 Initially, each node is in its own set 

 When processing edge (u,v): 

 If find(u)==find(v), then do not add the edge 

 Else add the edge and union(u,v) 
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Summary so Far 

The spanning-tree problem 

 Add nodes to partial tree approach is O(|E|) 

 Add acyclic edges approach is O(|E| log |V|) 

 

But what we really want to solve is the minimum-
spanning-tree problem 

 Given a weighted undirected graph, find a 
spanning tree of minimum weight 

 The above approaches suffice with minor changes  

 Both will be O(|E| log |V|) 
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PRIM AND KRUSKAL'S 
ALGORITHMS 

Like vi versus emacs except people do not typically fight 
over which one is better (emacs and Kruskal are best!) 
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One Problem, Two Algorithms 

Algorithm #1: Prim's Algorithm 

 Shortest-path is to Dijkstra’s Algorithm as 
Minimum Spanning Tree is to Prim’s Algorithm 

 Both based on expanding cloud of known vertices, 
basically using a priority queue 

 

Algorithm #2: Kruskal's Algorithm 

 Exactly our forest-merging approach to spanning 
tree but process edges in cost order 
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Idea: Prim’s Algorithm 

Central Idea:  

 Grow a tree by adding an edge from the “known” vertices to 
the “unknown” vertices.  

 Pick the edge with the smallest weight that connects “known” 
to “unknown.” 

 

 

Recall Dijkstra picked “edge with closest known 
distance to source.”  

 But that is not what we want here 

 Otherwise identical 

 Feel free to look back and compare 
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Pseudocode: Prim's Algorithm 
1. For each node v, set  v.cost =  and 

v.known = false 
 

2. Choose any node v.  
a) Mark v as known 
b) For each edge (v,u) with weight w, set u.cost = w 

and u.prev = v 
 

3. While there are unknown nodes in the graph 
a) Select the unknown node v with lowest cost 
b) Mark v as known and add (v, v.prev) to output 
c) For each edge (v,u) with weight w, 
     if(w < u.cost) { 
          u.cost = w; 
      u.prev = v; 

     } 
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Example: Prim's Algorithm 

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 
1 

1 

2 

6 
5 3 

10 
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vertex known? cost prev 

A 

B 

C 

D 

E 

F 

G 

Example: Prim's Algorithm 

A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 
1 

1 

2 

6 
5 3 

10 
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vertex known? cost prev 

A Y 0 - 

B 2 A 

C 2 A 

D 1 A 

E 

F 

G 

Example: Prim's Algorithm 

2 

1 
2 5 

1 
1 

1 

2 

6 
5 3 

10 
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vertex known? cost prev 

A Y 0 - 

B 2 A 

C 2 1 A D 

D Y 1 A 

E 1 D 

F 6 D 

G 5 D 
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vertex known? cost prev 

A Y 0 - 

B 2 A 

C Y 2 1 A D 

D Y 1 A 

E 1 D 

F 6 2 D C 

G 5 D 
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vertex known? cost prev 

A Y 0 - 

B 2 1 A E 

C Y 2 1 A D 

D Y 1 A 

E Y 1 D 

F 6 2 D C 

G 5 3 D E 
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vertex known? cost prev 

A Y 0 - 

B Y 2 1 A E 

C Y 2 1 A D 

D Y 1 A 

E Y 1 D 

F 6 2 D C 

G 5 3 D E 
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vertex known? cost prev 

A Y 0 - 

B Y 2 1 A E 

C Y 2 1 A D 

D Y 1 A 

E Y 1 D 

F Y 6 2 D C 

G 5 3 D E 
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vertex known? cost prev 

A Y 0 - 

B Y 2 1 A E 

C Y 2 1 A D 

D Y 1 A 

E Y 1 D 

F Y 6 2 D C 

G Y 5 3 D E 

A B 

C 
D 
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Example: Prim's Algorithm 
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vertex known? cost prev 

A Y 0 - 

B Y 2 1 A E 

C Y 2 1 A D 

D Y 1 A 

E Y 1 D 

F Y 6 2 D C 

G Y 5 3 D E 

A B 

C 
D 

F 

E 

G 

Output: 
(A, D)  (C, F) 
(B, E)  (D, E) 
(C, D)  (E, G) 
 
Total Cost:  9 

Analysis: Prim's Algorithm 

Correctness 

 Intuitively similar to Dijkstra's algorithm 

 

Run-time 

 Same as Dijkstra's algorithm 

 O(|E| log |V|) using a priority queue 
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Idea: Kruskal’s Algorithm 

Central Idea:  

 Grow a forest out of edges that do not grow a cycle, just like 
for the spanning tree problem. 

 But now consider the edges in order by weight 
 

Basic implementation:  
 Sort edges by weight  O(|E| log |E|) = O(|E| log |V|) 

 Iterate through edges using DSUF for cycle detection  
 O(|E| log |V|) 

 

Somewhat better implementation: 
 Floyd’s algorithm to build min-heap with edges  O(|E|) 

 Iterate through edges using DSUF for cycle detection and 
deleteMin to get next edge  O(|E| log |V|) 

 Not better worst-case asymptotically, but often stop long 
before considering all edges 
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Pseudocode: Kruskal's Algorithm 

1. Put edges in min-heap using edge weights 

2. Create DSUF with each vertex in its own set 

3. While output size < |V|-1 

a) Consider next smallest edge (u,v) 

b) if find(u,v) indicates u and v are in different sets 

  output (u,v) 

  union(u,v) 

 

Recall invariant:  

 u and v in same set if and only if connected in 
output-so-far 

 

 

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 73 

Example: Kruskal's Algorithm 

Edges in sorted order: 

1:   (A,D) (C,D) (B,E) (D,E) 

2:   (A,B) (C,F) (A,C) 

3:   (E,G) 

5:   (D,G) (B,D) 

6:   (D,F) 

10: (F,G) 

At each step, the union/find sets are the trees in the forest 

Sets:  (A) (B) (C) (D) (E) (F) (G) 

Output:  
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Example: Kruskal's Algorithm 

Edges in sorted order: 

1:   (A,D) (C,D) (B,E) (D,E) 

2:   (A,B) (C,F) (A,C) 

3:   (E,G) 

5:   (D,G) (B,D) 

6:   (D,F) 

10: (F,G) 

At each step, the union/find sets are the trees in the forest 

Sets:  (A,D) (B) (C) (E) (F) (G) 

Output: (A,D)  
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Example: Kruskal's Algorithm 

Edges in sorted order: 

1:   (A,D) (C,D) (B,E) (D,E) 

2:   (A,B) (C,F) (A,C) 

3:   (E,G) 

5:   (D,G) (B,D) 

6:   (D,F) 

10: (F,G) 

At each step, the union/find sets are the trees in the forest 

Sets:  (A,C,D) (B) (E) (F) (G) 

Output: (A,D) (C,D)  
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Example: Kruskal's Algorithm 

Edges in sorted order: 

1:   (A,D) (C,D) (B,E) (D,E) 

2:   (A,B) (C,F) (A,C) 

3:   (E,G) 

5:   (D,G) (B,D) 

6:   (D,F) 

10: (F,G) 

At each step, the union/find sets are the trees in the forest 

Sets:  (A,C,D) (B,E) (F) (G) 

Output: (A,D) (C,D) (B,E) 
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Example: Kruskal's Algorithm 

Edges in sorted order: 

1:   (A,D) (C,D) (B,E) (D,E) 

2:   (A,B) (C,F) (A,C) 

3:   (E,G) 

5:   (D,G) (B,D) 

6:   (D,F) 

10: (F,G) 

At each step, the union/find sets are the trees in the forest 

Sets:  (A,B,C,D,E) (F) (G) 

Output: (A,D) (C,D) (B,E) (D,E) 
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Example: Kruskal's Algorithm 

Edges in sorted order: 

1:   (A,D) (C,D) (B,E) (D,E) 

2:   (A,B) (C,F) (A,C) 

3:   (E,G) 

5:   (D,G) (B,D) 

6:   (D,F) 

10: (F,G) 

At each step, the union/find sets are the trees in the forest 

Sets:  (A,B,C,D,E) (F) (G) 

Output: (A,D) (C,D) (B,E) (D,E) 
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Example: Kruskal's Algorithm 

Edges in sorted order: 

1:   (A,D) (C,D) (B,E) (D,E) 

2:   (A,B) (C,F) (A,C) 

3:   (E,G) 

5:   (D,G) (B,D) 

6:   (D,F) 

10: (F,G) 

At each step, the union/find sets are the trees in the forest 

Sets:  (A,B,C,D,E,F) (G) 

Output: (A,D) (C,D) (B,E) (D,E) (C,F) 
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Example: Kruskal's Algorithm 

Edges in sorted order: 

1:   (A,D) (C,D) (B,E) (D,E) 

2:   (A,B) (C,F) (A,C) 

3:   (E,G) 

5:   (D,G) (B,D) 

6:   (D,F) 

10: (F,G) 

At each step, the union/find sets are the trees in the forest 

Sets:  (A,B,C,D,E,F) (G) 

Output: (A,D) (C,D) (B,E) (D,E) (C,F) 

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 81 

A B 

C 
D 

F 

E 

G 

1 
5 

1 
1 

1 

2 

6 
5 3 

10 

Example: Kruskal's Algorithm 

Edges in sorted order: 

1:   (A,D) (C,D) (B,E) (D,E) 

2:   (A,B) (C,F) (A,C) 

3:   (E,G) 

5:   (D,G) (B,D) 

6:   (D,F) 

10: (F,G) 

At each step, the union/find sets are the trees in the forest 

Sets:  (A,B,C,D,E,F,G) 

Output: (A,D) (C,D) (B,E) (D,E) (C,F) (E,G) 
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Analysis: Kruskal's Algorithm 

Correctness: It is a spanning tree 

 When we add an edge, it adds a vertex to the 
tree (or else it would have created a cycle) 

 The graph is connected, we consider all edges 

 

Correctness: That it is minimum weight 

 Can be shown by induction 

 At every step, the output is a subset of a 
minimum tree 

 

Run-time 

 O(|E| log |V|) 
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So Which Is Better? 

Time/space complexities essentially the same 

 

Both are fairly simple to implement 

 

Still, Kruskal's is slightly better 

 If the graph is not connected, Kruskal's will 
find a forest of minimum spanning trees 
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WRAPPING UP DATA 
ABSTRACTIONS 

*sniff* 
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That's All Folks 

Disjoint Set Union-Find and minimum spanning 
trees are the last topics we will get to cover 

 

Still, there are plenty more data structures, 
algorithms and applications out there to learn 

 

You have the basics now 
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Your Programming Mind has Changed 

Before, you often thought first about code 

 Declare a variable, a for-loop here, an if-
else statement there, etc. 

 

Now, you will see a problem and also think of 
the data structure 

 Lots of lookups… use a hashtable 

 Is this a graph and shortest path problem? 

 Etc. 
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Most Important Lesson 

There is rarely a best programming solution 

 

Every solution has strengths and weaknesses 

 

The key is to be able to argue in favor of your 
approach over others 

 

Just remember:  

Even though QuickSort's name says it is fast, 
it is not always the best sort every time 
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Cheers, Thanks, Whee! 

Take care 

 

Fill out the evaluations… I read these!! 

 

Good luck on the final 

 

Remember: Optional Section on Thursday 

 Get your final back 

 Free doughnuts! 

 And maybe another cool data structure 
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