

CSE 332 Data Abstractions:
Disjoint Set Union-Find and
Minimum Spanning Trees
Kate Deibel
Summer 2012

${ }_{2012}^{\text {August 13, }}$

CSE 332 Data Abstractions, Summer 2012

Making Connections

Answering these questions is much easier if we create disjoint sets of nodes that are connected:

$$
\begin{array}{cc}
\text { Start: } & \{1\}\{2\}\{3\}\{4\}\{5\}\{6\}\{7\}\{8\}\{9\} \\
3-5 & \{1\}\{2\}\{3,5\}\{4\}\{6\}\{7\}\{8\}\{9\} \\
4-2 & \{1\}\{2,4\}\{3,5\}\{6\}\{7\}\{8\}\{9\} \\
1-6 & \{1,6\}\{2,4\}\{3,5\}\{7\}\{8\}\{9\} \\
5-7 & \{1,6\}\{2,4\}\{3,5,7\}\{8\}\{9\} \\
4-8 & \{1,6\}\{2,4,8\}\{3,5,7\}\{9\} \\
3-7 & \text { no change }
\end{array}
$$

August 13, 2012

Making Connections

Let's ask the questions again.

```
3-5 4-2 1-6 5-7 4-8 3-7
    {1,6} {2,4,8} {3,5,7} {9}
```

Q: Are nodes 2 and 4 connected? Indirectly?
Q: How about nodes 3 and 8 ?
Q: Are any of the paired connections redundant due to indirect connections?
Q: How many sub-networks do you have?

August 13, 2012
CSE 332 Data Abstractions, Summer 2012

Disjoint Set Union-Find ADT

Separate elements into disjoint sets

- If set $x \neq y$ then $x \cap y=\varnothing$ (i.e. no shared elements)

Each set has a name (usually an element in the set)
union (x, y) : take the union of the sets x and $y(x \cup y)$

- Given sets: $\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}$
- union $(5,1) \rightarrow\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
find(x): return the name of the set containing x.
- Given sets: $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
- find(1) returns 5
- find(4) returns 8

What Makes a Good Maze?

- We can get from any room to any other room (connected)
- There is just one simple path between any two rooms (no loops)
- The maze is not a simple pattern (random)

Beware of Minotaurs

FIRST, LET'S GET LOST

Making a Maze

A high-level algorithm for a random maze is easy:

- Start with a grid
- Pick Start and Finish
- Randomly erase edges

Maze Algorithm: Number the Cells

Number each cell and treat as disjoint sets:

- $S=\{\{1\},\{2\},\{3\},\{4\}, \ldots\{36\}\}$

Create a set of all edges between cells:

- $W=\{(1,2),(1,7),(2,8),(2,3), \ldots\} 60$ walls total.

START
1
:---:
13
19
25
31

The Secret To Why This Works

Notice that a connected, acyclic maze is actually a Hidden Tree
 FINISH

This suggests how we should implement the Disjoint Set Union-Find ADT

Up Trees for Disjoin Set Union-Find

Up trees

- Notes point to parent, not children
- Thus only one pointer per node

In a DSUF

- Each disjoint set is its own up tree
- The root of the tree is the name for the disjoint set

Initial State
(1)
(3) (4)
(5)
(6) 7

After Unions

Find Operation

union (i, j) : assuming i and j are roots, point root i to root j
union $(1,7)$

What if i or j is not a root?

- Run a find on i and j first and use the returned values for the joining

Why do we join roots and not just the nodes?

Performance

Using array-based up trees, what is the cost for

- union(i, j)?
- find(x) ?
union (i, j) is $O(1)$ if i and j are roots
- Otherwise depends on cost of find
find (x) is $O(n)$ in worst-case
- What does the worst-case look like?

Weighted Union

Instead of arbitrarily joining two roots, always point the smaller tree to the root of the larger tree

- Each up tree has a weight (number of nodes)
- The idea is to limit the height of each up tree
- Trees with more nodes tend to be deeper

Union by rank or height are similar ideas but more complicated to implement

$$
\text { union(} 1,7 \text {) }
$$

August 13, 2012
CSE 332 Data Abstractions, Summer 2012

Weighted Union Implementation

... or we use negative numbers to represent roots and their weights
But generally, saving $O(n)$ space is not critical

$$
\begin{aligned}
& \begin{array}{cccccc}
2 & 1 & 4 \\
\hline 1 & 3 & 3 & \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Motivating Path Compression

Recall splay trees

- To speed up later finds, we moved searched for nodes to the root
- Also improved performance for finding other nodes
- Can we do something similar here?

Yes, but we cannot move the node to the root

- Roots are the names of the disjoint set
- Plus, we want to move associated nodes up at the same time
- Why not move all nodes touched in a find to point directly to the root?

Digression: Ackermann Function

The Ackermann function is a recursive function that grows exceptionally fast

$$
A(x, y)=\left\{\begin{array}{lr}
y+1, & x=0 \\
A(x-1,1), & y=0 \\
A(x-1, A(x, y-1)), & \text { otherwise }
\end{array}\right.
$$

If $\operatorname{ack}(x)=A(x, x)$, then the first few values are:

$$
\operatorname{ack}(0)=1
$$

$\operatorname{ack}(1)=3$
$\operatorname{ack}(2)=7$
$\operatorname{ack}(3)=61$
$\operatorname{ack}(4)=2^{2^{2^{65536}}}-3 \quad$ (WOW!!)
August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Optimized Disjoint Set Union-Find

Tarjan (1984) proved that \mathbf{m} weighted union and find with path compression operations on a set of \mathbf{n} elements have worst case complexity $O\left(m \cdot \operatorname{ack}^{-1}(n)\right)$

- For all practical purposes this is amortized constant time as $\operatorname{ack}^{-1}(\mathrm{n})<5$ for reasonable n

More generally, the total cost of m finds (with at most $n-1$ unions-why?), the total work is: $O(m+n)$

- Again, this is $O(1)$ amortized with $O(1)$ worst-case for union and $O(\log n)$ worst-case for find
- One can also show that any implementation of find and union cannot both be worst-case $\mathrm{O}(1)$

Path Compression

On a find operation point all the nodes on the search path directly to the root

- Keep a stack/queue as you traverse up
- Then empty to the stack/queue to repoint each stored node to the root
find(3)

August 13, 2012

Digression: Inverse Ackermann

Just as fast as the Ackermann function grows, its inverse, $a^{c k} k^{-1}(n)$, grows veeeeeeeerrrrrrrrrrryyyyy slowly

In fact, $\operatorname{ack}^{-1}(n)$ grows more slowly than the following:

- Let $\log ^{(k)} n=\log (\log (\log \ldots(\log n)))$
k logs
- Then, let $\log ^{*} \mathrm{n}=$ minimum k such that $\log ^{(k)} \mathrm{n} \leq 1$

How fast does $\log ^{*} n$ grow?
$\log ^{*}(2)=1$
$\log ^{*}(4)=2$
$\log ^{*}(16)=3$
$\log ^{*}(65536)=4$
$\log ^{*}\left(2^{65536}\right)=5 \quad$ (a 20,000 digit number! $)$
$\log ^{*}\left(2^{2^{65536}}\right)=6$

[^0]
General Problem: Spanning a Graph

A simple problem: Given a connected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, find a minimal subset of the edges such that the graph is still connected

- A graph $\mathrm{G}_{2}=(\mathrm{V}, \mathrm{E} 2)$ such that G_{2} is connected and removing any edge from E_{2} makes G_{2} disconnected

August 13, 2012
CSE 332 Data Abstractions, Summer 2012

We Saw This Earlier

Our acyclic maze consisted of a tree that touched ever square of the grid

FINISH

Finding Unweighted Spanning Trees

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do) and keep track of edges that form a tree
2. or, iterate through edges and add to output any edge that doesn't create a cycle

Observations

1. Any solution to this problem is a tree

- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected
- We usually just call the solutions spanning trees

2. Solution not unique unless original graph was already a tree
3. Problem ill-defined if original graph not connected

- We can find a spanning tree per connected component of the graph
- This is often called a spanning forest

4. A tree with $|\mathbf{V}|$ nodes has $|\mathbf{V}|-\mathbf{1}$ edges

- This every spanning tree solution has |V|-1 edges

August 13, 2012 CSE 332 Data Abstractions, Summer 2012
32

Motivation

A spanning tree connects all the nodes with as few edges as possible

Example: A "phone tree" so everybody gets the message and no unnecessary calls get made

- Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted undirected graph and want a tree of least total cost - Minimize electrical wiring for a house or wires on a chip

- Minimize road network if you cared about asphalt cost

This is the minimum spanning tree problem

- Will do that next, after intuition from the simpler case

August 13, 2012
CSE 332 Data Abstractions, Summer 2012

Spanning Tree via DFS

spanning_tree (Graph G) \{
for each node i: i.marked = false
for some node i: $f(i)$
\}
f (Node i) \{
i.marked = true
for each j adjacent to i : if(!j.marked) \{ add(i,j) to output f(j) // DFS
\}
\}
Correctness:
DFS reaches each node. We add one edge to connect it to the already visited nodes. Order affects result, not correctness.

Time: $O(|E|)$
August 13, 2012

DFS Spanning Tree Example

Output:

August 13, 2012

DFS Spanning Tree Example

Output: $(1,2),(2,7)$

August 13, 2012

DFS Spanning Tree Example

Stack
f(1)
$f(2)$

Output: (1,2)

DFS Spanning Tree Example

August 13, 2012
Stack
f(1)
$f(2)$
f(7)
$f(5)$

家

Output: $(1,2),(2,7),(7,5)$

DFS Spanning Tree Example

DFS Spanning Tree Example

Stack
$f(1)$
f(2)
f(7)
f(5)
f(4)
f(3)
f(6)

August 13, 2012

Output: $(1,2),(2,7),(7,5),(5,4)$, $(4,3),(5,6)$

Stack

Output: $(1,2),(2,7),(7,5),(5,4)$, $(4,3),(5,6)$

August 13, 2012

Second Approach

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):

- Goal is to build an acyclic connected graph
- When we add an edge, it adds a vertex to the tree (or else it would have created a cycle)
- The graph is connected, we consider all edges

Efficiency:

- Depends on how quickly you can detect cycles
- Reconsider after the example

Example

Edges in some arbitrary order:
$,(3,4),(5,6),(5,7),(1,5),(1,6),(2,7)$, $(2,3),(4,5),(4,7)$

Output: $(1,2)$

Example

Edges in some arbitrary order:
${ }^{\prime},(5,6),(5,7),(1,5),(1,6),(2,7)$,
$(2,3),(4,5),(4,7)$

Output: $(1,2),(3,4)$

Example

Edges in some arbitrary order:

$$
(2,3)^{\prime},(4,5)^{\prime},(4,7)^{\prime(5,7),(1,5),(1,6),(2,7)}
$$

Output: $(1,2),(3,4),(5,6)$
August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Example

Edges in some arbitrary order:

$$
(2,7)^{\prime},(2,3)^{\prime},(4,5)^{\prime},(4,7)^{\prime} \quad,(1,6)
$$

Output: $(1,2),(3,4),(5,6),(5,7),(1,5)$

Example

Edges in some arbitrary order:

Output: $(1,2),(3,4),(5,6),(5,7),(1,5)$

Example

Edges in some arbitrary order:

$$
(2,7)^{\prime},(2,3)^{\prime},(4,5)^{\prime},(4,7)^{\prime}(1,5),(1,6)
$$

Output: $(1,2),(3,4),(5,6),(5,7)$
August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Example

Edges in some arbitrary order:
$(2,7)^{\prime},(2,3),(4,5)^{\prime},(4,7)^{\prime}$

Output: $(1,2),(3,4),(5,6),(5,7),(1,5)$
August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Example

Edges in some arbitrary order:

Output: $(1,2),(3,4),(5,6),(5,7),(1,5),(2,3)$

Cycle Detection

To decide if an edge could form a cycle is $O(|\mathrm{~V}|)$ because we may need to traverse all edges already in the output

- So overall algorithm would be $O(|\mathrm{~V}||\mathrm{E}|)$

But it is faster way to use the DSUF ADT

- Initially, each vertex is in its own 1-element set
- find(u): what set contains u ?
- union (u, v) : combine the sets containing u and v

Summary so Far

The spanning-tree problem

- Add nodes to partial tree approach is $O(|\mathbf{E}|)$
- Add acyclic edges approach is $O(|E| \log |V|)$

But what we really want to solve is the minimum-spanning-tree problem

- Given a weighted undirected graph, find a spanning tree of minimum weight
- The above approaches suffice with minor changes
- Both will be $O(|E| \log |V|)$

One Problem, Two Algorithms

Algorithm \#1: Prim's Algorithm

- Shortest-path is to Dijkstra's Algorithm as Minimum Spanning Tree is to Prim's Algorithm
- Both based on expanding cloud of known vertices, basically using a priority queue

Algorithm \#2: Kruskal's Algorithm

- Exactly our forest-merging approach to spanning tree but process edges in cost order

Using Disjoint-Set to Detect Cycles

Invariant:
\mathbf{u} and \mathbf{v} are connected in output-so-far if and only if \mathbf{u} and \mathbf{v} in the same set

Algorithm:

- Initially, each node is in its own set
- When processing edge (u,v):
- If find(\mathbf{u})==find($\mathbf{v})$, then do not add the edge
- Else add the edge and union(u,v)

Like vi versus emacs except people do not typically fight
over which one is better (emacs and Kruskal are best!)
PRIM AND KRUSKAL'S ALGORITHMS

Idea: Prim's Algorithm

Central Idea:
" Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices.

- Pick the edge with the smallest weight that connects "known" to "unknown."

Recall Dijkstra picked "edge with closest known distance to source."

- But that is not what we want here
- Otherwise identical
- Feel free to look back and compare

Pseudocode: Prim's Algorithm

1. For each node \mathbf{v}, set \mathbf{v}.cost $=\infty$ and v.known = false
2. Choose any node v.
a) Mark vas known
b) For each edge (\mathbf{v}, u) with weight \mathbf{w}, set \mathbf{u}.cost $=\mathrm{w}$ and u.prev $=\mathrm{v}$
3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (v, u) with weight w,
if(w < u.cost) \{
u.cost $=w$;
u.prev $=\mathrm{v}$;
\}

Example: Prim's Algorithm

vertex	known?	cost	prev
A	Y	0	-
B		2	A
C		2	A
D		1	A
E			
F			
G			

Example: Prim's Algorithm

vertex	known?	cost	prev
A	Y	0	-
B		2	A
C	Y	Z 1	A D
D	Y	1	A
E		1	D
F		62	D C
G		5	D

vertex	known?	cost	prev
A	Y	0	-
B		Z 1	AE
C	Y	Z 1	AD
D	Y	1	A
E	Y	1	D
F		62	Đ C
G		53	$\ominus \mathrm{E}$

vertex	known?	cost	prev
A	Y	0	-
B	Y	$Z 1$	A E
C	Y	Z 1	A D
D	Y	1	A
E	Y	1	D
F		62	Đ C
G		53	Đ E

Example: Prim's Algorithm

vertex	known?	cost	prev
A	Y	0	-
B	Y	Z 1	A E
C	Y	Z 1	A D
D	Y	1	A
E	Y	1	D
F	Y	62	O C
G	Y	53	D E

Analysis: Prim's Algorithm

Correctness

- Intuitively similar to Dijkstra's algorithm

Run-time

- Same as Dijkstra's algorithm
- O(|E| log |V|) using a priority queue

Example: Prim's Algorithm

vertex	known?	cost	prev
A	Y	0	-
B	Y	Z 1	A E
C	Y	Z 1	A D
D	Y	1	A
E	Y	1	D
F	Y	62	Đ C
G		53	Đ E

Example: Prim's Algorithm

Output:
(C, F)
(A, D)
(B, E)
(C, D)
(D, E)
(E, G)

August 13, 2012
CSE 332 Data Abstractions, Summer 2012

Idea: Kruskal's Algorithm

Central Idea:

- Grow a forest out of edges that do not grow a cycle, just like for the spanning tree problem.
- But now consider the edges in order by weight

Basic implementation:

- Sort edges by weight $\rightarrow \mathrm{O}(|E| \log |E|)=O(|E| \log |V|)$
- Iterate through edges using DSUF for cycle detection $\rightarrow \mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

Somewhat better implementation:

- Floyd's algorithm to build min-heap with edges $\rightarrow \mathrm{O}(|E|)$
- Iterate through edges using DSUF for cycle detection and deleteMin to get next edge $\rightarrow \mathrm{O}(|E| \log |V|)$
- Not better worst-case asymptotically, but often stop long before considering all edges
August 13, 2012

Pseudocode: Kruskal's Algorithm

1. Put edges in min-heap using edge weights
2. Create DSUF with each vertex in its own set
3. While output size $<|\mathrm{V}|-1$
a) Consider next smallest edge (u, v)
b) if find (u, v) indicates u and v are in different sets

- output (u,v)
- union(u,v)

Recall invariant:
u and v in same set if and only if connected in output-so-far

Example: Kruskal's Algorithm

Sets: $\quad(A, D)(B)(C)(E)(F)(G)$
Output: (A,D)
At each step, the union/find sets are the trees in the forest

August 13, 2012

Example: Kruskal's Algorithm

Sets: $\quad(A, C, D)(B, E)(F)(G)$
Output: $(A, D)(C, D)(B, E)$
At each step, the union/find sets are the trees in the forest

Example: Kruskal's Algorithm

Edges in sorted order:
1: $(A, D)(C, D)(B, E)(D, E)$
$(A, B)(C, F)(A, C)$
3: (E,G)
5: $(\mathrm{D}, \mathrm{G})(\mathrm{B}, \mathrm{D})$
6: (D, F)
10: (F,G)
Sets: (A) (B) (C) (D) (E) (F) (G)
Output:
At each step, the union/find sets are the trees in the forest

August 13, $2012 \quad$ CSE 332 Data Abstractions, Summer $2012 \quad 74$

Example: Kruskal's Algorithm

Edges in sorted order:
1: $(A, D)(C, D)(B, E)(D, E)$
$(A, B)(C, F)(A, C)$
3: (E,G)
5: $(\mathrm{D}, \mathrm{G})(\mathrm{B}, \mathrm{D})$
6: ($D, F)$
10: (F,G)
Sets: $\quad(A, C, D)(B)(E)(F)(G)$
Output: (A,D) (C,D)
At each step, the union/find sets are the trees in the forest

August 13, 2012 CSE 332 Data Abstractions, Summer $2012 \quad 76$

Example: Kruskal's Algorithm

Example: Kruskal's Algorithm

Edges in sorted order:
: $(A, D)(C, D)(B, E)(D, E)$
2: $(A, B)(C, F)(A, C)$
3: (E,G)
5: $(D, G)(B, D)$
6: (D,F)
10: (F, G)
Sets: $\quad(A, B, C, D, E)(F)(G)$
Output: $(A, D)(C, D)(B, E)(D, E)$
At each step, the union/find sets are the trees in the forest

August 13, 2012
CSE 332 Data Abstractions, Summer 2012

Example: Kruskal's Algorithm

Sets: $\quad(A, B, C, D, E, F)(G)$
Output: $(A, D)(C, D)(B, E)(D, E)(C, F)$
At each step, the union/find sets are the trees in the forest

August 13, 2012
CSE 332 Data Abstractions, Summer 2012
81

Analysis: Kruskal's Algorithm

Correctness: It is a spanning tree

- When we add an edge, it adds a vertex to the tree (or else it would have created a cycle)
- The graph is connected, we consider all edges

Correctness: That it is minimum weight

- Can be shown by induction
- At every step, the output is a subset of a minimum tree

Run-time

- $O(|E| \log |V|)$

Example: Kruskal's Algorithm

Edges in sorted order:
1: $(A, D)(C, D)(B, E)(D, E)$
2: $(A, B)(C, F)(A, C)$
3: (E,G)
5: $(D, G)(B, D)$
6: (D,F)
10: (F,G)
Sets: $\quad(A, B, C, D, E, F)(G)$
Output: $(A, D)(C, D)(B, E)(D, E)(C, F)$
At each step, the union/find sets are the trees in the forest

August 13, 2012 CSE 332 Data Abstractions, Summer 201280

Example: Kruskal's Algorithm

Sets: $\quad(A, B, C, D, E, F, G)$
Output: $(A, D)(C, D)(B, E)(D, E)(C, F)(E, G)$
At each step, the union/find sets are the trees in the forest

August 13, 2012
CSE 332 Data Abstractions, Summer 2012
82

So Which Is Better?

Time/space complexities essentially the same

Both are fairly simple to implement

Still, Kruskal's is slightly better

- If the graph is not connected, Kruskal's will find a forest of minimum spanning trees

That's All Folks

Disjoint Set Union-Find and minimum spanning trees are the last topics we will get to cover

Still, there are plenty more data structures, algorithms and applications out there to learn

You have the basics now

sniff
 WRAPPING UP DATA ABSTRACTIONS

Your Programming Mind has Changed

Before, you often thought first about code

- Declare a variable, a for-loop here, an ifelse statement there, etc.

Now, you will see a problem and also think of the data structure

- Lots of lookups... use a hashtable
- Is this a graph and shortest path problem?
- Etc.

Cheers, Thanks, Whee!
Take care

Fill out the evaluations... I read these!!

Good luck on the final

Remember: Optional Section on Thursday

- Get your final back
- Free doughnuts!
- And maybe another cool data structure

August 13, 2012 CSE 332 Data Abstractions, Summer 2012

Most Important Lesson

There is rarely a best programming solution

Every solution has strengths and weaknesses

The key is to be able to argue in favor of your approach over others

Just remember:
Even though QuickSort's name says it is fast, it is not always the best sort every time

[^0]: With no surprise, DSUF will be very useful here
 MINIMUM SPANNING TREES

