
CSE 332 Data Abstractions:

Disjoint Set Union-Find
and

Minimum Spanning Trees

Kate Deibel

Summer 2012

August 13,
2012

CSE 332 Data Abstractions, Summer 2012 1

Making Connections
You have a set of nodes (numbered 1-9) on a
network. You are given a sequence of
pairwise connections between them:

3-5 4-2 1-6 5-7 4-8 3-7

Q: Are nodes 2 and 4 connected? Indirectly?

Q: How about nodes 3 and 8?

Q: Are any of the paired connections
 redundant due to indirect connections?

Q: How many sub-networks do you have?

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 2

Making Connections

Start:

3-5

4-2

1-6

5-7

4-8

3-7

{1} {2} {3} {4} {5} {6} {7} {8} {9}

{1} {2} {3, 5} {4} {6} {7} {8} {9}

{1} {2, 4} {3, 5} {6} {7} {8} {9}

{1, 6} {2, 4} {3, 5} {7} {8} {9}

{1, 6} {2, 4} {3, 5, 7} {8} {9}

{1, 6} {2, 4, 8} {3, 5, 7} {9}

no change

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 3

Answering these questions is much easier if we
create disjoint sets of nodes that are connected:

Making Connections
Let's ask the questions again.

3-5 4-2 1-6 5-7 4-8 3-7

⇓

{1, 6} {2, 4, 8} {3, 5, 7} {9}

Q: Are nodes 2 and 4 connected? Indirectly?

Q: How about nodes 3 and 8?

Q: Are any of the paired connections
 redundant due to indirect connections?

Q: How many sub-networks do you have?

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 4

Disjoint Set Union-Find ADT

Separate elements into disjoint sets

 If set x ≠ y then x ⋂ y = ∅ (i.e. no shared elements)

Each set has a name (usually an element in the set)

union(x,y): take the union of the sets x and y (x ⋃ y)

 Given sets: {3,5,7} , {4,2,8}, {9}, {1,6}

 union(5,1) {3,5,7,1,6}, {4,2,8}, {9},

find(x): return the name of the set containing x.

 Given sets: {3,5,7,1,6}, {4,2,8}, {9},

 find(1) returns 5

 find(4) returns 8

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 5

Disjoint Set Union-Find Performance

Believe it or not:

 We can do Union in constant time.

 We can get Find to be amortized
constant time with worst case O(log n)
for an individual Find operation

Let's see how…

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 6

FIRST, LET'S GET LOST

Beware of Minotaurs

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 7

What Makes a Good Maze?

 We can get from any room to any other
room (connected)

 There is just one simple path between
any two rooms (no loops)

 The maze is not a simple pattern
(random)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 8

Making a Maze

A high-level algorithm for a random maze is easy:

 Start with a grid

 Pick Start and Finish

 Randomly erase edges

START

FINISH

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 9

The Middle of the Algorithm

So far, we've knocked down
several walls while others
still remain.

Consider the walls between A
and B and C and D

 Which walls can we knock
down and maintain both
our connectedness and
our no cycles properties?

How do we do this efficiently?

A

B

D

C

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 10

Maze Algorithm: Number the Cells

Number each cell and treat as disjoint sets:

 S ={ {1}, {2}, {3}, {4},… {36} }

Create a set of all edges between cells:

 W ={ (1,2), (1,7), (2,8), (2,3), … } 60 walls total.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

START

FINISH

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 11

Maze Algorithm: Building with DSUF

Algorithm sketch:

 Choose a wall at random.

 Erase wall if the neighbors are in disjoint
sets (this avoids creating cycles)

 Take union of those cell's sets

 Repeat until there is only one set

 Every cell is thus reachable from every
other cell

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 12

The Secret To Why This Works

Notice that a connected, acyclic maze is
actually a Hidden Tree

This suggests how we should implement the
Disjoint Set Union-Find ADT

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 13

START

FINISH

IMPLEMENTING DSUF
WITH UP TREES

I promise the first twenty minutes of this section will not
be the saddest trees you have ever seen…

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 14

Up Trees for Disjoin Set Union-Find

Up trees

 Notes point to parent, not children

 Thus only one pointer per node

In a DSUF

 Each disjoint set is its own up tree

 The root of the tree is the name for the disjoint set

1 2 3 4 5 6 7 Initial State

1

4

3 After Unions

2 5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 15

Find Operation

find(x): follow x to the root and return the
 root (the name of the disjoint set)

find(1) = 1

find(3) = 3

find(4) = 1

find(6) = 7

1

4

3

5

7

2

6

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 16

Find Operation

union(i,j): assuming i and j are roots, point
 root i to root j

What if i or j is not a root?

 Run a find on i and j first and use the
returned values for the joining

Why do we join roots and not just the nodes?

union(1,7)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 17

1

4

3

5

7

2

6

1

4

3

5

7

2

6

Simple Implementation

Once again, it is better to implement a tree
using an array than with node objects

 Leave up[0] empty (or # of disjoint sets)

 up[x] = i means node x's parent is node i

 up[x] = 0 means x is a root

1

4

3

2 5

6

7

0 7 0 1 7 2 0 up

1 2 3 4 5 6 7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 18

Performance

Using array-based up trees, what is the cost for

 union(i,j)?

 find(x)?

union(i,j) is O(1) if i and j are roots

 Otherwise depends on cost of find

find(x) is O(n) in worst-case

 What does the worst-case look like?

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 19

1

4

2

6

5

3

7

Performance – Doing Better

The problem is that up trees get too tall

In order to make DSUF perform as we
promised, we need to improve both our
union and find algorithms:

 Weighted Union

 Path Compression

Only with BOTH of these will we get find to
average-case O(log n) and amortized O(1)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 20

Weighted Union

Instead of arbitrarily joining two roots, always point
the smaller tree to the root of the larger tree

 Each up tree has a weight (number of nodes)

 The idea is to limit the height of each up tree

 Trees with more nodes tend to be deeper

Union by rank or height are similar ideas but more
complicated to implement

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 21

union(1,7)

1

4

3

5

7

2

6

3

1

4

5

7

2

6

2 1 4 1 6

Weighted Union Implementation

We can just use an additional array to store
weights of the roots…

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 22

1

4

3

5

7

2

6

2 1 4

0 7 0 1 7 2 0 up

1 2 3 4 5 6 7

2 1 4 weight

Weighted Union Implementation

… or we use negative numbers to represent
 roots and their weights

But generally, saving O(n) space is not critical

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 23

1

4

3

5

7

2

6

2 1 4

-2 7 -1 1 7 2 -4 up

1 2 3 4 5 6 7

Weighted Union Performance

Weighted union gives us guaranteed worst-
case O(log n) for find

 The union rule prevents linear up trees

 Convince yourself that it will produce at
worst a fairly balanced binary tree

However, we promised ourselves O(1)
amortized time for find

 Weighted union does not give us enough

 Average-case is still O(log n)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 24

Motivating Path Compression

Recall splay trees

 To speed up later finds, we moved searched for
nodes to the root

 Also improved performance for finding other nodes

 Can we do something similar here?

Yes, but we cannot move the node to the root

 Roots are the names of the disjoint set

 Plus, we want to move associated nodes up at the
same time

 Why not move all nodes touched in a find to point
directly to the root?

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 25

Path Compression

On a find operation point all the nodes on the
search path directly to the root

 Keep a stack/queue as you traverse up

 Then empty to the stack/queue to repoint
each stored node to the root

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 26

find(3)

8

7

2

6

4 3

9 5

1

8

7

2 6

4

9 5

1

3

Digression: Ackermann Function

The Ackermann function is a recursive function that
grows exceptionally fast

𝐴 𝑥, 𝑦 =

 𝑦 + 1, 𝑥 = 0

 𝐴 𝑥 − 1,1 , 𝑦 = 0

 𝐴 𝑥 − 1, 𝐴(𝑥, 𝑦 − 1) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

If ack 𝑥 = 𝐴 𝑥, 𝑥 , then the first few values are:
𝑎𝑐𝑘 0 = 1
𝑎𝑐𝑘 1 = 3
𝑎𝑐𝑘 2 = 7
𝑎𝑐𝑘 3 = 61

𝑎𝑐𝑘 4 = 22
265536

− 3 (WOW!!)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 27

Digression: Inverse Ackermann
Just as fast as the Ackermann function grows, its inverse,
𝑎𝑐𝑘−1 𝑛 , grows veeeeeeeerrrrrrrrrrrryyyyy slowly

In fact, 𝑎𝑐𝑘−1 𝑛 grows more slowly than the following:

 Let log(k) n = log (log (log … (log n)))

 Then, let log* n = minimum k such that log(k) n 1

How fast does log* n grow?

log* (2) = 1

log* (4) = 2

log* (16) = 3

log* (65536) = 4

log* (265536) = 5 (a 20,000 digit number!)

log* (2265536
) = 6

k logs

Optimized Disjoint Set Union-Find

Tarjan (1984) proved that m weighted union and find
with path compression operations on a set of n
elements have worst case complexity O(m·ack-1(n))

 For all practical purposes this is amortized
constant time as ack-1(n) < 5 for reasonable n

More generally, the total cost of m finds (with at
most n-1 unions—why?), the total work is: O(m+n)

 Again, this is O(1) amortized with O(1) worst-case
for union and O(log n) worst-case for find

 One can also show that any implementation of find
and union cannot both be worst-case O(1)

MINIMUM SPANNING
TREES

With no surprise, DSUF will be very useful here

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 30

General Problem: Spanning a Graph

A simple problem: Given a connected graph G=(V,E),
find a minimal subset of the edges such that the
graph is still connected

 A graph G2=(V,E2) such that G2 is connected and
removing any edge from E2 makes G2 disconnected

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 31

Observations

1. Any solution to this problem is a tree

 Recall a tree does not need a root; just means acyclic

 For any cycle, could remove an edge and still be connected

 We usually just call the solutions spanning trees

2. Solution not unique unless original graph was
already a tree

3. Problem ill-defined if original graph not connected

 We can find a spanning tree per connected component of
the graph

 This is often called a spanning forest

4. A tree with |V| nodes has |V|-1 edges

 This every spanning tree solution has |V|-1 edges

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 32

We Saw This Earlier

Our acyclic maze consisted of a tree that
touched ever square of the grid

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 33

START

FINISH

Motivation

A spanning tree connects all the nodes with as few
edges as possible

Example: A “phone tree” so everybody gets the
message and no unnecessary calls get made

 Bad example since would prefer a balanced tree

In most compelling uses, we have a weighted
undirected graph and want a tree of least total cost

 Minimize electrical wiring for a house or wires on a chip

 Minimize road network if you cared about asphalt cost

This is the minimum spanning tree problem

 Will do that next, after intuition from the simpler case

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 34

Finding Unweighted Spanning Trees

Different algorithmic approaches to the
spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but
any traversal will do) and keep track of edges that
form a tree

2. or, iterate through edges and add to output any
edge that doesn’t create a cycle

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 35

Spanning Tree via DFS

Correctness:
DFS reaches each node. We add one edge to connect it to the
already visited nodes. Order affects result, not correctness.

Time: O(|E|)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 36

spanning_tree(Graph G) {

 for each node i: i.marked = false

 for some node i: f(i)

}

f(Node i) {

 i.marked = true

 for each j adjacent to i:

 if(!j.marked) {

 add(i,j) to output

 f(j) // DFS

 }

}

DFS Spanning Tree Example

Stack

f(1) 1

2

3

4

5

6

7

Output:

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 37

DFS Spanning Tree Example

Stack

f(1)

f(2)

1

2

3

4

5

6

7

Output: (1,2)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 38

DFS Spanning Tree Example

Stack

f(1)

f(2)

f(7)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 39

Output: (1,2), (2,7)

DFS Spanning Tree Example

Stack

f(1)

f(2)

f(7)

f(5)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 40

Output: (1,2), (2,7), (7,5)

DFS Spanning Tree Example

Stack

f(1)

f(2)

f(7)

f(5)

f(4)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 41

Output: (1,2), (2,7), (7,5), (5,4)

DFS Spanning Tree Example

Stack

f(1)

f(2)

f(7)

f(5)

f(4)

f(3)

1

2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4),
 (4,3)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 42

DFS Spanning Tree Example

Stack

f(1)

f(2)

f(7)

f(5)

f(4)

f(3)

f(6)

1

2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4),
 (4,3), (5,6)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 43

DFS Spanning Tree Example

Stack

f(1)

f(2)

f(7)

f(5)

f(4) f(6)

f(3)

1

2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4),
 (4,3), (5,6)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 44

Second Approach

Iterate through edges; output any edge that does
not create a cycle

Correctness (hand-wavy):

 Goal is to build an acyclic connected graph

 When we add an edge, it adds a vertex to the tree
(or else it would have created a cycle)

 The graph is connected, we consider all edges

Efficiency:

 Depends on how quickly you can detect cycles

 Reconsider after the example

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 45

Example

Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7),
(2,3), (4,5), (4,7)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 46

Output:

Example

Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7),
(2,3), (4,5), (4,7)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 47

Output: (1,2)

Example

Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7),
(2,3), (4,5), (4,7)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 48

Output: (1,2), (3,4)

Example

Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7),
(2,3), (4,5), (4,7)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 49

Output: (1,2), (3,4), (5,6)

Example

Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6),
(2,7), (2,3), (4,5), (4,7)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 50

Output: (1,2), (3,4), (5,6), (5,7)

Example

Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6),
(2,7), (2,3), (4,5), (4,7)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 51

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6),
(2,7), (2,3), (4,5), (4,7)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 52

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6),
(2,7), (2,3), (4,5), (4,7)

1

2

3

4

5

6

7

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 53

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

Example

Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6),
(2,7), (2,3), (4,5), (4,7)

1

2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we
have |V|-1 edges

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 54

Cycle Detection

To decide if an edge could form a cycle is
O(|V|) because we may need to traverse all
edges already in the output

 So overall algorithm would be O(|V||E|)

But it is faster way to use the DSUF ADT

 Initially, each vertex is in its own 1-element set

 find(u): what set contains u?

 union(u,v): combine the sets containing u and v

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 55

Using Disjoint-Set to Detect Cycles

Invariant:
u and v are connected in output-so-far if and only
if u and v in the same set

Algorithm:

 Initially, each node is in its own set

 When processing edge (u,v):

 If find(u)==find(v), then do not add the edge

 Else add the edge and union(u,v)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 56

Summary so Far

The spanning-tree problem

 Add nodes to partial tree approach is O(|E|)

 Add acyclic edges approach is O(|E| log |V|)

But what we really want to solve is the minimum-
spanning-tree problem

 Given a weighted undirected graph, find a
spanning tree of minimum weight

 The above approaches suffice with minor changes

 Both will be O(|E| log |V|)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 57

PRIM AND KRUSKAL'S
ALGORITHMS

Like vi versus emacs except people do not typically fight
over which one is better (emacs and Kruskal are best!)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 58

One Problem, Two Algorithms

Algorithm #1: Prim's Algorithm

 Shortest-path is to Dijkstra’s Algorithm as
Minimum Spanning Tree is to Prim’s Algorithm

 Both based on expanding cloud of known vertices,
basically using a priority queue

Algorithm #2: Kruskal's Algorithm

 Exactly our forest-merging approach to spanning
tree but process edges in cost order

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 59

Idea: Prim’s Algorithm

Central Idea:

 Grow a tree by adding an edge from the “known” vertices to
the “unknown” vertices.

 Pick the edge with the smallest weight that connects “known”
to “unknown.”

Recall Dijkstra picked “edge with closest known
distance to source.”

 But that is not what we want here

 Otherwise identical

 Feel free to look back and compare

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 60

Pseudocode: Prim's Algorithm
1. For each node v, set v.cost = and

v.known = false

2. Choose any node v.
a) Mark v as known
b) For each edge (v,u) with weight w, set u.cost = w

and u.prev = v

3. While there are unknown nodes in the graph
a) Select the unknown node v with lowest cost
b) Mark v as known and add (v, v.prev) to output
c) For each edge (v,u) with weight w,
 if(w < u.cost) {
 u.cost = w;
 u.prev = v;

 }

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 61

Example: Prim's Algorithm

A B

C
D

F

E

G

2

1
2 5

1
1

1

2

6
5 3

10

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 62

vertex known? cost prev

A

B

C

D

E

F

G

Example: Prim's Algorithm

A B

C
D

F

E

G

2

1
2 5

1
1

1

2

6
5 3

10

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 63

vertex known? cost prev

A Y 0 -

B 2 A

C 2 A

D 1 A

E

F

G

Example: Prim's Algorithm

2

1
2 5

1
1

1

2

6
5 3

10

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 64

vertex known? cost prev

A Y 0 -

B 2 A

C 2 1 A D

D Y 1 A

E 1 D

F 6 D

G 5 D

A B

C
D

F

E

G

Example: Prim's Algorithm

2

1
2 5

1
1

1

2

6
5 3

10

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 65

vertex known? cost prev

A Y 0 -

B 2 A

C Y 2 1 A D

D Y 1 A

E 1 D

F 6 2 D C

G 5 D

A B

C
D

F

E

G

Example: Prim's Algorithm

2

1
2 5

1
1

1

2

6
5 3

10

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 66

vertex known? cost prev

A Y 0 -

B 2 1 A E

C Y 2 1 A D

D Y 1 A

E Y 1 D

F 6 2 D C

G 5 3 D E

A B

C
D

F

E

G

Example: Prim's Algorithm

2

1
2 5

1
1

1

2

6
5 3

10

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 67

vertex known? cost prev

A Y 0 -

B Y 2 1 A E

C Y 2 1 A D

D Y 1 A

E Y 1 D

F 6 2 D C

G 5 3 D E

A B

C
D

F

E

G

Example: Prim's Algorithm

2

1
2 5

1
1

1

2

6
5 3

10

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 68

vertex known? cost prev

A Y 0 -

B Y 2 1 A E

C Y 2 1 A D

D Y 1 A

E Y 1 D

F Y 6 2 D C

G 5 3 D E

A B

C
D

F

E

G

Example: Prim's Algorithm

2

1
2 5

1
1

1

2

6
5 3

10

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 69

vertex known? cost prev

A Y 0 -

B Y 2 1 A E

C Y 2 1 A D

D Y 1 A

E Y 1 D

F Y 6 2 D C

G Y 5 3 D E

A B

C
D

F

E

G

Example: Prim's Algorithm

2

1
2 5

1
1

1

2

6
5 3

10

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 70

vertex known? cost prev

A Y 0 -

B Y 2 1 A E

C Y 2 1 A D

D Y 1 A

E Y 1 D

F Y 6 2 D C

G Y 5 3 D E

A B

C
D

F

E

G

Output:
(A, D) (C, F)
(B, E) (D, E)
(C, D) (E, G)

Total Cost: 9

Analysis: Prim's Algorithm

Correctness

 Intuitively similar to Dijkstra's algorithm

Run-time

 Same as Dijkstra's algorithm

 O(|E| log |V|) using a priority queue

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 71

Idea: Kruskal’s Algorithm

Central Idea:

 Grow a forest out of edges that do not grow a cycle, just like
for the spanning tree problem.

 But now consider the edges in order by weight

Basic implementation:
 Sort edges by weight O(|E| log |E|) = O(|E| log |V|)

 Iterate through edges using DSUF for cycle detection
 O(|E| log |V|)

Somewhat better implementation:

 Floyd’s algorithm to build min-heap with edges O(|E|)

 Iterate through edges using DSUF for cycle detection and
deleteMin to get next edge O(|E| log |V|)

 Not better worst-case asymptotically, but often stop long
before considering all edges

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 72

Pseudocode: Kruskal's Algorithm

1. Put edges in min-heap using edge weights

2. Create DSUF with each vertex in its own set

3. While output size < |V|-1

a) Consider next smallest edge (u,v)

b) if find(u,v) indicates u and v are in different sets

 output (u,v)

 union(u,v)

Recall invariant:

 u and v in same set if and only if connected in
output-so-far

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 73

Example: Kruskal's Algorithm

Edges in sorted order:

1: (A,D) (C,D) (B,E) (D,E)

2: (A,B) (C,F) (A,C)

3: (E,G)

5: (D,G) (B,D)

6: (D,F)

10: (F,G)

At each step, the union/find sets are the trees in the forest

Sets: (A) (B) (C) (D) (E) (F) (G)

Output:

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 74

A B

C
D

F

E

G

2

1
2 5

1
1

1

2

6
5 3

10

Example: Kruskal's Algorithm

Edges in sorted order:

1: (A,D) (C,D) (B,E) (D,E)

2: (A,B) (C,F) (A,C)

3: (E,G)

5: (D,G) (B,D)

6: (D,F)

10: (F,G)

At each step, the union/find sets are the trees in the forest

Sets: (A,D) (B) (C) (E) (F) (G)

Output: (A,D)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 75

A B

C
D

F

E

G

2

1
2 5

1
1

1

2

6
5 3

10

Example: Kruskal's Algorithm

Edges in sorted order:

1: (A,D) (C,D) (B,E) (D,E)

2: (A,B) (C,F) (A,C)

3: (E,G)

5: (D,G) (B,D)

6: (D,F)

10: (F,G)

At each step, the union/find sets are the trees in the forest

Sets: (A,C,D) (B) (E) (F) (G)

Output: (A,D) (C,D)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 76

A B

C
D

F

E

G

2

1
2 5

1
1

1

2

6
5 3

10

Example: Kruskal's Algorithm

Edges in sorted order:

1: (A,D) (C,D) (B,E) (D,E)

2: (A,B) (C,F) (A,C)

3: (E,G)

5: (D,G) (B,D)

6: (D,F)

10: (F,G)

At each step, the union/find sets are the trees in the forest

Sets: (A,C,D) (B,E) (F) (G)

Output: (A,D) (C,D) (B,E)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 77

A B

C
D

F

E

G

2

1
2 5

1
1

1

2

6
5 3

10

Example: Kruskal's Algorithm

Edges in sorted order:

1: (A,D) (C,D) (B,E) (D,E)

2: (A,B) (C,F) (A,C)

3: (E,G)

5: (D,G) (B,D)

6: (D,F)

10: (F,G)

At each step, the union/find sets are the trees in the forest

Sets: (A,B,C,D,E) (F) (G)

Output: (A,D) (C,D) (B,E) (D,E)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 78

A B

C
D

F

E

G

2

1
2 5

1
1

1

2

6
5 3

10

Example: Kruskal's Algorithm

Edges in sorted order:

1: (A,D) (C,D) (B,E) (D,E)

2: (A,B) (C,F) (A,C)

3: (E,G)

5: (D,G) (B,D)

6: (D,F)

10: (F,G)

At each step, the union/find sets are the trees in the forest

Sets: (A,B,C,D,E) (F) (G)

Output: (A,D) (C,D) (B,E) (D,E)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 79

A B

C
D

F

E

G

1
2 5

1
1

1

2

6
5 3

10

Example: Kruskal's Algorithm

Edges in sorted order:

1: (A,D) (C,D) (B,E) (D,E)

2: (A,B) (C,F) (A,C)

3: (E,G)

5: (D,G) (B,D)

6: (D,F)

10: (F,G)

At each step, the union/find sets are the trees in the forest

Sets: (A,B,C,D,E,F) (G)

Output: (A,D) (C,D) (B,E) (D,E) (C,F)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 80

A B

C
D

F

E

G

1
2 5

1
1

1

2

6
5 3

10

Example: Kruskal's Algorithm

Edges in sorted order:

1: (A,D) (C,D) (B,E) (D,E)

2: (A,B) (C,F) (A,C)

3: (E,G)

5: (D,G) (B,D)

6: (D,F)

10: (F,G)

At each step, the union/find sets are the trees in the forest

Sets: (A,B,C,D,E,F) (G)

Output: (A,D) (C,D) (B,E) (D,E) (C,F)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 81

A B

C
D

F

E

G

1
5

1
1

1

2

6
5 3

10

Example: Kruskal's Algorithm

Edges in sorted order:

1: (A,D) (C,D) (B,E) (D,E)

2: (A,B) (C,F) (A,C)

3: (E,G)

5: (D,G) (B,D)

6: (D,F)

10: (F,G)

At each step, the union/find sets are the trees in the forest

Sets: (A,B,C,D,E,F,G)

Output: (A,D) (C,D) (B,E) (D,E) (C,F) (E,G)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 82

A B

C
D

F

E

G

1
5

1
1

1

2

6
5 3

10

Analysis: Kruskal's Algorithm

Correctness: It is a spanning tree

 When we add an edge, it adds a vertex to the
tree (or else it would have created a cycle)

 The graph is connected, we consider all edges

Correctness: That it is minimum weight

 Can be shown by induction

 At every step, the output is a subset of a
minimum tree

Run-time

 O(|E| log |V|)

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 83

So Which Is Better?

Time/space complexities essentially the same

Both are fairly simple to implement

Still, Kruskal's is slightly better

 If the graph is not connected, Kruskal's will
find a forest of minimum spanning trees

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 84

WRAPPING UP DATA
ABSTRACTIONS

sniff

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 85

That's All Folks

Disjoint Set Union-Find and minimum spanning
trees are the last topics we will get to cover

Still, there are plenty more data structures,
algorithms and applications out there to learn

You have the basics now

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 86

Your Programming Mind has Changed

Before, you often thought first about code

 Declare a variable, a for-loop here, an if-
else statement there, etc.

Now, you will see a problem and also think of
the data structure

 Lots of lookups… use a hashtable

 Is this a graph and shortest path problem?

 Etc.

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 87

Most Important Lesson

There is rarely a best programming solution

Every solution has strengths and weaknesses

The key is to be able to argue in favor of your
approach over others

Just remember:
Even though QuickSort's name says it is fast,
it is not always the best sort every time

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 88

Cheers, Thanks, Whee!

Take care

Fill out the evaluations… I read these!!

Good luck on the final

Remember: Optional Section on Thursday

 Get your final back

 Free doughnuts!

 And maybe another cool data structure

August 13, 2012 CSE 332 Data Abstractions, Summer 2012 89

