
CSE332: Data Abstractions

Lecture 4: Priority Queues; Heaps

James Fogarty

Winter 2012

Administrative

• Eclipse Resources

• HW 1 Due Friday

– Discussion board post regarding HW 1 Problem 2

• Project 1A Milestone and Grading

– Inquiry about due date timing

– Use of private nested classes

– Private helper for array resize

• Testing Script Posted in Forum

– By Atanas w/ correction by Jackson

– If you use this, be sure you understand and acknowledge it

Winter 2012 CSE332: Data Abstractions 2

Administrative

• Office Hours

– Will keep calendar updated

• Readings

– Will keep calendar updated

– Weiss Chapter 6 to 6.5

Winter 2012 CSE332: Data Abstractions 3

New ADT: Priority Queue

• A priority queue holds compare-able data

• Unlike LIFO stacks and FIFO queues, needs to compare items

– Given x and y: is x less than, equal to, or greater than y

– Meaning of the ordering can depend on your data

– Many data structures will require this: dictionaries, sorting

• Integers are comparable, so will use them in examples

• The priority queue ADT is much more general

– Typically two fields, the priority and the data

Winter 2012 CSE332: Data Abstractions 4

New ADT: Priority Queue

• Each item has a “priority”

– The next or best item is the one with the lowest priority

– So “priority 1” should come before “priority 4”

– Simply by convention, could also do maximum priority

• Operations:

– insert

– deleteMin

• deleteMin returns and deletes item with lowest priority

– Can resolve ties arbitrarily

insert deleteMin

 6 2

 15 23

 12 18

45 3 7

Winter 2012 CSE332: Data Abstractions 5

Priority Queue

 insert a with priority 5

 insert b with priority 3

 insert c with priority 4

 w = deleteMin

 x = deleteMin

 insert d with priority 2

 insert e with priority 6

 y = deleteMin

 z = deleteMin

 after execution:

 w = b

 x = c

 y = d

 z = a

Winter 2012 CSE332: Data Abstractions 6

Applications

• Priority queue is a major and common ADT

– Sometimes blatant, sometimes less obvious

• Forward network packets in order of urgency

• Execute work tasks in order of priority

– “critical” before “interactive” before “compute-intensive” tasks

– allocating idle tasks in cloud hosting environments

• Sort (first insert all items, then deleteMin all items)

– Similar to Project 1’s use of a stack to implement reverse

Winter 2012 CSE332: Data Abstractions 7

Advanced Applications

• “Greedy” algorithms

– Efficiently track what is “best” to try next

• Discrete event simulation (e.g., virtual worlds, system simulation)

– Every event e happens at some time t and generates

new events e1, …, en at times t+t1, …, t+tn

– Naïve approach:

• Advance “clock” by 1 unit, exhaustively checking for events

– Better:

• Pending events in a priority queue (priority = event time)

• Repeatedly: deleteMin and then insert new events

• Effectively “set clock ahead to next event”

Winter 2012 CSE332: Data Abstractions 8

Finding a Good Data Structure

• We will examine an efficient, non-obvious data structure

– But let’s first analyze some “obvious” ideas for n data items

– All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time

unsorted array

unsorted linked list

sorted circular array

sorted linked list

binary search tree

Winter 2012 CSE332: Data Abstractions 9

add at end O(1) search O(n)

add at front O(1) search O(n)

search / shift O(n) move front O(1)

put in right place O(n) remove at front O(1)

put in right place O(n) leftmost O(n)

Our Data Structure: Heap

• We are about to see a data structure called a “heap”

– Worst-case O(log n) insert and O(log n) deleteMin

– Average-case O(1) insert (if items arrive in random order)

– Very good constant factors

• Possible because we only pay for the functionality we need

– Need something better than scanning unsorted items

– But do not need to maintain a full sort

• The heap is a tree, so we need to review some terminology

Winter 2012 CSE332: Data Abstractions 10

Tree Terminology

A

E

B

D F

C

G

I H

L J M K N

root(T):

leaves(T):

children(B):

parent(H):

siblings(E):

ancestors(F):

descendents(G):

subtree(C):

Tree T

Winter 2012 CSE332: Data Abstractions 11

Tree Terminology

A

E

B

D F

C

G

I H

L J M K N

depth(B):

height(G):

height(T):

degree(B):

branching factor(T):

Tree T

Winter 2012 CSE332: Data Abstractions 12

Types of Trees

Certain terms define trees with specific structures

• Binary tree: Every node has at most 2 children

• n-ary tree: Every node as at most n children

• Perfect tree: Every row is completely full

• Complete tree: All rows except the bottom are completely full,

 and it is filled from left to right

What is the height of a perfect tree with n nodes? A complete tree?

Winter 2012 CSE332: Data Abstractions 13

Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap

– Structure Property: A complete tree

– Heap Property: The priority of every non-root node is

 greater than the priority of its parent

How is this different from a binary search tree?

Winter 2012 CSE332: Data Abstractions 14

Properties of a Binary Min-Heap

Requires both structure property and the heap property

15 30

80 20

10

99 60 40

80 20

10

50 700

85

not a heap a heap

Where is the minimum priority item?

What is the height of a heap with n items?

Winter 2012 CSE332: Data Abstractions 15

Basics of Heap Operations

findMin:

• return root.data

deleteMin:

• Move last node up to root

• Violates heap property,

“Percolate Down” to restore

insert:

• Add node after last position

• Violate heap property,

“Percolate Up” to restore

Overall, the strategy is:

• Preserve structure property

• Break and restore heap property

99 60 40

80 20

10

50 700

85

Winter 2012 CSE332: Data Abstractions 16

DeleteMin Implementation

3 4

9 8 5 7

10 6 9 11

1. Delete value at root node

 (and store it for later return)

Winter 2012 CSE332: Data Abstractions 17

Restoring the Structure Property

2. We now have a “hole” at the root

3. We must “fill” the hole with another value,

must have a tree with one less node, and

it must still be a complete tree

4. The “last” node is the is obvious choice

3 4

9 8 5 7

10 6 9 11

3 4

9 8 5 7

10 6 9 11

Winter 2012 CSE332: Data Abstractions 18

Restoring the Heap Property

5. Not a heap, it violates the heap property

6. We percolate down to fix the heap

While greater than either child

 Swap with smaller child

3 4

9 8 5 7

10

6 9 11

Winter 2012 CSE332: Data Abstractions 19

Percolate Down

While greater than either child

 Swap with smaller child

What is the runtime? Why does this work?

O(log n) Both children are heaps

?

10 4

9 8 5 7

6 9 11

3
?

3 4

9 8 5 7

10

6 9 11

10

8 4

9 5 7

6 9 11

3

?

Winter 2012 CSE332: Data Abstractions 20

Insert Implementation

• Add a value to the tree

• Afterwards, structure and heap

properties must still be correct

8 4

9 10 5 7

6 9 11

3

2

Winter 2012 CSE332: Data Abstractions 21

Maintaining the Structure Property

1. There is only one valid shape for our

tree after addition of one more node

2. Put our new data there

8 4

9 10 5 7

6 9 11

1

2

Winter 2012 CSE332: Data Abstractions 22

Restoring the Heap Property

3. Then percolate up to fix heap property

While less than parent

 Swap with parent

2

8 4

9 10 5 7

6 9 11

1

Winter 2012 CSE332: Data Abstractions 23

2

Percolate Up

8 4

9 10 5 7

6 9 11

1

?

2

5

8 4

9 10 7

6 9 11

1

? 2

5

8

9 10 4 7

6 9 11

1 ?

While less than parent

 Swap with parent

What is the runtime? Why does this work?

O(log n) Both children are heaps

Winter 2012 CSE332: Data Abstractions 24

A Clever and Important Trick

• We have seen worst-case O(log n) insert and deleteMin

– But we promised average-case O(1) insert

• Insert requires access to the “next to use” position in the tree

– Walking the tree requires O(log n) steps

• Remember to only pay for the functionality we need

– We have said the tree is complete, but have not said why

• All complete trees of size n contain the same edges

– So why are we even representing the edges?

Winter 2012 CSE332: Data Abstractions 25

Array Representation of a Binary Heap

G E D

C B

A

J K H I

F

L

From node i:

left child: i*2

right child: i*2+1

parent: i/2

wasting index 0 is

convenient for the math

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Array implementation:

Winter 2012 CSE332: Data Abstractions 26

Tradeoffs of the Array Implementation

Advantages:

• Non-data space: only index 0 and any unused space on right

– Contrast to link representation using one edge per node

(except root), a total of n-1 wasted space (like linked lists)

– Array would waste more space if tree were not complete

• Multiplying and dividing by 2 is extremely fast

• The major one: Last used position is at index size, O(1) access

Disadvantages:

• Same might-be-empty or might-get-full problems we saw with

stacks and queues (resize by doubling as necessary)

Advantages outweigh disadvantages: “this is how people do it”

Winter 2012 CSE332: Data Abstractions 27

