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Administrative 

• Eclipse Resources 

• HW 1 Due Friday 

– Discussion board post regarding HW 1 Problem 2 

• Project 1A Milestone and Grading 

– Inquiry about due date timing 

– Use of private nested classes 

– Private helper for array resize 

• Testing Script Posted in Forum 

– By Atanas w/ correction by Jackson 

– If you use this, be sure you understand and acknowledge it 
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Administrative 

• Office Hours 

– Will keep calendar updated 

 

• Readings 

– Will keep calendar updated 

– Weiss Chapter 6 to 6.5 
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New ADT: Priority Queue 

• A priority queue holds compare-able data 

 

• Unlike LIFO stacks and FIFO queues, needs to compare items 

– Given x and y: is x less than, equal to, or greater than y 

– Meaning of the ordering can depend on your data 

– Many data structures will require this: dictionaries, sorting 

 

• Integers are comparable, so will use them in examples 

 

• The priority queue ADT is much more general 

– Typically two fields, the priority and the data 
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New ADT: Priority Queue 

• Each item has a “priority” 

– The next or best item is the one with the lowest priority 

– So “priority 1” should come before “priority 4” 

– Simply by convention, could also do maximum priority 
 

 

 

• Operations:  

– insert 

– deleteMin 

 

 

• deleteMin  returns and deletes item with lowest priority 

– Can resolve ties arbitrarily 

insert deleteMin 

        6        2 

  15           23 

          12         18 

45       3               7 
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Priority Queue 

 insert a with priority 5 

 insert b with priority 3 

 insert c with priority 4 

 w = deleteMin 

 x = deleteMin 

 insert d with priority 2 

 insert e with priority 6 

 y = deleteMin 

 z = deleteMin  

 

 after execution: 

 

 w = b  

 x = c  

 y = d  

 z = a 
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Applications 

• Priority queue is a major and common ADT 

– Sometimes blatant, sometimes less obvious 

 

• Forward network packets in order of urgency 

 

• Execute work tasks in order of priority  

– “critical” before “interactive” before “compute-intensive” tasks 

– allocating idle tasks in cloud hosting environments 

 

• Sort (first insert all items, then deleteMin all items) 

– Similar to Project 1’s use of a stack to implement reverse 
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Advanced Applications 

• “Greedy” algorithms 

– Efficiently track what is “best” to try next 
 

• Discrete event simulation (e.g., virtual worlds, system simulation) 

– Every event e happens at some time t and generates  

new events e1, …, en at times t+t1, …, t+tn 

– Naïve approach:  

• Advance “clock” by 1 unit, exhaustively checking for events 

– Better: 

• Pending events in a priority queue (priority = event time) 

• Repeatedly: deleteMin and then insert new events 

• Effectively “set clock ahead to next event” 
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Finding a Good Data Structure 

• We will examine an efficient, non-obvious data structure 

– But let’s first analyze some “obvious” ideas for n data items 

– All times worst-case; assume arrays “have room” 

 

data         insert algorithm / time      deleteMin algorithm / time 

unsorted array  

unsorted linked list 

sorted circular array 

sorted linked list  

binary search tree 
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add at end          O(1)     search                 O(n) 

add at front         O(1)     search                 O(n) 

search / shift       O(n)     move front          O(1) 

put in right place O(n) remove at front   O(1)  

put in right place O(n) leftmost               O(n) 



Our Data Structure: Heap 

• We are about to see a data structure called a “heap” 

– Worst-case O(log n) insert and O(log n) deleteMin 

– Average-case O(1) insert (if items arrive in random order) 

– Very good constant factors 

 

• Possible because we only pay for the functionality we need 

– Need something better than scanning unsorted items 

– But do not need to maintain a full sort 

 

• The heap is a tree, so we need to review some terminology 
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Tree Terminology 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

root(T): 

leaves(T): 

children(B): 

parent(H): 

siblings(E): 

ancestors(F): 

descendents(G): 

subtree(C): 

Tree T 
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Tree Terminology 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

depth(B): 

 

height(G): 

 

height(T): 

 

degree(B): 

 

branching factor(T): 

 

 

Tree T 
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Types of Trees 

Certain terms define trees with specific structures 

 

• Binary tree:   Every node has at most 2 children 

• n-ary tree:   Every node as at most n children 

• Perfect tree:   Every row is completely full 

• Complete tree:   All rows except the bottom are completely full, 

 and it is filled from left to right 

What is the height of a perfect tree with n nodes?  A complete tree? 
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Properties of a Binary Min-Heap 

More commonly known as a binary heap or simply a heap 

 

– Structure Property:  A complete tree 

 

– Heap Property: The priority of every non-root node is  

 greater than the priority of its parent 

How is this different from a binary search tree? 
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Properties of a Binary Min-Heap 

Requires both structure property and the heap property 

15 30 

80 20 

10 

99 60 40 

80 20 

10 

50 700 

85 

not a heap a heap 

Where is the minimum priority item? 

What is the height of a heap with n items? 
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Basics of Heap Operations 

findMin: 

• return root.data 

 

deleteMin:  

• Move last node up to root 

• Violates heap property, 

“Percolate Down” to restore 

 

insert: 

• Add node after last position 

• Violate heap property, 

“Percolate Up” to restore 

 

 

 

 

 

 

 

 

Overall, the strategy is: 

• Preserve structure property 

• Break and restore heap property 

99 60 40 

80 20 

10 

50 700 

85 
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DeleteMin Implementation 

3 4 

9 8 5 7 

10 6 9 11 

1.  Delete value at root node 

 (and store it for later return) 
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Restoring the Structure Property 

2. We now have a “hole” at the root 

 

3. We must “fill” the hole with another value, 

must have a tree with one less node, and 

it must still be a complete tree 

 

4. The “last” node is the is obvious choice 

3 4 

9 8 5 7 

10 6 9 11 

3 4 

9 8 5 7 

10 6 9 11 
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Restoring the Heap Property 

5. Not a heap, it violates the heap property 

 

 

 

 

 

 

 

 

6. We percolate down to fix the heap 

 

While greater than either child 

 Swap with smaller child 

 

3 4 

9 8 5 7 

10 

6 9 11 
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Percolate Down 

While greater than either child 

 Swap with smaller child 

 
What is the runtime?  Why does this work? 

O(log n)   Both children are heaps 

? 

10 4 

9 8 5 7 

6 9 11 

3 
? 

3 4 

9 8 5 7 

10 

6 9 11 

10 

8 4 

9 5 7 

6 9 11 

3 

? 
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Insert Implementation 

• Add a value to the tree 

 

• Afterwards, structure and heap 

properties must still be correct 

8 4 

9 10 5 7 

6 9 11 

3 

2 
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Maintaining the Structure Property 

1. There is only one valid shape for our 

tree after addition of one more node 

 

2. Put our new data there  

 

8 4 

9 10 5 7 

6 9 11 

1 

2 

Winter 2012 CSE332: Data Abstractions 22 



Restoring the Heap Property 

 

3. Then percolate up to fix heap property 

 

While less than parent 

 Swap with parent 

 

 

2 

8 4 

9 10 5 7 

6 9 11 

1 
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2 

Percolate Up 

8 4 

9 10 5 7 

6 9 11 

1 

? 

2 

5 

8 4 

9 10 7 

6 9 11 

1 

? 2 

5 

8 

9 10 4 7 

6 9 11 

1 ? 

While less than parent 

 Swap with parent 

 
What is the runtime?  Why does this work? 

O(log n)   Both children are heaps 
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A Clever and Important Trick 

• We have seen worst-case O(log n) insert and deleteMin 

– But we promised average-case O(1) insert 

 

• Insert requires access to the “next to use” position in the tree 

– Walking the tree requires O(log n) steps 

 

• Remember to only pay for the functionality we need 

– We have said the tree is complete, but have not said why 

 

• All complete trees of size n contain the same edges 

– So why are we even representing the edges? 
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Array Representation of a Binary Heap 

G E D 

C B 

A 

J K H I 

F 

L 

From node i: 

 
left child: i*2 

right child: i*2+1 

parent: i/2 

 

wasting index 0 is 

convenient for the math 

7 

1 

2 3 

4 5 6 

9 8 10 11 12 

A B C D E F G H I J K L 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Array implementation: 
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Tradeoffs of the Array Implementation 

Advantages: 

• Non-data space: only index 0 and any unused space on right 

– Contrast to link representation using one edge per node 

(except root), a total of n-1 wasted space (like linked lists) 

– Array would waste more space if tree were not complete 

• Multiplying and dividing by 2 is extremely fast 

• The major one: Last used position is at index size, O(1) access 
 

Disadvantages: 

• Same might-be-empty or might-get-full problems we saw with 

stacks and queues (resize by doubling as necessary) 
 

Advantages outweigh disadvantages: “this is how people do it” 
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