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Administrative

Eclipse Resources
HW 1 Due Friday
— Discussion board post regarding HW 1 Problem 2
Project 1A Milestone and Grading
— Inquiry about due date timing
— Use of private nested classes
— Private helper for array resize
Testing Script Posted in Forum
— By Atanas w/ correction by Jackson
— If you use this, be sure you understand and acknowledge it
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Administrative

« Office Hours
— Will keep calendar updated

 Readings

— Will keep calendar updated
— Weiss Chapter 6 to 6.5
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New ADT: Priority Queue

A priority queue holds compare-able data

Unlike LIFO stacks and FIFO queues, needs to compare items
— Given x and y: is x less than, equal to, or greater than y
— Meaning of the ordering can depend on your data
— Many data structures will require this: dictionaries, sorting

Integers are comparable, so will use them in examples

The priority queue ADT is much more general
— Typically two fields, the priority and the data
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New ADT: Priority Queue

« Each item has a “priority”
— The next or best item is the one with the lowest priority
— So “priority 1” should come before “priority 4”
— Simply by convention, could also do maximum priority

* Operations:

— insert :
Insert

— deleteMin _—

« deleteMin returns and deletes item with lowest priority
— Can resolve ties arbitrarily
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Priority Queue

insert a with priority 5 after execution:
insert b with priority 3
insert c with priority 4
W = deleteMin
X = deleteMin
insert d with priority 2
insert e with priority 6
Yy = deleteMin
Z = deleteMin
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Applications

Priority queue is a major and common ADT
— Sometimes blatant, sometimes less obvious

Forward network packets in order of urgency

Execute work tasks in order of priority
— “critical” before “interactive” before “compute-intensive” tasks
— allocating idle tasks in cloud hosting environments

Sort (first insert all items, then deleteMin all items)
— Similar to Project 1's use of a stack to implement reverse
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Advanced Applications

« “Greedy” algorithms
— Efficiently track what is “best” to try next

« Discrete event simulation (e.g., virtual worlds, system simulation)

— Every event e happens at some time t and generates
new events el, ..., en at times t+t1, ..., t+tn

— Naive approach:

« Advance “clock” by 1 unit, exhaustively checking for events
— Better:

« Pending events in a priority queue (priority = event time)

* Repeatedly: deleteMin and then insert new events

 Effectively “set clock ahead to next event”
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Finding a Good Data Structure

 We will examine an efficient, non-obvious data structure
— But let’s first analyze some “obvious” ideas for n data items
— All times worst-case; assume arrays “have room”

data insert algorithm / time  deleteMin algorithm / time
unsorted array add at end O(1) search O(n)
unsorted linked list  add at front O(1) search O(n)
sorted circular array search / shift O(n) move front O(1)
sorted linked list put in right place O(n) remove at front O(1)
binary search tree put in right place O(n) leftmost O(n)
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Our Data Structure: Heap

We are about to see a data structure called a “heap”
— Worst-case O(log n) insert and O(log n) deleteMin
— Average-case O(1) insert (if items arrive in random order)

— Very good constant factors
Possible because we only pay for the functionality we need
— Need something better than scanning unsorted items

— But do not need to maintain a full sort

The heap Is a tree, so we need to review some terminology
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Tree Terminology

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(C):
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Tree Terminology

depth(B):

height(G):

height(T):

degree(B):

branching factor(T):
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Types of Trees

Certain terms define trees with specific structures

* Binary tree: Every node has at most 2 children
* n-ary tree: Every node as at most n children
« Perfect tree: Every row is completely full

« Complete tree: All rows except the bottom are completely full,
and it is filled from left to right

What is the height of a perfect tree with n nodes? A complete tree?
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Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap
— Structure Property: A complete tree

— Heap Property: The priority of every non-root node is
greater than the priority of its parent

How is this different from a binary search tree?
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Properties of a Binary Min-Heap

Requires both structure property and the heap property

not a heap

Where is the minimum priority item?
What is the height of a heap with n items?
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Basics of Heap Operations

findMin:
* return root.data

deleteMin:
« Move last node up to root

» Violates heap property,
“Percolate Down” to restore

insert:
* Add node after last position

* Violate heap property,
“Percolate Up” to restore

Overall, the strategy is:
* Preserve structure property
« Break and restore heap property
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DeleteMin Implementation

1. Delete value at root node
(and store it for later return)
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Restoring the Structure Property

2. We now have a “hole” at the root

3. We must “fill” the hole with another value,
must have a tree with one less node, and
It must still be a complete tree

4. The “last” node is the is obvious choice

Winter 2012 CSE332: Data Abstractions 18



Restoring the Heap Property

5. Not a heap, it violates the heap property

6. We percolate down to fix the heap

While greater than either child
Swap with smaller child
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Percolate Down

While greater than either child
Swap with smaller child

What is the runtime? Why does this work?
O(log n) Both children are heaps
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Insert Implementation

« Add a value to the tree

« Afterwards, structure and heap
properties must still be correct
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Maintaining the Structure Property

1. There is only one valid shape for our
tree after addition of one more node

2. Put our new data there
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Restoring the Heap Property

3. Then percolate up to fix heap property

While less than parent
Swap with parent
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Percolate Up

While less than parent
Swap with parent

What is the runtime? Why does this work?
O(log n) Both children are heaps
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A Clever and Important Trick

We have seen worst-case O(log n) insert and deleteMin
— But we promised average-case O(1) insert

Insert requires access to the “next to use” position in the tree
— Walking the tree requires O(log n) steps

Remember to only pay for the functionality we need
— We have said the tree is complete, but have not said why

All complete trees of size n contain the same edges
— So why are we even representing the edges?
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Array Representation of a Binary Heap

From node i;:

left child: 1*2
right child: 1*2+1
parent: 1/2

wasting index O is
convenient for the math

Array implementation:

A | B|C|D|E F | G| H I J K| L

0 1 2 3 4 5 6 7 8 9 10 11 12 13
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Tradeoffs of the Array Implementation

Advantages:
« Non-data space: only index 0 and any unused space on right

— Contrast to link representation using one edge per node
(except root), a total of n-1 wasted space (like linked lists)

— Array would waste more space if tree were not complete
« Multiplying and dividing by 2 is extremely fast
« The major one: Last used position is at index size, O(1) access

Disadvantages:

« Same might-be-empty or might-get-full problems we saw with
stacks and queues (resize by doubling as necessary)

Advantages outweigh disadvantages: “this is how people do it”
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