CSE332: Data Abstractions

Lecture 4: Priority Queues; Heaps

James Fogarty
Winter 2012

Administrative

Eclipse Resources
HW 1 Due Friday
— Discussion board post regarding HW 1 Problem 2
Project 1A Milestone and Grading
— Inquiry about due date timing
— Use of private nested classes
— Private helper for array resize
Testing Script Posted in Forum
— By Atanas w/ correction by Jackson
— If you use this, be sure you understand and acknowledge it

Winter 2012 CSE332: Data Abstractions

Administrative

« Office Hours
— Will keep calendar updated

 Readings

— Will keep calendar updated
— Weiss Chapter 6 to 6.5

Winter 2012 CSE332: Data Abstractions

New ADT: Priority Queue

A priority queue holds compare-able data

Unlike LIFO stacks and FIFO queues, needs to compare items
— Given x and y: is x less than, equal to, or greater than y
— Meaning of the ordering can depend on your data
— Many data structures will require this: dictionaries, sorting

Integers are comparable, so will use them in examples

The priority queue ADT is much more general
— Typically two fields, the priority and the data

Winter 2012 CSE332: Data Abstractions

New ADT: Priority Queue

« Each item has a “priority”
— The next or best item is the one with the lowest priority
— So “priority 1” should come before “priority 4”
— Simply by convention, could also do maximum priority

* Operations:

— insert :
Insert

— deleteMin _—

« deleteMin returns and deletes item with lowest priority
— Can resolve ties arbitrarily

Winter 2012 CSE332: Data Abstractions 5

Priority Queue

insert a with priority 5 after execution:
insert b with priority 3
insert c with priority 4
W = deleteMin
X = deleteMin
insert d with priority 2
insert e with priority 6
Yy = deleteMin
Z = deleteMin

N < X S
I

[
® Q0 o

Winter 2012 CSE332: Data Abstractions

Applications

Priority queue is a major and common ADT
— Sometimes blatant, sometimes less obvious

Forward network packets in order of urgency

Execute work tasks in order of priority
— “critical” before “interactive” before “compute-intensive” tasks
— allocating idle tasks in cloud hosting environments

Sort (first insert all items, then deleteMin all items)
— Similar to Project 1's use of a stack to implement reverse

Winter 2012 CSE332: Data Abstractions 7

Advanced Applications

« “Greedy” algorithms
— Efficiently track what is “best” to try next

« Discrete event simulation (e.g., virtual worlds, system simulation)

— Every event e happens at some time t and generates
new events el, ..., en at times t+t1, ..., t+tn

— Naive approach:

« Advance “clock” by 1 unit, exhaustively checking for events
— Better:

« Pending events in a priority queue (priority = event time)

* Repeatedly: deleteMin and then insert new events

 Effectively “set clock ahead to next event”

Winter 2012 CSE332: Data Abstractions 8

Finding a Good Data Structure

 We will examine an efficient, non-obvious data structure
— But let’s first analyze some “obvious” ideas for n data items
— All times worst-case; assume arrays “have room”

data insert algorithm / time deleteMin algorithm / time
unsorted array add at end O(1) search O(n)
unsorted linked list add at front O(1) search O(n)
sorted circular array search / shift O(n) move front O(1)
sorted linked list put in right place O(n) remove at front O(1)
binary search tree put in right place O(n) leftmost O(n)

Winter 2012 CSE332: Data Abstractions 9

Our Data Structure: Heap

We are about to see a data structure called a “heap”
— Worst-case O(log n) insert and O(log n) deleteMin
— Average-case O(1) insert (if items arrive in random order)

— Very good constant factors
Possible because we only pay for the functionality we need
— Need something better than scanning unsorted items

— But do not need to maintain a full sort

The heap Is a tree, so we need to review some terminology

Winter 2012 CSE332: Data Abstractions 10

Tree Terminology

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(C):

Winter 2012 CSE332: Data Abstractions 11

Tree Terminology

depth(B):

height(G):

height(T):

degree(B):

branching factor(T):

Winter 2012 CSE332: Data Abstractions 12

Types of Trees

Certain terms define trees with specific structures

* Binary tree: Every node has at most 2 children
* n-ary tree: Every node as at most n children
« Perfect tree: Every row is completely full

« Complete tree: All rows except the bottom are completely full,
and it is filled from left to right

What is the height of a perfect tree with n nodes? A complete tree?

Winter 2012 CSE332: Data Abstractions 13

Properties of a Binary Min-Heap

More commonly known as a binary heap or simply a heap
— Structure Property: A complete tree

— Heap Property: The priority of every non-root node is
greater than the priority of its parent

How is this different from a binary search tree?

Winter 2012 CSE332: Data Abstractions 14

Properties of a Binary Min-Heap

Requires both structure property and the heap property

not a heap

Where is the minimum priority item?
What is the height of a heap with n items?

Winter 2012 CSE332: Data Abstractions

15

Basics of Heap Operations

findMin:
* return root.data

deleteMin:
« Move last node up to root

» Violates heap property,
“Percolate Down” to restore

insert:
* Add node after last position

* Violate heap property,
“Percolate Up” to restore

Overall, the strategy is:
* Preserve structure property
« Break and restore heap property

Winter 2012 CSE332: Data Abstractions 16

DeleteMin Implementation

1. Delete value at root node
(and store it for later return)

Winter 2012 CSE332: Data Abstractions

17

Restoring the Structure Property

2. We now have a “hole” at the root

3. We must “fill” the hole with another value,
must have a tree with one less node, and
It must still be a complete tree

4. The “last” node is the is obvious choice

Winter 2012 CSE332: Data Abstractions 18

Restoring the Heap Property

5. Not a heap, it violates the heap property

6. We percolate down to fix the heap

While greater than either child
Swap with smaller child

Winter 2012 CSE332: Data Abstractions

19

Percolate Down

While greater than either child
Swap with smaller child

What is the runtime? Why does this work?
O(log n) Both children are heaps

Winter 2012 CSE332: Data Abstractions 20

Insert Implementation

« Add a value to the tree

« Afterwards, structure and heap
properties must still be correct

Winter 2012 CSE332: Data Abstractions 21

Maintaining the Structure Property

1. There is only one valid shape for our
tree after addition of one more node

2. Put our new data there

Winter 2012 CSE332: Data Abstractions 22

Restoring the Heap Property

3. Then percolate up to fix heap property

While less than parent
Swap with parent

Winter 2012 CSE332: Data Abstractions 23

Percolate Up

While less than parent
Swap with parent

What is the runtime? Why does this work?
O(log n) Both children are heaps

Winter 2012 CSE332: Data Abstractions 24

A Clever and Important Trick

We have seen worst-case O(log n) insert and deleteMin
— But we promised average-case O(1) insert

Insert requires access to the “next to use” position in the tree
— Walking the tree requires O(log n) steps

Remember to only pay for the functionality we need
— We have said the tree is complete, but have not said why

All complete trees of size n contain the same edges
— So why are we even representing the edges?

Winter 2012 CSE332: Data Abstractions

25

Array Representation of a Binary Heap

From node i;:

left child: 1*2
right child: 1*2+1
parent: 1/2

wasting index O is
convenient for the math

Array implementation:

A | B|C|D|E F | G| H I J K| L

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Winter 2012 CSE332: Data Abstractions 26

Tradeoffs of the Array Implementation

Advantages:
« Non-data space: only index 0 and any unused space on right

— Contrast to link representation using one edge per node
(except root), a total of n-1 wasted space (like linked lists)

— Array would waste more space if tree were not complete
« Multiplying and dividing by 2 is extremely fast
« The major one: Last used position is at index size, O(1) access

Disadvantages:

« Same might-be-empty or might-get-full problems we saw with
stacks and queues (resize by doubling as necessary)

Advantages outweigh disadvantages: “this is how people do it”

Winter 2012 CSE332: Data Abstractions 27

